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ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been
found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms under-
lying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-
wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems
were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent
ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A vari-
ety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resis-
tance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone
expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and
fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression
of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation expo-
sure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leu-
cine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling ex-
pression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein
kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique
molecular mechanism of the radiation-resistant fungus C. neoformans.

IMPORTANCE Although there are no natural environments under intense radiation, some living organisms have been found to
show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to
overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environ-
ments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-
sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma
radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel
regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that
is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could
shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans.
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xposure to ionizing radiation (IR) from natural sources or

caused by human activities damages the cellular components
of all living organisms, including nucleic acids, proteins, and lip-
ids, through both direct energy deposition of IR and interaction
with reactive oxygen species (ROS), such as hydroxyl radicals
(OH:), superoxide anions, and hydrogen peroxide, generated by
radiolysis of water. For instance, various types of DNA lesions,
including base modification, abasic sites, and strand breaks, are
caused by the interaction of OH- with DNA and direct ionization
of the DNA molecules, normally resulting in detrimental effects
on cell survival (1). To counteract these fatal effects, cells activate

November/December 2016 Volume 7 Issue 6 e01483-16

arrays of DNA repair machineries and antioxidative defense sys-
tems, and if the IR-induced damage exceeds the capacity of cells to
repair it, the cells die. Exposure to 200 Gy (i.e., “grays,” the ST unit
of absorbed radiation dose) is lethal to most bacteria (2). Interest-
ingly, however, radiation-resistant organisms, which are capable
of withstanding high doses of radiation (5 to 10 kGy) without loss
of viability, have been found in three domains of life (3). The IR
defense systems of these organisms provide novel molecular in-
sights into the mechanism of ROS detoxification and DNA repair
processes.

In eubacteria, Deinococcus radiodurans, which is ubiquitously
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found in soil, is the best known radiation-resistant bacterium that
is able to survive high doses of gamma radiation, 20 times greater
than those of the bacterium Escherichia coli: the radiation dose
yielding 10% survival (D,,) of D. radiodurans is 12 kGy, whereas
that of E. coliis 0.2 to 0.7 kGy (4). D. radiodurans has various DNA
repair systems, including extended synthesis-dependent strand
annealing and the RecF pathway of homologous recombination
(HR), which can efficiently repair DNA double-strand breaks
(DSBs), considered to be the most lethal form of damage. This
organism removes ROS through enzymatic systems, such as su-
peroxide dismutase, catalase, and peroxidase, and nonenzymatic
systems, such as pyrroloquinoline-quinone, deinoxanthin, and
bacillithiol (5, 6). In particular, the unusual Mn?* accumulation
in D. radiodurans, which results in a high intracellular Mn/Fe ra-
tio, has been correlated with IR resistance through the formation
of low-molecular-weight ROS-scavenging Mn2*-metabolite
complexes (2, 4). It is interesting to note that a high Mn/Fe ratio is
observed in other radiation-resistant bacteria, such as Rubrobacter
radiotolerans (Do, 12 kGy) and Kineococcus radiotolerans (D,
3 kGy) (7, 8). The halophilic archaeon Halobacterium salinarum
NRC1 showed remarkable IR resistance (D, 5 kGy) (9). When
H. salinarum was exposed to IR, DNA repair was primarily medi-
ated by HR and glycosylase activity, in which single-stranded
DNA-binding proteins (called replication proteins A [RPA])
played key roles (10, 11). Not only a high Mn/Fe ratio but also a
high halide concentration in the cytoplasm of H. salinarum pro-
vided a measure of protection for its macromolecules against the
oxidative effects of IR (12, 13). In contrast, the hyperthermophilic
archaea Thermococcus gammatolerans (D4, 6 kGy) and Pyrococcus
furiosus (D, 3 kGy) do not contain significant amounts of intra-
cellular Mn (8). Instead, they are equipped with numerous detox-
ification systems to cope with the ROS produced by IR (14, 15).

In eukaryotes, the DNA repair systems of the phytopathogenic
fungus Ustilago maydis (D, 3.6 kGy) have been studied to explain
IR resistance (16). HR machinery is known to contribute to the
gamma radiation resistance of U. maydis (17, 18). BRH2, a func-
tional homolog of the BRCA2 (breast cancer 2) gene in humans, is
akey component of the HR system of U. maydis (18). Dss1, which
is a small acidic protein that interacts with Brh2, is necessary for
Brh2 activity. Deletion of Brh2 or Dss1 results in radiation sensi-
tivity and recombination deficiency of U. maydis (19-21). Al-
though these two proteins contribute to the gamma radiation re-
sistance of U. maydis, the presence of BRCA2 or Dss1 orthologs in
radiation-sensitive vertebrates and eukaryotes (22-24) indicates
that other factors involved in radioresistance remain uncharacter-
ized.

The basidiomycetous fungal pathogen Cryptococcus neofor-
mans, which causes fatal meningoencephalitis in humans (25),
was found to be a dominant species in highly radioactive environ-
ments, such as the cooling pools of nuclear reactors, the strato-
sphere, and the damaged nuclear reactor at Chernobyl (26). The
radiation resistance mechanism of C. neoformans has been studied
from the aspect of melanin production. Dadacohva et al. demon-
strated that melanized cryptococcal cells exhibited increased
growth using the enhanced electron transfer properties of melanin
after exposure to IR, compared to nonmelanized cells (27). Fur-
thermore, melanin quenches IR-induced ROS, thereby prevent-
ing subsequent DNA damage (28). However, there has been no
systematic and comprehensive approach to elucidating the radia-
tion resistance mechanism of C. neoformans.
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In this study, we performed a DNA microarray-based tran-
scriptome analysis of the C. neoformans var. grubii H99 strain,
which is a serotype A genome sequencing platform strain, to ex-
plore gene expression profiles during the postirradiation period,
and we identified genes underlying the IR resistance phenotype of
C. neoformans by reverse-genetics approaches. Notably, we func-
tionally characterized a unique radiation response bZIP transcrip-
tion factor (TF), Bdrl (a bZIP TF for DNA damage response 1),
which regulates expression levels of genes involved in DNA repair
systems, and we found that its transcription level was controlled
by the Rad53 protein kinase. This study could help us to under-
stand the genome-wide radiation resistance networks and mech-
anism in the basidiomycetous fungi as well as C. neoformans.

RESULTS

Intrinsic cellular factors contribute to radiation resistance of
Cryptococcus neoformans in addition to melanin pigment. Al-
though C. neoformans has been known to be a radiation-tolerant
fungus, the ability of the pathogenic Cryptococcus species (PCS)
complex to survive radiation has not yet been analyzed in detail.
Therefore, we compared the radiation resistance levels of the PCS
complex (the C. neoformans var. grubii H99 strain, C. neoformans
var. neoformans JEC21 strain, Cryptococcus gattii R265 strain, and
C. gattii WM276 strain) with those of ascomycete nonpathogenic
model yeast Saccharomyces cerevisine (BY4742) and the patho-
genic yeasts Candida albicans (SC5314) and Candida glabrata
(BG2). Compared to the S. cerevisiae and pathogenic Candida
species, the PCS complex, except for the var. neoformans strain,
generally exhibited increased resistance to gamma radiation
(Fig. 1A). Among PCS complexes, the C. neoformans var. grubii
(H99) strain was most tolerant to gamma radiation, and C. gattii
strains were more tolerant to gamma radiation than the C. neofor-
mans var. neoformans strain (JEC21).

Melanized C. neoformans and Histoplasma capsulatum are
more resistant to gamma radiation than their nonmelanized cells
(28,29). Therefore, we wondered whether the expression levels of
laccase genes (LACI and LAC2) involved in producing melanin
were increased after radiation exposure. We demonstrated that
the expression patterns of melanin-producing genes LACI and
LAC2 were gradually decreased after high (3 kGy) or low (1 kGy)
doses of gamma radiation exposure (see Fig. S1 in the supplemen-
tal material), suggesting that gamma radiation itself did not trig-
ger melanin formation. This phenomenon was in stark contrast to
the finding that LACI and LAC2 were greatly increased either
during oxidative stress responses (30) or by carbon starvation
(31).

C. neoformans significantly remodels transcriptome profiles
in response to gamma radiation. The fact that transcript abun-
dance of LACI and LAC2 was decreased during postradiation re-
covery led us to examine alternative mechanisms to endowing
C. neoformans var. grubii (hereafter described as C. neoformans)
with radiation resistance. To this end, we monitored genome-
wide transcriptional patterns in response to gamma radiation by
performing a DNA microarray-based transcriptome analysis of
the H99 strain. To elucidate changes in transcriptome profiles
during postradiation recovery, cells with or without exposure to
gamma radiation (3 kGy for 1 h) were allowed to recover for 30,
60, or 120 min under nonradiation conditions and were used for
total RNA isolation. To obtain high reliability in the array data,
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FIG1 Comparative transcriptome analysis of the C. neoformans H99 strain in response to gamma radiation. (A) Each fungal species was grown in liquid YPD
medium at 30°C overnight. Cells were exposed to the indicated dose of gamma radiation for 1 h. Next, cells were serially diluted (1 to 10* dilution), spread on solid
YPD medium, and further incubated at 30°C for 3 days. The survival fraction was determined by comparison with nonirradiated cells of each corresponding
strain. (B) Venn diagrams exhibiting the number of upregulated (2-fold) and downregulated (2-fold) genes at 30, 60, and 120 min post-gamma radiation
exposure. The number of genes was determined for genes with expression levels changed more or less by 2-fold (P < 0.05; ANOVA). (C) Functional categories
of radiation-responsive genes in C. neoformans. Among the radiation-responsive genes, genes exhibiting more than 2-fold changes were categorized based on the
KOG functional description (eukaryotic orthologous group; http://www.ncbi.nlm.nih.gov/COG). The number of genes in parentheses was determined for genes
with expression levels changed more or less by 2-fold (P < 0.01; ANOVA). The red and blue bars represent the number of genes upregulated and downregulated,

respectively, by radiation exposure.

three independent DNA microarrays with three independent bi-
ological replicates were analyzed.

The transcriptome analysis revealed that a total of 2,587 C. neo-
formans genes displayed different expression patterns in response
to gamma radiation (P < 0.05; 2,016 genes at P < 0.01 by analysis
of variance [ANOVA]), suggesting that a considerable proportion
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of C. neoformans genes (37% of a total of 6,962 genes) were tran-
scriptionally regulated during recovery from gamma radiation ex-
posure. Totals of 234, 146, and 171 genes (209, 129, and 142 genes
at P < 0.01) exhibited more than 2-fold induction at different
recovery time points (30, 60, and 120 min, respectively). Among
these genes, 59 genes (56 genes at P < 0.01) were upregulated by
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FIG 2 DNA repair response is critical for gamma radiation resistance. (A) Fold increase in expression of DNA repair-related genes exposed to gamma radiation.
The fold increase of target gene expression was quantitatively measured by qRT analysis using the gene-specific primers listed in Table S2. The cDNA was
synthesized with total RNAs extracted from cells recovered at 30 min after exposure to gamma radiation or not exposed to gamma radiation. Duplicate technical
experiments with two or more biological samples were performed. Representative images from independent experiments for each DNA damage-responsive gene
are shown. Error bars indicate standard deviations. Asterisks indicate the statistical significance of differences in expression levels of each gene (***, P < 0.001).
(B) Spotting assay for gamma radiation resistance. Cells cultured overnight in liquid YPD medium were serially spotted onto the solid YPD medium and then
exposed to the indicated dose of gamma radiation. Exposed cells were further incubated at 30°C and photographed for 1 to 3 days. (C) Rdh54, Rad54, and Rigl
are required for DNA damage response in C. neoformans. The wild-type (WT [H99]) or rad51A (KW362), rdh54A (KW78), rad54A (KW26), and pso2A (KW22)
mutant C. neoformans strains were grown overnight at 30°C in liquid YPD medium, and the 10-fold serially diluted cells were spotted onto YPD agar containing
the indicated concentrations of genotoxic DNA damage insults. Cells were incubated at 30°C and photographed for 1 to 3 days. The two images split by a

horizontal white line in each spot assay were obtained from the same plate (B and C).

more than 2-fold at all of the time points. Similarly, totals of 35,
331, and 451 genes (34, 299, and 424 genes at P < 0.01) were
downregulated by more than 2-fold at different recovery time
points (30, 60, and 120 min, respectively). The expression level of
15 genes (14 genes at P < 0.01) decreased more than 2-fold at all
time points (Fig. 1B). The Pearson correlation coefficient (PCC)
between the DNA microarray-based transcriptome analysis and
quantitative reverse transcriptase PCR (QRT-PCR) data (PCC =
0.8321) indicated that microarray data and qRT-PCR data were
highly correlated, further supporting the quality of our analysis.

The C. neoformans gamma radiation-responsive genes were
assorted using the KOG (eukaryotic orthologous group) classifi-
cation. At an early recovery time (30 min), genes involved in DNA
replication and repair, signal transduction, and posttranslational
modification and chaperone functions were induced, suggesting
that cells immediately activated defense systems to counteract the
effects of gamma radiation (Fig. 1C). In contrast, a number of
genes involved in amino acid metabolism and transport, RNA
processing and modification, and translation were significantly
downregulated at a later time points (60 and 120 min), indicating
that cells attempted to curtail basic cellular function to avoid the
toxic effects resulting from the production of abnormal proteins,
fatty acids/sterols, and other cellular molecules (Fig. 1C). Taken
together, C. neoformans cells extensively remodeled transcriptome
profiles in response to gamma radiation to counteract any direct
cellular damage and to avoid indirect toxic effects caused by radi-
ation.
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Recombinase, Rad51, and two DNA-dependent ATPases,
Rad54 and Rdh54, play critical roles in the survival of C. neofor-
mans upon exposure to gamma radiation. To counteract the ad-
verse effects of radiation, cells induced the expression of genes
involved in DNA repair systems (32). In agreement with previous
transcriptome analyses of data in ascomycete model yeasts (33,
34), our transcriptome data also revealed that genes for DNA re-
pair systems were highly induced upon radiation exposure, indi-
cating that increasing genome integrity is a common cellular re-
sponse to gamma radiation among fungi (see Table S3 in the
supplemental material).

To verify the transcriptome data, we measured the expression
levels of some of the DNA-damage-responsive genes using quan-
titative reverse transcriptase PCR (qRT-PCR) analysis. We dem-
onstrated that the expression levels of RAD51 (a recombinase and
ahomolog of bacterial RecA protein), RAD54 (a DNA-dependent
ATPase), RDH54 (a DNA-dependent ATPase), and PSO2 (a nu-
clease required for DNA single- and double-strand break repair)
genes were significantly increased during gamma radiation
(Fig. 2A). To verify accurate phenotypes caused by target gene
deletion and exclude unexpected mutational effects, we con-
structed two independent deletion strains for each gene and con-
firmed identical phenotypes of these two mutants in response to
gamma radiation resistance as well as DNA damage insults (data
not shown). The rad51A, rdh54A, and rad54A mutants exhibited
severe growth defects in response to gamma radiation, whereas
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FIG 3 The oxidative response system is required for gamma radiation resistance. (A) Fold increase in expression of genes involved in oxidative stress response
after radiation exposure. The expression patterns of target genes were quantitatively determined using qRT analysis with the gene-specific primers listed in
Table S2. To determine the expression levels of target genes, the cDNA was synthesized with total RNAs extracted from cells recovered 30 and 60 min after
exposure to gamma radiation (3 kGy) or not exposed to gamma radiation. Duplicate technical experiments with three biological samples were performed.
Representative images from independent experiments for each target gene are shown. Error bars indicate standard deviations. Asterisks indicate the statistical
significance of differences in expression levels of each gene (***, P < 0.001). (B and C) Each Cryptococcus strain was cultured in the liquid YPD medium at 30°C
overnight. Serially diluted (1 to 10*) cells were spotted onto the YPD medium and then exposed to the indicated dose of gamma radiation. The cells were further
incubated at 30°C for 2 days and photographed daily. The two images split by a horizontal white line in each spot assay were obtained from the same plate (C).

the pso2A mutant showed wild-type (WT) levels of gamma radi-
ation resistance (Fig. 2B).

Given that RAD51, RDH54, RAD54, and PSO2 are involved in
the DNA repair system in S. cerevisiae (35-38), we determined
whether these genes were required for counteracting DNA dam-
age stresses other than gamma radiation. The rad51A and rad54A
mutants exhibited highly increased susceptibility to other DNA
damage stress inducers, including UV irradiation, methyl meth-
anesulfonate (MMS), hydroxyurea (HU), bleomycin, and 4-
nitroquinoline n-oxide (4-NQO) (Fig. 2C). The rdh54A mutant
exhibited susceptibility to UV irradiation, MMS, HU, and
4-NQO. The rad54A mutant displayed greater growth defects in
response to DNA-damaging stresses than the rdh54A mutant, sug-
gesting that Rad54 plays a more significant role in DNA damage
repair than Rdh54. However, the pso2A mutant showed wild-type
levels of resistance to genotoxic stresses (Fig. 2C).

Sulfiredoxin is required for the survival of Cryptococcus neo-
formans under gamma radiation exposure in a peroxiredoxin-
independent manner. In addition to genome instability, radia-
tion indirectly causes acute and transient intracellular oxidative
stress through free radicals generated from water (39). Supporting
this notion, our transcriptome analysis showed that a number of
oxidative stress defense genes were highly upregulated in response
to gamma radiation. To confirm this finding further, we examined
the expression levels of these oxidative responsive genes, such as

November/December 2016 Volume 7 Issue 6 e01483-16

the genes coding for superoxide dismutases (SODI and SOD2
[converting superoxide anion to hydrogen peroxide]), catalases
(CATI, CAT2, CAT3, and CAT4 [converting hydrogen peroxide
to water]), peroxiredoxins (TSAI and TSA3 [reducing hydrogen
peroxide using the thioredoxin system]), thioredoxins (TRX1 and
TRX2 [acting as electron donors to peroxidase]), and sulfiredoxin
(SRX1 [recycling the sulfinic acid form of peroxiredoxin to its
sulfenic acid form in an ATP-dependent reaction]). Among these
genes, expression of SRXI was most dramatically increased at
30 min post-radiation exposure and then decreased to a basal level
at 60 min. Among the four catalases, expression of CAT3 was
increased during recovery from radiation exposure. However, the
expression levels of superoxide dismutases, peroxiredoxin, and
thioredoxin systems were not significantly changed during recov-
ery after radiation treatment (Fig. 3A).

Next, we constructed strains with each catalase gene deleted
and monitored their radiation resistance relative to those of
strains lacking sulfiredoxin, peroxiredoxin, and thioredoxin,
which have been reported previously (40). Although the expres-
sion level of CAT3 was induced, the cat3A mutant showed wild-
type levels of radiation resistance (Fig. 3B). Moreover, the catIA
cat2A cat3A cat4A quadruple mutant, which was previously re-
ported (41), was as resistant to gamma radiation as the wild-type
H99 strain and each catalase single mutant (Fig. 3B). In agreement
with the strong induction of SRX1 expression, however, deletion
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of SRX1I caused severe growth defects upon radiation exposure,
while its complemented strain (srxIA::SRX1) exhibited wild-type
levels of radiation resistance (Fig. 3C). However, deletions of
TRX1, TRX2, TSAI, and TSA3 did not alter radiation resistance
significantly (Fig. 3C). These results suggested that Srx1 was re-
quired for the gamma radiation resistance that occurred in a
peroxiredoxin-independent manner.

Protein quality control systems are required for gamma ra-
diation resistance in C. neoformans. It is known that persistent
exposure to gamma radiation induces change in the primary
structure of the proteins and affects their secondary or tertiary
structures, causing protein degradation (42). Our transcriptome
data showed that expression levels of genes belonging to the mo-
lecular chaperone and proteasome system were induced in re-
sponse to gamma radiation, in accordance with other previous
studies (34, 43) (Table S3).

To investigate further the roles of protein quality control sys-
tems in the radiation response of C. neoformans, we first examined
the unfolded protein response (UPR) pathway, which controls the
expression levels of molecular chaperones in yeasts and humans
(44). The C. neoformans UPR pathway consists of Irel kinase and
its downstream transcription factor (TF), Hxl1 (45, 46). Here we
found that the ireIA mutant, not the hx/IA mutant, exhibited
growth defects when exposed to gamma radiation (Fig. 4A), sug-
gesting that Irel was involved in radiation resistance in an Hxl1-
independent manner. In addition, using qRT-PCR, we monitored
expression levels of the molecular chaperones and genes required
for protein folding, which are known to be regulated by the UPR
pathway. Our results showed that the expression levels of KAR2
(CNAG_06443; an endoplasmic reticulum [ER]-resident molec-
ular chaperone), LHSI (CNAG_03899; a molecular chaperone of
the heat shock protein 70 [HSP70] family), PDI1 (CNAG_06240;
a protein disulfide isomerase), and SCJ1 (CNAG_05252; a ho-
molog of S. cerevisiae DnaJ) were all increased in response to
gamma radiation (Fig. 4B). All of these results indicated that the
UPR pathway played a role in the gamma radiation resistance in
C. neoformans.

In addition to the UPR pathway, the ubiquitin-mediated en-
doplasmic reticulum-associated degradation (ERAD) pathway
plays critical roles in protein quality control of eukaryotic cells
(47). To reveal the connection between the ERAD pathway and
effects of gamma radiation, we measured the expression levels of
ubiquitin enzymes belonging to the ERAD pathway. The expres-
sion levels of UBC6, UBC62, and UBC7 genes were greatly in-
creased at 30 min after gamma radiation exposure and then
gradually decreased. In contrast, expression of UBCI gradually
increased after radiation exposure (Fig. 4C). Taken together, pro-
tein quality control systems including the UPR and ERAD path-
ways contribute to radiation resistance by regulating the expres-
sion levels of genes of molecular chaperones and protein
degradation.

Ergosterol homeostasis is required for the gamma radiation
resistance of C. neoformans. Previous studies have revealed that
the expression levels of genes involved in ergosterol biosynthesis
were downregulated in response to genotoxic DNA damage
agents, including MMS and gamma radiation in S. cerevisiae (34,
48). Our transcriptome analysis also revealed that expression lev-
els of ergosterol biosynthesis and lipid metabolic genes were sup-
pressed following exposure to gamma radiation (Table S3). In
agreement with the DNA microarray data, the qRT-PCR analysis
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C. neoformans. (A) The WT (H99), irelA (YSB552), irelA+IREI (YSB1000),
and hxIIA (YSB723) mutant, and hx/[IA+HXLI complemented (YSB762)
C. neoformans strains were grown overnight at 30°C in liquid YPD medium,
and the 10-fold serially diluted cells were spotted onto solid YPD medium.
Cells were exposed to gamma radiation and then further incubated at 30°C for
1 to 3 days. (B and C) Fold increase in expression of UPR downstream and
ubiquitin-related genes after radiation exposure. The expression patterns of
target genes were quantitatively determined using qRT analysis with the gene-
specific primers listed in Table S2. To monitor the fold increase in expression
of molecular chaperone genes, the cDNA was synthesized with total RNAs
extracted from cells recovered 60 min after exposure to gamma radiation or
not exposed to gamma radiation. Duplicate technical experiments with two or
more biological samples were conducted. Representative images from inde-
pendent experiments for each target gene are shown. Error bars indicate stan-
dard deviations. Asterisks indicate statistical significance of differences in ex-
pression levels of each gene (¥, P < 0.05; **, P < 0.01; ***, P < 0.001). NS, not
significant.

confirmed that ERGI, ERG3, ERG5, and ERGI11 were downregu-
lated (Fig. 5A).

To demonstrate that a decreased level of cellular ergosterol
biosynthesis enhanced resistance to gamma radiation, we artifi-
cially suppressed cellular ergosterol content by treatment with flu-
conazole, which is an inhibitor of Ergll (lanosterol 14-a-
demethylase), and then we tested whether gamma radiation
resistance could be increased or not. Indeed, fluconazole treat-
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radiation resistance of C. neoformans. (A) Expression analysis of ERG genes at
the recovered time after exposure to radiation. The fold increase of ERG gene
expression was quantitatively monitored using qRT analysis with the gene-
specific primers listed in Table S2. Duplicate technical experiments with two
biological samples were performed. Representative images from independent
experiments for each ERG gene are shown. Error bars indicate standard devi-
ations. Asterisks represent statistical significance of differences in expression
levels of each ERG gene (**, P < 0.01; ***, P < 0.001). (B) Reduced ergosterol
increased in the gamma radiation resistance in C. neoformans. C. neoformans
WT (H99) strains were grown in a liquid medium at 30°C for 16 h, and then the
grown cells were subcultured for 5 h to an OD, of 1.0. Cells were treated with
or without fluconazole (10 ug/ml) for 90 min. Next, cells treated with or
without fluconazole were exposed to the indicated dose of gamma radiation
for 1 h. After radiation, cells were spread onto the solid YPD medium and
further incubated at 30°C for 2 days. The relative survival rate was measured as
the viable cell count number at the indicated dose of radiation divided by the
viable cell count number before radiation. The relative survival rates were
statistically compared between cells treated with or without fluconazole using
the Bonferroni selected comparison test performed with Prism software, ver-
sion 5.0 (GraphPad Software, Inc.). Asterisks represent statistical significance
of differences in the relative survival rate (*, P < 0.05). (C) Ergosterol homeo-
stasis is required for gamma radiation resistance. C. neoformans WT (H99),
srelA (YSB2493 and YSB2494), and hobI1A (YSB2308 and YSB2309) mutants
grown overnight were 10-fold serially diluted (1 to 10*) and then spotted onto
the YPD medium. Cells were exposed to the indicate dose of gamma radiation
for 1 h and then further incubated at 30°C for 3 days.
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ment increased gamma radiation resistance in wild-type cells, and
the effect was observed more clearly with high doses of radiation
(Fig. 5B), suggesting that decreased ergosterol content contrib-
uted to gamma radiation resistance.

To support further that cellular ergosterol homeostasis was
involved in gamma radiation resistance, we tested the gamma ra-
diation resistance of strains with Srel or Hob1 deleted, which are
2 TFs affecting sterol biosynthesis in C. neoformans (49, 50). Both
srelA and hoblA mutants exhibited severe growth defects when
exposed to gamma radiation (Fig. 5C). Notably, because Srel is
the major positive regulator of expression of ergosterol biosynthe-
sis genes, this finding indicated that homeostasis of ergosterol bio-
synthesis was critical for gamma radiation resistance in C. neofor-
mans.

Discovery of novel gamma radiation resistance genes in
C. neoformans. Among the radiation-responsive genes identified
by our transcriptome analysis, we further characterized the func-
tions of genes that exhibited differential expression patterns at
statistically significantly levels (28 genes, >2-fold [P < 0.05]) dur-
ing recovery from gamma radiation (Table S3) but do not belong
to the environmental stress-regulated genes in C. neoformans (51).
We characterized the roles of genes that are evolutionarily con-
served in other fungi but the functions of which have not been
studied in C. neoformans. These genes included CNAG_04055
(homologous to Schizosaccharomyces pombe Radl, which is func-
tionally homologous to S. cerevisiae RAD17), CNAG_03659 (ho-
mologous to S. pombe Rad4, which is functionally homologous to
S. cerevisiae DPBI11),and CNAG_03813 (homologous to S. pombe
Ssb3, which is functionally homologous to S. cerevisiae RFA3).
The qRT-PCR analysis confirmed that the expression patterns of
these three genes were increased, verifying our DNA microarray
data (Fig. 6A). Based on this finding, we designated these genes
RIGI (radiation-induced gene 1; CNAG_04055), RIG2 (CNAG_
03659), and RIG3 (CNAG_03813).

To address the roles of these genes in gamma radiation resis-
tance, we constructed riglA, rig2A, and rig3A mutants. The rigIA,
rig2A, and rig3A mutants displayed growth defects when exposed
to gamma radiation (Fig. 6B). Independently constructed strains
for each mutant exhibited identical phenotypes (data not shown).
The rig2A mutant showed severe growth retardation under basal
conditions as well as radiation conditions, whereas the rigl A mu-
tant exhibited growth defects only under radiation conditions. In
contrast to the dramatic roles of Rigl and Rig2, Rig3 appeared to
play a minor role in radiation resistance because the rig3A mutant
was susceptible only to a high dose of gamma radiation (3 kGy)
(Fig. 6B).

Given that genes exhibiting functional identity to Rigl, Rig2,
and Rig3 are involved in the DNA repair system in S. cerevisiae, we
further investigated whether these proteins had functions in geno-
toxic stress responses as well as gamma radiation resistance. First,
we monitored the expression patterns of these genes under treat-
ment with HU or MMS using qRT-PCR analysis. The expression
of RIGI, RIG2, and RIG3 was gradually increased in response to
either HU or MMS treatment (Fig. 6C and D).

Next, we observed the DNA damage resistance of strains with
the RIG gene deleted. In agreement with the results of radiation
exposure, both rigl A and rig2A mutants showed severe sensitivity
to all of the DNA-damaging stresses that we tested (Fig. 6E). This
result was in strong agreement with the expression data of RIGI
and RIG2. The rig3A mutant exhibited increased susceptibility to
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MMS and 4-NQO. In conclusion, radiation-induced genes, such
as RIG1, RIG2, and RIG3, contributed to gamma radiation resis-
tance, as well as DNA damage stress responses, in C. neoformarns.

Identification and characterization of a novel bZIP TF, Bdr1,
for radiation resistance in C. neoformans. Although C. neofor-
mans RIGI, RIG2, and RIG3 functionally contribute to gamma
radiation resistance, it still remains elusive how the fungus con-
trols gamma radiation resistance, compared with radiation-
sensitive fungi. To this end, we searched for C. neoformans-specific
genes potentially involved in signal transduction, such as kinase,
phosphatase, or TFs, among the genes induced post-radiation ex-
posure. As a result, we identified CNAG_02589, which contains the
bZIP domain (E value, 5.67¢—07) in the C-terminal region, through
the Conserved Domain Search Service (CD Search; http://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Fig. 7A). Based
on its dominant role in regulating a variety of DNA damage-
responsive genes as described below, here we named this gene
product Bdr1 (a bZIP TF for DNA damage response 1). Based on
the phylogenetic analysis, Bdrl is mainly found in the pathogenic
Cryptococcus species and is evolutionarily distant from other fun-
gal homologs (Fig. 7B)

To confirm radiation-dependent expression changes in BDRI,
qRT-PCR analysis was performed. Expression of BDRI was
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strongly increased at 30 min post-radiation recovery and then
gradually decreased (Fig. 7C). To demonstrate the role of Bdrl in
gamma radiation resistance, we constructed bdrIA mutant strains
and performed survival testing. In accordance with the strong
induction of BDRI expression, deletion of BDRI caused severe
growth defects upon radiation exposure, whereas its comple-
mented strain (bdrlA::BDRI1) restored radiation resistance to
wild-type levels (Fig. 7D).

To address whether Bdrl played a role in genotoxic stress re-
sponses, as well as radiation resistance, we compared the growth of
the bdrIA mutant to that of the wild-type strain when cells were
exposed to genotoxic stress inducers. The bdr1 A mutant displayed
severe growth defects when treated with MMS, HU, 4-NQO, and
UV-C, but it showed weak growth retardation upon exposure to
bleomycin (Fig. 7E). Supporting this function in genotoxic stress
response and adaptation, BDRI was strongly induced by the geno-
toxic stressors bleomycin, 4-NQO, HU, and MMS (Fig. 7F).

Identification of downstream targets and upstream regula-
tors of Bdr1 for radiation resistance in C. neoformans. To ad-
dress whether Bdrl is a TF, we monitored whether Bdrl was
localized in the nucleus. To this end, we constructed the
bdrIA:: BDRI-GFP complemented strains by introducing a wild-
type copy of the BDRI gene fused with the green fluorescent pro-
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statistical significance of differences in the relative expression levels (*, P < 0.05; **, P < 0.01; and ***, P < 0.001).

tein gene, GFP, and we monitored the cellular localization of
Bdr1-Gfp in C. neoformans. We confirmed that Bdrl-Gfp was
functional because the BDRI-GFP fusion gene restored the wild-
type level of radiation resistance in the bdriA strain (see Fig. S2C
and S2D in the supplemental material). We found that Bdrl was
enriched in the nucleus under basal conditions, indicating that
Bdr1 was likely to be a TF in C. neoformans (Fig. 8A).

Given that Bdr1 is indispensable for resistance to gamma radi-
ation and other genotoxic agents, we hypothesized that Bdrl
could be a master regulator controlling the expression levels of
genes involved in the DNA repair system. To determine this hy-
pothesis, we compared the expression levels of genes contributing
to gamma radiation resistance in the bdrIA mutant and wild-type
strains. Notably, radiation-responsive induction of expression of
RAD51, RDH54, RAD54, PSO2, RIG1, RIG2, and RIG3 was con-
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siderably reduced in the bdr1A mutant compared to the wild type,
suggesting that Bdr1 played critical roles in the regulating expres-
sion of DNA repair genes (Fig. 8B and C).

Because the expression levels of genes involved in the oxidative
stress response, proteasome and molecular chaperone, and ergos-
terol biosynthesis post-gamma radiation exposure were changed,
we determined whether Bdrl regulated the expression levels of
these genes after radiation exposure. In contrast to DNA repair
genes, Bdr1 did not regulate expression of these genes (see Fig. S3
in the supplemental material). Supporting this finding, the bdr1A
mutant exhibited wild-type levels of resistance in response to
oxidative stress response, indicating that Bdrl contributed to
gamma radiation resistance controlling the expression of DNA
repair genes (see Fig. S4A in the supplemental material).

The signal transduction mechanism that recognizes DNA
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damage is evolutionarily conserved from yeasts to humans (52).
In particular, Rad53, which is orthologous to Chk2 in humans,
plays critical roles in DNA damage responses and cell cycle regu-
lation in S. cerevisiae (53). Recently, our study reported that per-
turbation of Rad53 checkpoint kinase in C. neoformans caused
growth defects in response to genotoxic DNA damage stress (54).
To demonstrate whether C. neoformans Rad53 was required for
gamma radiation resistance, we compared the growth of the
rad53A mutant to that of the wild-type strain in response to
gamma radiation. The rad53A mutant showed severe growth de-
fects after gamma radiation, as well as following exposure to geno-
toxic stress inducers, such as UV-C, 4-NQO, and bleomycin
(Fig. 8D). Given that the C. neoformans rad53A mutant also ex-
hibited susceptibility to gamma radiation exposure, as well as
DNA damage insults, and S. cerevisiae Rad53 controls the tran-
scriptional response of DNA damage-responsive genes through
diverse TFs, we questioned whether Rad53 regulated the expres-
sion of BDRI. To answer this question, we measured the expres-
sion level of BDRI in wild-type and rad53A mutant strains post-
radiation exposure. Notably, the increased BDRI gene expression
in the wild-type strain postradiation was significantly decreased
by deletion of RAD53, indicating that Rad53 was an upstream
regulator of Bdrl in C. neoformans (Fig. 8E).

Taken together, a unique TF, Bdr1, the expression of which was
regulated by the evolutionarily conserved Rad53 protein kinase,
was required for genotoxic stress as well as gamma radiation re-
sistance controlling the expression of diverse DNA repair genes in
C. neoformans.
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, P <0.001).

DISCUSSION

The goal of this study was to elucidate a genome-wide gamma
radiation response mechanism in C. neoformans, which is known
as a radiation-resistant eukaryotic microorganism found in highly
radioactive environments (26). Our transcriptome analysis re-
vealed that the expression levels of genes involved in DNA repair
systems, molecular chaperones, and proteasomes were induced,
while those involved in protein translation, metabolic process,
and ergosterol synthesis were reduced in response to gamma ra-
diation. The radiation-dependent transcriptome profile observed
in C. neoformans was distinct from that of another melanized
radiation-resistant fungus, Wangiella dermatitidis (55). A plethora
of DNA repair genes were downregulated, and the ribosomal bio-
genesis, fatty acid, and lipid biosynthesis genes were upregulated
in the irradiated W. dermatitidis (55). This difference might be
attributable to the dose of radiation used. In this study, for the
transcriptome analysis, C. neoformans was exposed to a lethal dose
of gamma radiation (3 kGy for 1 h), but W. dermatitidis was irra-
diated with a chronic and low dose (14.4 mGy for 48 h) of gamma
radiation (55). Considering the upregulation of DNA repair genes
and the downregulation of ribosomal biogenesis genes in the
model yeast S. cerevisiae exposed to a high dose of gamma radia-
tion (0.17 kGy for 20 min), the dose of radiation and exposure
time could have influenced the transcriptional repertoire of the
organism (34). In addition, intrinsic melanin production ability
might induce disagreement in these transcriptome results. Intrin-
sically melanized W. dermatitidis induces the expression of trans-
porter and ribosomal biogenesis genes responding to radiation,
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but a nonmelanized W. dermatitidis mutant did not (55). The
expression levels of genes related to transport and ribosomal bio-
genesis were decreased in nonintrinsically melanized C. neofor-
mans (Table S3).

The common phenomenon observed in the transcriptome
analyses of model yeasts and W. dermatitidis is that genes belong-
ing to the oxidative stress response are upregulated (33, 34, 55).
S. cerevisiae strains lacking cytosolic catalase exhibited increased
susceptibility to IR (56, 57). In C. neoformans, however, we found
that catalase was dispensable for radiation, but Srx1, which is re-
quired for the recycling of 2-Cys peroxiredoxin (Prx) (40), was
required for gamma radiation resistance. However, C. neoformans
2-Cys Prx Tsal did not contribute to gamma radiation resistance,
suggesting that Srxl confers resistance in a 2-Cys Prx-
independent manner. Srxl plays a Prx-independent role in
fungicide-dependent cell swelling and growth arrest (40). Srx1
also plays a role in the deglutathionylation of diverse proteins in
response to oxidative stress, thereby affecting cell signaling during
oxidative stress (58). The Mn/Fe ratio of C. neoformans (0.039)
was not higher than that of S. cerevisiae (0.093). Considering the
various ROS detoxification systems of T. gammatolerans and P. fu-
riosus (14, 15), the Mn/Fe of which are comparable to those of
IR-sensitive bacteria (8), it is likely that C. neoformans possesses
additional antioxidative systems that can limit ROS production
and/or nullify ROS toxicity.

The ability of IR-resistant organisms to minimize protein
damage from IR-induced ROS allows them to retain cellular func-
tion (2). Supporting this notion, our study showed increased ex-
pression levels of genes involved in molecular chaperone activity
for protein protection and in the ubiquitin system for degradation
of damaged proteins. Furthermore, autophagy-activating genes
(ATG8, ATG3, and ATG4) were increased during recovery post-
radiation (see Fig. S5A in the supplemental material), indicating
that cells employ recycling of cellular organelles damaged by radi-
ation through autophagy processes. Although deletion of ATGS,
ATG3, and ATG4 did not influence gamma radiation resistance
(Fig. S5B), it is possible that these autophagy-related proteins
might have redundant functions in radiation resistance. Given
that autophagy is also activated in response to gamma irradiation
in mammals (59), further experiments are needed to elucidate the
relationship between autophagy and radiation resistance in
C. neoformans.

Here, we demonstrated that suppression of ergosterol biosyn-
thesis contributed to gamma radiation resistance. Nevertheless,
sophisticated homeostasis of ergosterol biosynthesis appears to be
more critical for stress resistance than simple downregulation of
ergosterol biosynthesis. Supporting this finding, this study and
previous studies showed that deletion of SREI, which is a key
positive regulator of ergosterol biosynthesis genes, increased sus-
ceptibility to oxidative stress (49) and gamma radiation. Further-
more, S. cerevisiae erg3A and erg6A mutants were also hypersen-
sitive to hydrogen peroxide (60). Taken together, our data
supported that membrane remodeling and homeostasis through
modulation of ergosterol biosynthesis enabled cells to counteract
stress responses caused by gamma radiation exposure.

We found that multiple pathways and cellular functions are
involved in gamma radiation resistance of C. neoformans, indicat-
ing that the gamma radiation resistance mechanism could be
complex in the fungus. This study revealed that the mechanism of
gamma radiation resistance in C. neoformans appears to share fea-
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tures with those of both radiation-sensitive and -resistant organ-
isms. First, the gene regulation network of C. neoformans is similar
to those of S. cerevisiae and S. pombe in response to radiation.
However, the roles of C. neoformans genes involved in the DNA
repair system are distinct from those of S. cerevisiae and S. pombe.
The DNA repair function of Rdh54 was enhanced in C. neofor-
mans compared to S. cerevisiae (35). Dpb11 is an essential protein
required for replisome assembly and for the DNA damage check-
point in S. cerevisiae (61). However, Rig2, which is the functional
Dpbl11 ortholog in C. neoformans, is not essential for viability but
is required for normal growth and the DNA damage response.
Second, C. neoformans undergoes a biotrophic life cycle similar to
those of other radiation-resistant fungi, such as U. maydis and
Alternaria alternata (16). Third, melanin pigment is involved in
radiation resistance of C. neoformans by conferring antioxidant
activity to cells. Melanized C. neoformans exhibits better growth
than nonmelanized C. neoformans when treated with radiation
(27). Melanin also functions in energy transduction post-
radiation exposure (27). Therefore, the radiation resistance mech-
anism of C. neoformans is complex and is likely to be influenced by
multiple cellular factors.

A previous large-scale functional analysis of C. neoformans TFs
uncovered several mutants exhibiting altered susceptibility to
genotoxic stresses (49). However, most of them were involved in
normal growth or played pleiotropic roles in diverse stress re-
sponses, in stark contrast to Bdr1, which plays genotoxic stress-
specific roles. Bdr1 was not involved in virulence factor formation
(melanin and capsule) or thermotolerance (Fig. S4B to E). Inter-
estingly, Bdrl is distinct from another genotoxic stress-related TF,
Rfx1 (regulatory factor for X box), which is primarily involved in
DNA damage responses and highly conserved from yeasts to hu-
mans (62-65), and is phylogenetically confined to the pathogenic
Cryptococcus species complex. Nevertheless, its expression is reg-
ulated by the evolutionarily conserved Rad53 kinase. Rad53 be-
longs to the Chk cell cycle checkpoint kinase family and mainly
governs DNA damage responses from yeasts to humans (66). A
similar phenomenon has been also reported in the C. neoformans
UPR pathway, in which the evolutionarily conserved Irel kinase
regulates the evolutionarily divergent TF HxI1 (46). Therefore, it
does not seem uncommon that an evolutionarily divergent fungal
TF is controlled by a conserved upstream kinase, as suggested
previously (49).

At this point, the detailed gamma radiation resistance mecha-
nism mediated by Bdrl in the pathogenic Cryptococcus species
complex remains elusive. The C. neoformans var. neoformans
JEC21 strain also has the Bdrl homolog like the H99 strain, but is
as susceptible to radiation as the C. albicans SC5314 strain, which
does not contain the Bdr1 ortholog. Therefore, Bdrl expression
per se may not be a necessary and sufficient factor for gamma
radiation resistance in the pathogenic Cryptococcus species com-
plex. To confirm this hypothesis, we tested whether the expression
of BDRI is induced post-radiation exposure in the JEC21 strain.
Furthermore, we constructed a constitutive BDRI-overexpressing
strain in the H99 strain background. We found that BDRI was
induced on radiation in the JEC21 strain similar to the H99 strain,
and BDRI overexpression did not further increase gamma radia-
tion resistance of the H99 strain (see Fig. S6A and D in the sup-
plemental material), supporting our hypothesis. Notably, how-
ever, we found that some Bdr1l downstream genes were induced at
different levels in the JEC21 strain compared to the H99 strain.
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Expression of RAD54, RIG1, RIG2, and RIG3 in the JEC21 strain
was induced upon radiation as they were expressed in the H99
strain, but the induction levels of RAD51 and RDH54 were much
lower in the JEC21 strain than the H99 strain (Fig. S6E). These
data present several possibilities. First, posttranscriptional or
-translational modifications (e.g., phosphorylation) of Bdr1 could
be different between the two strains. Second, serotype-specific
proteins may collaborate with Bdrl (e.g., as a coactivator), con-
tributing to the gamma radiation resistance of serotype A H99.
Finally, there is a possibility that DNA binding and/or transcrip-
tion activation activity of Bdrl might be different between the
JEC21 and H99 strains. Supporting this, 3 amino acids were dif-
ferent between the bZIP domains of the H99 and JEC21 strains,
which may affect the DNA binding activity of Bdr1 (Fig. S6F). To
further address these possibilities, comparative transcriptome
analysis (RNA-seq) of H99 and JEC21 strains under radiation ex-
posure and subsequent comprehensive functional analyses of the
differentially regulated genes will be needed in future studies, as
well as structural analysis of Bdr1.

In conclusion, our study provides comprehensive insight into
genome-wide gamma radiation resistance networks in radiation-
resistant fungi as well as C. neoformans.

MATERIALS AND METHODS

Strains and growth conditions. The C. neoformans strains and primers
used in this study are described in Tables S1 and S2 in the supplemental
material and were cultured in YPD (yeast extract-peptone-dextrose) me-
dium. For the total RNA isolation used in the DNA microarray, the wild-
type H99S strain was used. Three independent cultures of the wild-type
strain were prepared as biological replicates for the DNA microarray.

Total RNA isolation for microarray. The wild-type H99 strain was
grown in 50 ml of YPD medium at 30°C for 16 h. Then, 2.5 ml of overnight
cell culture was inoculated into 50 ml of fresh YPD medium and further
incubated at 30°C until it reached an approximate optical density at
600 nm (ODy,) of 1.0. The cells were transferred into Falcon tubes and
irradiated at 3 kGy for 1 h. After gamma irradiation, the cells were trans-
ferred into the flask and incubated at 30°C for the required recovery times
(30, 60, and 120 min). After recovery, the cells were treated with ice-cold
ethanol/phenol stop solution (5% water-saturated phenol [pH < 7.0] in
ethanol) followed by centrifugation. Next, the supernatant was discarded,
and the cells were immediately stored at —70°C.

For total RNA isolation, 1 ml of RiboEx solution (Geneall) was added
to the cell pellet and resuspended without bubbling. It was allowed to
incubate at room temperature for 5 min. The cells was poured into the
chilled screw-cap tube containing 1 ml of zirconium beads (Biospec, no.
11079105Z). The cells were homogenized by bead beating 4 times at
6,000 for 30 s with intermittent cooling at —20°C. Next, the cells were
treated with 200 ul of chloroform and mixed vigorously for 3 min. After
mixing, the samples were kept at room temperature for 2 min and then
were centrifuged at 14,000 rpm at 4°C for 15 min. The aqueous phase was
collected into a fresh tube. For purification of the extracted total RNA, we
used an RNeasy spin column (Qiagen), following the manufacturer’s pro-
tocol.

cDNA synthesis, Cy5 labeling, and microarray hybridization. The
synthesis of target c(RNA probes and hybridization were performed using
Agilent’s low-input Quick Amp WT labeling kit (Agilent Technology)
according to the manufacturer’s instructions. Briefly, each 100 ng of total
RNA was mixed with WT primer mix and incubated at 65°C for 10 min in
¢DNA master mix (5X first-strand buffer, 0.1 M dithiothreitol [DTT],
10 mM deoxynucleoside triphosphate [dNTP] mix, RNase-Out, and
Moloney murine leukemia virus reverse transcriptase [MMLV RT]) was
prepared and added to the reaction mixture. The samples were incubated
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at 40°C for 2 h, and then the RT and double-stranded DNA (dsDNA)
synthesis was terminated by incubation at 70°C for 10 min.

The transcription master mix was prepared per the manufacturer’s
protocol (4 X transcription buffer, 0.1 M DTT, NTP mix, 50% polyethyl-
ene glycol [PEG], RNase-Out, inorganic pyrophosphatase, T7 RNA poly-
merase, and cyanine 5-CTP). Transcription of dsDNA was performed by
adding the transcription master mix to the dsDNA reaction samples and
incubating them at 40°C for 2 h. Amplified and labeled cRNA was purified
on an RNase minicolumn (Qiagen) according to the manufacturer’s pro-
tocol. Labeled cRNA target was quantified using an ND-1000 spectropho-
tometer (NanoDrop Technologies, Inc., Wilmington, DE).

After checking labeling efficiency, cyanine 5-labeled cRNA target was
mixed, and the fragmentation of cRNA was performed by adding 10X
blocking agent and 25X fragmentation buffer and incubating at 60°C for
30 min. The fragmented cRNA was resuspended with 2X hybridization
buffer and directly pipetted onto assembled MYcroarray.com (Cryptococ-
cus_neoformans_JEC21) 3X20K microarray. The arrays were hybridized
at 57°C for 17 h using an Agilent hybridization oven (Agilent Technol-
ogy). The hybridized microarrays were washed per the manufacturer’s
washing protocol (Agilent Technology).

Scanning and data analysis. The hybridization images were analyzed
by an Agilent DNA microarray scanner (Agilent Technology), and the
data quantification was performed using Agilent Feature Extraction soft-
ware 10.7 (Agilent Technology). The average fluorescence intensity for
each spot was calculated, and the local background was subtracted. All
data normalization and selection of fold-changed genes were performed
using GenoWiz 4.0 (Ocimumbiosolutions, India). Genes were filtered by
removing Flag-out genes in each experiment. Global normalization was
performed. The averages of normalized ratios were calculated by dividing
the average of normalized signal channel intensity by the average of nor-
malized control channel intensity.

Quantitative real-time RT-PCR. To measure the relative expression
of target genes, we performed quantitative RT-PCR (qRT-PCR) analysis
with the target gene-specific primers listed in Table S2 using CFX Man-
ager (Bio-Rad). The cDNA was synthesized using the PrimeScript first-
strand cDNA synthesis kit (TaKaRa) with total RNAs extracted from ir-
radiated cells. Relative expression levels of target genes were determined
using the threshold cycle (2724€T) method. Statistical analyses were per-
formed using Prism software version 5.0 (GraphPad Software, Inc.).
Significant differences were determined using Bonferroni’s multiple-
comparison test. We calculated the Pearson correlation coefficient (PCC)
between the DNA microarray-based transcriptome analysis and qRT-
PCR data using Prism 5.0 (GraphPad Software, Inc.).

Construction of Cryptococcus mutant strains. Cryptococcus genes
were knocked out in the serotype A H99 strain background using double-
joint PCR (DJ-PCR) strategies (67, 68). For the DJ-PCR method, primer
pairs L1/L2 and R1/R2 were used to amplify the 5'- and 3’-flanking re-
gions of the target genes, respectively, with H99 genomic DNA in the first
round of PCR. The dominant selectable marker (NAT") was amplified
with M13Fe (M13 forward extended) and M13Re (M13 reverse extended)
using pNAT. In the second round of PCR, target gene disruption cassettes
with the 5" or 3’ region of the NAT-split marker were amplified by DJ-
PCR with the primer pair L1/B1455 or R2/B1454, respectively, using the
first-round PCR product as a template. The split target gene disruption
cassettes were introduced into the H99 strain by using the biolistic trans-
formation method (69). Stable nourseothricin-resistant transformants
were screened by diagnostic PCR with the primer set listed in Table S2.
More than two independent mutants were constructed in the H99 back-
ground. The correct genotypes of positive transformants were validated
by Southern blot analysis, as previously described (70) (see Fig. S2A and B
and Fig. S7 in the supplemental material).

Construction of BDR1 complemented strains, Bdr1-Gfp strains,
and BDRI overexpression strains. To confirm the phenotypes observed
in bdrlA mutants, complemented strains were generated as follows. The
BDRI gene fragment containing its promoter, open reading frame (ORF),
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and terminator was PCR amplified using the primer pair J299/J300 har-
boring Notl restriction enzyme sites from the H99 genomic DNA. The
amplified BDRI gene product was cloned into pGEM-T Easy (Promega),
generating the plasmid pGEM-T-BDR1 (KWEI12). After confirmed se-
quence errors, the NotI-digested BDRI gene insert was subcloned into the
plasmid pJAF12 to produce the plasmid pJAF12-BDR1 (KWE16). The
plasmid was linearized by restriction digestion with Nsil, which was in
turn biolistically transformed into the bdrIA mutant (KW137). To dem-
onstrate the targeted or ectopic integration of the BDRI gene, diagnostic
PCR was executed.

To elucidate the cellular localization of Bdrl in C. neoformans, the Bdrl-
Gfp strain was constructed as follows. The promoter region of BDRI and the
OREF of GFPI were amplified with the primer pairs J299/J320 and J321/J322,
respectively. Next, these two PCR products were fused via PCR, using the
primers J299 and J322. The overlap PCR product was cloned into pGEM-T
Easy (Promega), producing the plasmid pGEM-T-BDR1PG (KWE29). The
exon and terminator regions of BDRI were amplified with the primer pair
J323/]319. Then the amplified PCR product was cloned into pGEM-T Easy
(Promega), generating the plasmid pGEM-T-BDRIET (KWE24). The two
plasmids were sequenced to identify sequence errors. Next, the BamHI-
digested pPGEM-T-BDRIET insert was subcloned into the plasmid pGEM-T-
BDRIPG to generate the plasmid pPGEM-T-BDR1PGET (KWE21). Then the
Notl-digested pGEM-T-BDRIPGET insert was subcloned into the plasmid
pJAF12 to produce plasmid pJAF12-BDRIPGET (KWE34). The Nsil-
digested pJAF12-BDR1PGET was biolistically transformed into the bdrIA
mutant (KW137). To verify the targeted or ectopic integration of the BDRI
gene, diagnostic PCR was performed.

To construct BDRI overexpression strains, the histone H3 gene pro-
moter with a selectable marker was inserted upstream of the ATG start
codon of BDRI gene. First, the 5'-flanking region of BDR1 was amplified
with primers J312 and J313. The 5’'-exon region of BDR1 was amplified
with primers J314 and J273. The NEO-H3 promoter fragment was ampli-
fied with primers B4017 and B4018 from the plasmid pNEO-H3. The left
fusion fragment was amplified with primers J312 and B1887 from tem-
plates containing the 5'-flanking region of BDRI and the NEO-H3 pro-
moter fragments. The right fusion fragment was amplified with primers
J273 and B1886 from templates containing the 5'-exon region of BDRI
and the NEO-H3 promoter fragments. Then, the two DJ-PCR products
were mixed and introduced into the serotype A H99 strain by biolistic
transformation. We verified the correct insertion of the H3 promoter by
Southern blot analysis and determined the basal expression levels of BDRI
by qQRT-PCR analysis (Fig. S6B and C).

Gamma radiation and DNA damage stress tests. Each Cryprococcus
strain was cultured in liquid YPD medium at 30°C overnight, washed, and
serially diluted (1 to 10 dilutions) in distilled H,O. Cells were spotted onto
solid YPD medium containing the indicated concentrations of DNA damage
stress-inducing agents, including methyl methanesulfonate (MMS), hy-
droxyurea (HU), bleomycin, and 4-nitroquinoline #-oxide (4-NQO). For the
gamma radiation resistance test, cells spotted onto the solid YPD medium
were exposed to gamma radiation from ®°Co. To monitor sensitivity to UV
irradiation, spotted cells were exposed to UV irradiation between 100 and
300J/m?ina UV cross-linker (CX-2000; UVP, Inc.). The cells were incubated
at 30°C for 1 to 3 days and photographed daily.

Capsule and melanin assays. For the capsule assay, each Cryptococcus
strain was incubated at 30°C for 16 h in YPD medium, spotted onto
agar-based Dulbecco’s Modified Eagle’s (DME) medium, and further in-
cubated at 37°C for 2 days. The cells were visualized by India ink staining.
For the melanin assay, cultured cells were spotted on agar-based Niger
seed medium and further incubated at 30 and 37°C for 3 days. The cells
were photographed daily for 3 days.

Accession number(s). The microarray data generated by this study are
available at Gene Expression Omnibus (GEO; https://www.ncbinlm.nih.gov/
geo/query/acc.cgi?acc=GSE80230) under GenBank accession no. GSE80230.
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