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Summary

1. Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks

and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets

are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional

scales.

2. We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs)

and species from airborne remote sensing data, fromwhich individual tree carbon stocks are calculated.We iden-

tify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from air-

borne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height

and crown-width estimate. From that point on, we use well-established approaches developed for field-based

inventories: above-ground biomasses of trees are estimated using published allometries and summedwithin plots

to estimate carbon density.

3. We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between

field- and ALS-based estimates of carbon stocks (r2 = 0�98). Small trees are invisible from the air, and a correc-

tion factor is required to accommodate this effect.

4. An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at

any scale and is fundamentally based on field-based inventorymethods, making it intuitive and transparent. Air-

borne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it

increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider car-

bonmapping programs like REDD++.

Key-words: above-ground biomass, airborne laser scanning, carbon density, hyperspectral imag-

ing, individual tree crowns, LIDAR, temperate forests

Introduction

Forest ecosystems cover about 30% of our planet, contain

80% of the Earth’s biomass and account for 75% of the gross

primary productivity of the terrestrial biosphere (IPCC, 2006;

Pan et al. 2013) as well as harbouring much terrestrial biodi-

versity (Ozanne et al. 2003). They account for 50% of the

annual carbon flux between the atmosphere and the Earth’s

land surface (Beer et al. 2010), and sequestering carbon equiv-

alent to about 30% of the fossil fuel emissions (Pan et al.

2011). Current knowledge about the contributions of forest to

global carbon cycling comes primary from field-based inven-

tory data. Many developed countries have impressive plot net-

works which provide unbiased and precise national estimates

of forest attributes [e.g. >200 000 plots in the USA (Hulshof,

Swenson &Weiser 2015)], but remote sensing data are increas-

ingly used to complement these plot networks, including

satellite multispectral data, laser scanning and RADAR (Gon-

zalez et al. 2010; Thurner et al. 2014).

The most accurate remote sensing technology for monitor-

ing forest carbon is airborne laser scanning (ALS; Lefsky et al.

2002; Asner et al. 2012). By firing hundreds of thousands of

laser pulses per second at land surfaces, and measuring surface

elevation within a few centimetres precision, ALS sensors pro-

duce highly detailed 3D point clouds pinpointing locations on

leaves, branches and the forest floor. Classically, regression

techniques have been used tomodel above-ground carbon den-

sity measured in plots (CDPLOT in Mg C per hectare) as a

function of various summary statistics derived from the ALS

point cloud; however, a limitation is that these models are site

specific (Næsset 2002; Hudak et al. 2006). A recent advance

has been a recognition that carbon density (CDPLOT) can be

accuratelymodelled using:

CDPLOT ¼ a �WD
b � BAc � �Hd; eqn 1

where �H is average canopy height obtained from ALS (e.g.

mean canopy height or the canopy top height), WD is average
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wood density (WD) measured on the ground, BA is basal area

of a plot, and a, b, c and d are parameters estimated by regres-

sion (Asner et al. 2012, 2014). Interestingly, a comparison of

models developed for four contrasting tropical forests indicates

that d is approximately constant among sites, suggesting it is a

‘universal’ model for tropical forests. However, eqn 1 cannot

be derived by summing individual tree biomasses unless the

tree size distribution is known, and relies on inputs from the

ground (i.e. mean basal area andmeanWD) (Vincent, Sabatier

&Rutishauser 2014).

The objective of this study was to develop and test a tree-

centric approach for mapping forest carbon, using a combina-

tion of ALS and hyperspectral data, building on research

reviewed byBreidenbach&Astrup (2014). The primary benefit

of adopting this approach is that it is fundamentally similar to

methods already available for analysing forest plot data (e.g.

Coomes et al. 2001; Chen, Vaglio Laurin & Valentini 2015).

Within forest inventories, the approach is to (i) measure the

stem diameters and heights of all trees above a certain size

threshold within a plot; (ii) use published allometric equations

to estimate tree biomasses from these measurements, which,

typically, take the form:

dAGBTREE ¼ a �WDb �DBHc �Hd; eqn 2

where dAGBTREE is the estimated above-ground biomass in

kilograms of a tree, H its height in m, DBH its diameter at

breast height in cm,WD its wood density in g cm�3, and a, b, c,
d are regression coefficients available in published papers (e.g.

Chave et al. 2014); (iii) sum up the individual biomasses within

the plot; and (iv) convert plot-level biomass estimates to carbon

densities bymultiplying by carbon content values. Here, we fol-

low a similar approach, except that instead of visiting plots and

measuring trees by hand, we (i) use algorithms to detect individ-

ual trees from airborne imagery then estimates the height and

crown area of each detected tree and then use regression rela-

tionships to estimate DBH from these measurements; after that

steps (ii–iv) are exactly the same as above. Ground-based stud-

ies have shown that D / f(H, CA), where CA is the crown

area andH is the height of the tree (Coomes et al. 2012; R€uger

&Condit 2012). Thus, eqn (2) can be transformed into:

dAGBTREE ¼ a �WDb � ½fðH;CAÞ�c �Hd: eqn 3

It is increasingly common to collect high-spatial-resolution

multispectral or hyperspectral imagery from aircraft

alongside the ALS data, and this can be used to map species

(Dalponte, Bruzzone & Gianelle 2012) and some chemical

components of tree leaves (Asner et al. 2015), allowing the

WD term to be made species specific, just as it is in ground-

based inventories (Gonzalez et al. 2010). Recent technologi-

cal advances mean that ALS acquisitions have a point den-

sity high enough to detect individual tree crowns (ITCs),

and many crown delineation methods have been developed

in the last years (Hyypp€a et al. 2001; Ferraz et al. 2012;

Eysn et al. 2015; Str̂ımbu & Str̂ımbu 2015), enabling such

an approach (e.g. Yao, Krzystek & Heurich 2012; Breiden-

bach & Astrup 2014).

This paper sets out a methodological framework for tree-

centric biomass analysis (see Fig. 1) and illustrates the util-

ity of the framework by analysing ALS and hyperspectral

imagery from a 32-km2 forest in the Italian Alps. We use a

segmentation algorithm developed by us and allometric for-

mulae provided by the Italian forest service (Scrinzi, Gal-

vagni & Marzullo 2010; see Appendix S1 in Supporting

information), but the framework is generic, and other seg-

mentation algorithms and allometric formulae could be

used if they outperform ours in a particular context. We

show that tree-centric airborne remote sensing (ARS)

approaches deliver accurate high-resolution maps of carbon

density. While similar approaches have been advocated

before (e.g. Omasa et al. 2003; Yao, Krzystek & Heurich

2012; Colgan, Asner & Swemmer 2013; Duncanson et al.

2014, 2015), we argue that rapid advances in technology

now make them feasible over large spatial scales. We close

the paper by discussing how the tree-centric approach

might be applied globally, including thoughts on how seg-

mentation and species classification could be applied to

more challenging types of forests, including multilayered

tropical forests.

Materials andmethods

STUDY AREA DESCRIPTION AND FIELD DATA

The study area (32 km2) is located in the Italian Alps (Pellizzano,

Trento), with an altitude range from 900 to 2200 m a.s.l. The forest is

dominated by Picea abies (L.) Karst., with the presence of other conif-

erous species (e.g. Abies alba Mill., Larix decidua Mill., Pinus cembra

L.,Pinus sylvestrisL. andPinus nigra J.F.Arnold) and broadleaves spe-

cies (e.g. Populus tremula L., Betula spp.). The forest is managed by

Fig. 1. Architecture of the system inwhich the proposedmethod is included.
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selective logging, and trees harvested according to their stem diameter.

At lower altitudes, the forest is more mixed and the structure is more

complex, with the presence of multilayer forest, while at higher altitude

the forest is sparse.

Field data used to calibrate and validate our tree-centric

ARS approach include three data sets (Dalponte & Coomes

2016):

1. Angle-count training plots – Fifty-two plots containing 2478 trees

were used to calibrate the diameter estimation model and to train

the classifier adopted for the tree species recognition. The 52 ACS

plots were distributed using a stratified random sampling strategy.

The species, DBH and position (bearing and distance from the plot

centre) of all trees identified by a Hagl€of angle prism (basal area

factor equal to two) were measured (Table 1). Heights, measured

for 156 of these trees using a Vertex hypsometer, were used to select

site indices for each plot, and these were used to estimate height of

all remaining trees using local allometric equations (Scrinzi, Gal-

vagni & Marzullo 2010). Above-ground biomass was obtained for

all trees using local equations (Scrinzi, Galvagni & Marzullo 2010;

Appendix S1).

2. Individual tree training data set – 3039 trees, distributed across the

landscape, were used, in combination with the tree positions and spe-

cies inside the 52 angle-count sampling plots, to train and test the classi-

fier used for the tree species recognition (Table 2). Tree species and

positions were recorded for each tree.

3. Validation plots – 47 plots of 15 m radius randomly in the study area

were used to validate the ITC delineation, and AGB and carbon den-

sity estimates. The DBH, species and height of all the trees within the

plots (>4 cm DBH) were measured. The above-ground biomass of

each tree was estimated using the equations of (Scrinzi, Galvagni &

Marzullo 2010; Appendix S1).

The positions of all plots and trees were precisely georeferenced using

a differential GPS.

AIRBORNE REMOTE SENSING DATA COLLECTION AND

PRE-PROCESSING

Airborne laser scanning data were acquired on 7–9 September 2012,

using aRiegl LMS-Q680i sensor (RIEGLLaserMeasurement Systems

GmbH, Horn, Austria). The scan frequency was 400 kHz and up to

four returns were recorded. The average point density was of

48 pts m�2. A digital terrain model was extracted from the ALS points

by the vendor and used to create a canopy height model (CHM) of the

area. Hyperspectral data were acquired on 13 June 2013 with an AISA

Eagle II sensor. Twenty-one images were acquired in order to cover the

whole study area. The minimum overlap among the images was 20%.

Each image is characterized by 65 spectral bands acquired between 400

and 990 nm and by a spatial resolution of 1 m. The hyperspectral

images were mosaicked in order to create a uniform image, and to

reduce minor differences in reflectance occurring between the different

images, the value of each pixel was normalized with respect to the sum

of the original values of the same pixel in all the bands. From prelimi-

nary analyses, this operation resulted in a significant improvement of

the final classification accuracies.

ITCS DELINEATION

Individual tree crown delineation was conducted using an approach

adapted from that of Hyypp€a et al. (2001) which, despite its relative

simplicity, came out among the best in a benchmark study comparing

delineation methods across 18 sites in the Alps [method 2 in Eysn et al.

2015; Appendix S2; package itcSegment inside the software R (www.r-

project.org)]. The ITC delineation approach finds local maxima within

a rasterizedCHM, designates these as tree tops and then uses a decision

tree method to grow individual crowns around the local maxima. The

approach goes through the following steps: (i) a low-pass filter is

applied to the rasterized CHM to smooth the surface and reduce the

number of local maxima; (ii) local maxima are located using a circular

moving window; a pixel of the CHM is labelled as local maxima if its

value is greater than all other values in the window, provided that it is

greater than someminimumheight above-ground; (iii) each local maxi-

mum is labelled as an ‘initial region’ around which a tree crown can

grow; the heights of the four neighbouring pixels are extracted from the

CHM and these pixels are added to the region if their vertical distance

from the local maximum is less than some user-defined percentage of

the local maximum height, and less than some user-defined maximum

difference; this procedure is repeated for all the neighbours of cells now

included in the region, and so on iteratively until no further pixels are

added to the region; (iv) from each region that had been identified, the

first-return ALS points are extracted (having first removed low eleva-

tion points); and (v) a 2D convex hull is applied to these points, and the

resulting polygons become the final ITCs. Note that this process is not

Table 1. Statistics of the reference data from the 52ACS plots used to build up the estimationmodels for theDBHandAGB

Species N

AGB (kg) DBH (cm) Height (m) Crown area (m2)

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

All 1762 3 7280 1079 6�5 121�0 49�4 3�5 48�8 28�1 1�5 55�4 30�9
Abies alba 70 43 2539 1095 15�5 77�0 47�9 12�4 39�6 27�8 12�0 53�9 34�6
Angiosperm 26 26 1330 485 13�5 54�5 32�3 7�3 31�5 22�5 8�6 46�6 28�2
Larix decidua 473 3 2971 1022 6�5 85�5 51�2 3�5 44�1 27�0 1�5 55�4 33�3
Picea abies 1174 7 7280 1124 8�0 121�0 49�3 4�4 48�8 28�9 1�7 54�9 29�9
Pinus cembra 19 13 997 447 10�5 75�5 38�5 7�8 16�1 12�9 6�0 37�6 18�1

Table 2. Statistics of the reference data used for the tree species classifi-

cation

Species

Training Test

Pixels ITCs Pixels ITCs

Abies alba 1207 43 1340 42

Angiosperm 10 855 536 10 518 529

Picea abies 24 293 858 24 032 858

Larix decidua 13 248 379 12 213 379

Pinus cembra 743 57 687 56

Pinus nigra 470 17 482 16

Pinus sylvestris 171 3 59 3
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completely automatic, as the size of the moving window, the small-tree

cut-off height and the percentage and absolute height difference thresh-

olds all need to be set by the user.

The delineated ITCs were automatically matched to the trees in all

three field data sets. If only one field-measured tree was included inside

an ITC, then that tree was associated with that ITC. In the case ofmore

than one field-measured tree was included in a segmented ITC, the

field-measured tree with the height closer to the ITC height was chosen.

We assessed the delineation accuracy by computing the detection rate

(DET), omission error (OE = failure to detect a crown that exists),

commission errors (CE = delineation of a crown that do not exist in

reality) and accuracy index [AI = 100 � (OE + CE)] over the 47 fixed-

radius validation plots.

SPECIES RECOGNIT ION

A support vectormachines (SVM) classifier was used to identify species

using features selected from the ALS and hyperspectral imagery. Tree

species classification was carried out in two steps. Firstly, the sunlit pix-

els inside each ITC (Dalponte et al. 2014) were classified with the

SVM, and secondly, the species of each ITC was decided by aggregat-

ing the classified pixels inside each ITC according to a majority rule.

From the ALS data set, the 99th percentile of the first-return points

inside each ITC was used as a feature (if high-point-density ALS data

are available, additional features can be extracted as showed in Dal-

ponte, Bruzzone &Gianelle 2012), while 27 features were selected from

the original hyperspectral data before classification using the sequential

forward floating selection search algorithm (Pudil, Novovi�cov�a & Kit-

tler 1994) and the Jeffries–Matusita distance metric (Bruzzone, Roli &

Serpico 1995). We had already applied this approach successfully to

similar forest types (Dalponte, Bruzzone & Gianelle 2012; Dalponte

et al. 2014). The SVM implementation used was the one of the kernlab

package in R software. The classification accuracywas assessed by com-

puting the overall accuracy, kappa accuracy, mean class accuracy and

the confusion matrix on a test set (see Table 2) and validation set (47

fixed-radius plots).

INDIV IDUAL TREE BIOMASS ESTIMATED FROM ALS DATA

AGBTREE estimation of each ITC was done using the stem volume

equations for temperate species of Scrinzi, Galvagni &Marzullo (2010)

(Appendix S1) multiplied by the WD of the respective species (IPCC

2003). The AGB equation is similar to the generic formula of Chave

et al. (2005, 2014) shown in eqn (1):

dAGBTREE ¼ a �WDb � ðDBH� d0Þc �Hd: eqn 4

The values of a, b, c, d and d0 were taken from species-specific tables

(Scrinzi, Galvagni & Marzullo 2010). Note that the exponent of WD

(b) is one, as also assumed by previous studies (Asner et al. 2012), while

parameter d ranges from 0�83 to 1�34 according to species (cf. Asner

et al. 2012 assumed it to be 1). We do not have all information needed

to estimate uncertainty in field biomasses, but DBH is typically mea-

sured with 1–2% accuracy and height with 5% accuracy in coniferous

forests, in which case biomass uncertainty is about 6% (Chave et al.

2004). Using 456 trees in our 47-plot validation data set, we added 6%

random variation to field-estimated AGB values and then used OLS

regression to fit a line through field- vs. ALS-estimated biomass values

(log-log-transformed). We repeated this 100 times to gain estimates of

the standard deviation of residuals as a proportion ofAGB.

A nonlinear regression approachwas used tomodel field-basedmea-

surements of diameter (DBH in cm) with ALS-derived measurements

of crown area (CA inm2) and height (H in m) obtained from 1762 trees

within the 52 angle-count plots (these are the trees inside the 52 plots

matching an ITC). The function we selected, after exploring many

alternatives, was:

dDBH ¼ e �Hq � ð1þ 0 � CAÞ: eqn 5

The height of each tree was defined as the 99th percentile of the first-

return ALS pulses inside the ITC polygon (used to reduce the effect of

possible outliers), and crown area was calculated as the area of the ITC

polygon. Species-specific models were fitted for common species and a

single model for all the less common ones. Models were parametrized

using the nlrq function of quantile regression package quantreg in R

(s = 0�5), which is less sensitive to heteroscedasticity than conventional

least-square regression (Koenker &Park 1996).

PLOT-LEVEL ESTIMATES OF CARBON DENSITY

To test the effectiveness of the tree-centric approach at estimating car-

bon density, we compared field-estimated CDPLOT with ARS-esti-

mated CDPLOT within the 47 validation plots. Field-based estimates

were obtained by calculating the above-ground biomasses of trees in a

plot from their DBH, H and species (using eqn 4), summing to give

total AGB, then multiplied by tree carbon content values (0�5 for coni-
fers and 0�48 for angiosperms; IPCC, 2006; Thomas &Martin 2012) to

give CDPLOT. ARS estimates were produced in a similar way, except

that the biomasses of ITCs recognized from the ALS data were

summed. Least-squares regression was used to compare these esti-

mates. Finally, the biomasses of all detected trees across the 32-km2

area were estimated from their ITCs and used to produce two carbon

densitymaps, one based on individual trees and one based on aggregat-

ing the ITC’s carbon in squares of 100 9 100 size.

Results

ITC DELINEATION

Individual tree crown delineation was successful at detecting

large trees but, as anticipated, failed to detect smaller trees in

the understorey. The following analyses combine results from

all 47 validation plots. In the largest stem diameter class

(>80 cmDBH), all trees were correctly identified (100%DET)

and no trees were incorrectly detected (i.e. 0% CE). However,

DETs were much lower in the smaller size classes, while CEs

became large (Fig. 2). Since small trees are much more numer-

ous than larger trees, the overall DET was only 30�6% and the

CEwas 8�3%,with anAI of 22�3%.However, these small trees

contribute little to biomass (Fig. 2), so detection failure has lit-

tle effect on carbon density estimates (see later). Having only a

small CE (especially for the large trees) is important, as com-

pensating for such errorswhen estimatingCDPLOT is difficult.

There was a close relationship between field-estimated

heights and ALS-estimated heights inside the 47 fixed-radius

plots: the RMSE was 2�3 m (R2 of 0�90). ALS heights were in

average 1% lower than field-measured ones for big trees, per-

haps because (i) laser pulses permeate into the canopy, (ii) the

99th percentile of ALS height was used as our measure of

canopy height, and (iii) field-estimated heights are measured

with considerable uncertainty. The relationship between field-

measured and ALS-estimated crown area was poor. A total of
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198 trees within the 47 validation plots had field estimates of

crown area and a matching delineated ITC. Comparison of

field- vs. ALS-estimated areas, by least-squares regression,

gave an RMSE of 17 m2 (the maximum detected crown size

was 56 m2) andR2 of 0�20 (see Appendix S4).

TREE SPECIES CLASSIF ICATION

Within the test trees (trees in 52 ACS plots and another 3039

individuals; Table 2), the overall accuracy of the classification

process was 82�4%with an average accuracy of 85�1%. Exam-

ining the confusion matrix (Table 3), it can be seen that

P. abies (the dominant species) ismainly confusedwithA. alba

and L. decidua, while the three pines are not confused with

each other. Within the 47 validation plots, overall accuracy

was 80�9%: the highest producer’s accuracy (100%) was

obtained forA. alba,while the dominant species (P. abies) got

a producer’s accuracy of 82�9%. The classification errors can

arise for several reasons: imperfect matching of ITCs with

ground data, trees having different spectral signatures at differ-

ent stage of growth, isolated trees having ‘purer’ spectral signa-

tures than trees within dense forests and species

misidentification in the field.

DBH AND AGBTREE ESTIMATION

Species-specific coefficients of DBH estimation model (eqn 5)

are shown in Table 4, and comparison of estimated vs.

observed DBH of trees in the calibration data set is shown in

Fig. 3. For trees represented by >100 samples, all coefficients

have low standard errors and are significantly different from

zero (Table 4); this demonstrates the value of including CA as

well as H in the models. For these well-replicated species, the

DBH estimation equation had a better goodness-of-fit, and

was less biased, when CA andHwere included (Appendix S3).

These species also hadmore accurate biomass estimation equa-

tions than the poorly replicated species (Fig. 4). The estimated

biomasses of 456 trees in the validation plots are compared

with field estimates in Fig. 5. A slight bias is evident, with the

biomass of small trees overestimated and the biomass of large

trees underestimated; the uncertainty of biomass estimates is

about 13%.

CARBON DENSITY ESTIMATION

Aggregating the AGBTREE estimates to the plot level increased

the accuracy of the estimates. There was a close relationship

between field- and ARS-derived estimates of CDPLOT (identi-

cal to the relationship between AGBPLOT estimates). More

than 98% of variation in field CDPLOT is explained by ARS-

estimated CDPLOT (adjusted R2 = 0�98; Fig. 6). As expected,

the field CDPLOT is generally greater than the ARS-estimated

one, because small understorey trees have not been detected.

This underestimation can be easily compensated with a hid-

den-tree correction factor (here field CDPLOT = 1�23 9 ARS

CDPLOT). The RMSE based on corrected values is

20 Mg C ha�1. Including crown area in the DBH estimation

model led to a better goodness-of-fit than working with height

alone. Repeating the analyses with just height, the adjusted R2

is 0�96 and RMSE is 25 Mg C ha�1 (Appendix S3). Maps

Fig. 2. (a) total number of trees measured in

plots and detected from airborne laser scan-

ning, separated into diameter classes. The

detection rate (DET) and the commission

error (CE) in each diameter class are indicated;

(b) total AGB (kg) measured in the field and

detected in each diameter class. The dark grey

bars refer to the field-measured AGB, the grey

ones to the AGB of the trees correctly match-

ing between fields and airborne remote sensing

(ARS) data, and the light grey ones to the

AGB of all the ARS-detected ones. At the top

of the figure the percentage of biomass

detected (DET) by the ARS approach respect

to the field-measured one.
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based on the carbon density of ITC or of cell can be generated

(Fig. 7). These maps show the complete scalability of the pro-

posed method, giving extremely high-fidelity maps or aggre-

gated number.

Discussion

We have described a framework for estimating carbon density

using a tree-centric approach and illustrated the approach with

data from the Italian Alps. The approach produced precise

estimates of carbon stocks, with a systematic bias arising from

undetected trees that we corrected using a multiplier (Fig. 6).

However, given the complexity of ITC delineation approaches

comparedwith classic estimation approaches, is the extra effort

justified?We argue that the tree-centric approach is worth pur-

suing for the following reasons: (i) it is similar in principle to

ground-based methods, so theoretically robust; (ii) individual

wood densities can be included in calculations; and (iii) the

information is completely scalable. These are discussed below.

Our approach is similar to the transparent and intuitive

methods already established to obtain carbon densities from

forest inventory plots, based on summing the masses of indi-

vidual trees (e.g. Brown 1997; Coomes et al. 2001). Area-based

approaches lack this direct connectionwith fieldmeasurements

because they are based on averaging information among trees

within plots (Colgan, Asner & Swemmer 2013; Vincent, Saba-

tier & Rutishauser 2014). A study in South African savannas,

which (uniquely) compared destructive sampling of trees with

ALS and field surveys, found that a tree-centric approach had

similar accuracy to field inventory methods, and was twice as

accurate as area-based ALS analyses (Colgan, Asner & Swem-

mer 2013). Estimating tree volumes using terrestrial laser scan-

ning (e.g. Calders et al. 2015) would provide an alternative

way of comparing methods in regions where destructive sam-

pling is impossible. Tree-centric modelling improved the accu-

racy of biomass estimation in a mature conifer forests in

California, but not in a broadleaf forest or pine a plantation in

eastern USA, leading to the conclusion that allometric equa-

tions and delineation algorithms still need refinement (Dun-

canson et al. 2015). Expanding this approach to other sites will

indeed require collection of new scaling relationships, so that

wood volumes of individual trees can be estimated accurately

from ALS. Synthesizing the allometries of 80 000 trees world-

wide, we find that a singlemetric – the product of a tree’s height
and crown diameter – is able to produce unbiased and accurate
estimates of both stem diameter and above-ground biomass

(T. Jucker et al. unpublished data), so deriving a universal

model is possible.

Recognition of species identities from hyperspectral data

allowed individual tree biomasses to be calculated as the pro-

duct of volume and WD, in contrast to most ALS approaches

that use regionally averaged WD (Asner et al. 2012). This is

potentially important because WD varies strongly along soil

and climate gradients, and carbon maps derived from remote

sensing data are strongly dependent upon the assumed form of

that variation (Mitchard et al. 2014). A challenge with the ITC

Table 3. Confusionmatrix, and accuracies at the individual tree crown level based on the test set

Abies alba Angiosperm Picea abies Larix decidua Pinus cembra Pinus nigra Pinus sylvestris

Abies alba 32 2 46 7 0 0 0

Angiosperm 3 483 44 18 4 0 0

Picea abies 7 7 683 18 1 0 0

Larix decidua 0 36 83 334 10 2 0

Pinus cembra 0 1 2 0 41 0 0

Pinus nigra 0 0 0 2 0 14 0

Pinus sylvestris 0 0 0 0 0 0 3

Producer’s accuracy (%) 76�2 91�3 79�6 88�1 73�2 87�5 100�0
Overall accuracy (%) 84�4
Kappa accuracy 0�775
Average accuracy (%) 85�1

Grey highlighted cells show the number of correctly classified trees.

Table 4. Coefficients (and standard errors) ofDBHestimationmodel (eqn 5)

Species

e q ϑ

RMSE (cm)Estimate Std. Error Estimate Std. Error Estimate Std. Error

All (1762) 3�139 0�219 0�715 0�026 0�014 0�002 11

Abies alba (70) 0�503 0�299 1�287 0�219 0�008 0�006 8�6
Angiosperms (26) 3�745 1�640 0�631 0�181 0�008 0�014 8�2
Larix decidua (473) 4�695 0�447 0�553 0�041 0�021 0�004 9�8
Picea abies (1174) 2�102 0�289 0�848 0�047 0�011 0�002 11�1
Pinus cembra (19) 1�362 3�668 1�303 1�119 0�001 0�017 12�9

The number of samples is given in parentheses and coefficients that are significantly different from zero are shown in bold. Root-mean-square errors

are provided for eachmodel.
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approach is that recognizing species by hyperspectral imaging

remains difficult in diverse tropical forest. However, recent

analyses from Amazon forest suggest that 1% of species hold

50% of carbon stocks (Fauset et al. 2015), so accurate carbon

maps may only need a small fraction of abundant species to be

identified.Given that hyperspectral leaf traits sometimes corre-

late with WD (Chave et al. 2006), it may be possible to infer

WD from airborne hyperspectral imagery. Another possibility

is to identify forests types frommultispectral imagery (e.g. Dal-

ponte, Bruzzone &Gianelle 2012), and use this information to

refine carbon maps. However, hyperspectral data sets are bet-

ter able to distinguish tree species (Dalponte, Bruzzone &Gia-

nelle 2012) and can also be used to estimate a variety of

physical and chemical leaf traits (Asner et al. 2015).

The tree-centric approach is less sensitive to edge effects than

classic approaches. When using area-based approaches, edge

effects arise when a large tree which is just outside a plot’s

boundary is not included in the field-based biomass calcula-

tion, but much of its crown lies within the plot and so it influ-

ences the canopy top height and ALS estimate of biomass

(Mascaro et al. 2011). They also arise when trees included in

the ground plots do not appear in the ALS plot (or vice versa),

perhaps because the corners of plots have been geolocated

inaccurately, or because edge trees are leaning so that trunks

and crown centres are not aligned. Uncertainty arising from

edge effects is reduced by establishing larger ground plots

(Mascaro et al. 2011). A plot of 0�07 ha (i.e. the size of our val-

idation plots) has an RMSE of only 18% (Fig. 8), compared

with 35% reported by Asner et al. (2012) for tropical forests,

or 25%whenmethods are applied to reduce edge effects. These

comparisons need to be treated with caution, as alpine forests

are very different in structure to tropical forest. Nevertheless,

the tree-centric approach is relatively insensitive to plot size –
we estimate RMSE = 30% for 0�02-ha plots compared with

65% in Asner et al. (2012) – because the only source of edge

error is inaccuracy in deciding whether tree centres are inside

or outside of boundaries.

Finally, the new proposed approach is flexible because – as

shown in Fig. 7 – carbon can be mapped at any scale from sin-

gle trees to whole regions. Since estimation does not depend on

a specific plot size, there are fewer constraints on field data col-

lection: calibration trees can be collected in any kind of plot,

with any kind of strategy, so long as samples are representative

in terms of species and size ranges. This makes it possible to

use field data collected for other purposes when calibrating.

TOWARDS A UNIVERSAL TREE-CENTRIC MAPPING

APPROACH

While tree-centric approaches hold great promise, particularly

given the rapid advancement of technology, some key issues

remain to be overcome. A key advantage of the approach is

that species information allows specific allometries to be used

in calculations, but very real difficulties remain in reliable spe-

cies identification from hyperspectral imagery. A second issue

is that inclusion of crown area into biomass estimation

Fig. 3. Estimation of the tree DBH for the

field-measured trees. Note that an outlier with

DBH = 121 cm is omitted from the Picea

abies panel.
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equations leads to improvements in accuracy, but ALS and

field estimates of crown area were only weakly correlated. It

seems likely that inaccurate field estimates are responsible, as

measuring crown widths in N–S and E–Wdirections is a basic

approach, and because tests with a different approach to tree

delineation, which works with the entire point cloud, yield sim-

ilar results to ours (Lee 2016). A final issue is that ITC recogni-

tion approaches based on CHMs fails to detect small trees

hidden beneath the upper canopy. Although we corrected for

this bias using a multiplier, it is very likely that the multiplier

Fig. 4. Estimation of the tree AGB on the

field-measured trees. Note that an outlier with

AGB = 7200 kg is omitted from Picea abies

panel.

Fig. 5. Field- vs. airborne remote sensing (ARS)-estimated AGB of

individual trees inside 47 validation plots. The error bars show stan-

dard errors, amounting to about 6% for the field estimates and 13%

forARS estimates.

Fig. 6. CDestimation over the 47 validation plots.
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will vary among forest types that differ in complexity, meaning

that local calibration is required to map carbon accurately.

This calibration can be carried out using a semi-ITC approach

where the percentage of missing trees is estimated from ALS

data (Breidenbach & Astrup 2014). The development of meth-

ods that use the entire ALS point cloud or waveform data,

instead of just the CHM, to improve the detection of under-

storey trees may provide a solution to this problem (Str̂ımbu&

Str̂ımbu 2015). ALS, hyperspectral sensing and computational

power are all advancing rapidly, making it increasingly feasible

to use ITC approaches for effective mapping of forest carbon

density.
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Figure S3-1. Estimation of the tree DBH for the field measured trees.

NB: in the ‘Picea abies’ graph there is an outlier with 121 cm diameter

not showed in the graph.

Figure S3-2. Estimation of the tree AGB on the field measured trees.

NB: in the ‘Picea abies’ graph there is an outlier with 7200 kg of AGB

not showed in the graph.

Figure S3-3.CDestimation over the 47 validation plots.

Appendix S4.Field- andALS-estimated crown areas.

Figure S4-1. Field- vs. ALS-estimated crown areas. The dashed line is

representing the Type II regression line (RMA) among them.
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