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ABSTRACT
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel
subtypes into the human population complicate the timely production of effective vaccines that
antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of
game-changing vaccines that induce broadly protective immunity against a wide variety of influenza
viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the
delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the
optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic
review discusses results obtained with vectored influenza virus vaccines and advantages and
disadvantages of the currently available viral vectors.
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Introduction

Influenza viruses belong to the family of Orthomyxoviridae, are an
important cause of acute respiratory infections and cause annual
epidemics in the human population. Although in most cases infec-
tions are self-limiting and restricted to the upper respiratory tract,
certain patient groups (such as the elderly) are at risk of developing
complications leading to high morbidity and mortality. Vaccines
against circulating influenza strains are readily available and are tri-
valent or quadrivalent, designed to protect against influenza viruses
of both the A(H1N1) and A(H3N2) subtype, and against one or
both lineages of influenza B virus.

Several different vaccine formulations are available: trivalent or
quadrivalent inactivated virus vaccines (TIV or QIV, either whole
virus, split virus or subunit vaccines) or live attenuated influenza
virus vaccines (LAIV).Most vaccines are produced in embryonated
chicken eggs, but vaccines produced in mammalian or insect cells
are also available. Inactivated vaccines are administered intramus-
cularly (IM) or sometimes intradermally and predominantly aim
at the induction of serum antibody responses against the viral hem-
agglutinin (HA) and neuraminidase (NA) to a lesser extent. Protec-
tion from disease is mainly mediated by virus neutralizing
antibodies against HA, but NA-specific antibodies also contribute
to protective immunity.1 Currently licensed LAIV are administered
locally via nasal spray. Viruses are attenuated by the choice of a
viral backbone of cold-adapted viruses and are therefore tempera-
ture-sensitive and replicate only locally after administration at the
mucosa of the nasopharynx.2 In addition to serum antibodies,
immunization with LAIV also induces mucosal antibodies and
cytotoxic T-lymphocytes (CTL).

Although currently available influenza vaccines are effective in
reducing morbidity and mortality caused by seasonal influenza
viruses, they have several limitations. Mainly, continuous antigenic

drift of seasonal influenza viruses complicates the production of
effective vaccines. The vaccine strains need to be updated almost
annually in order to achieve a good antigenic match with the epi-
demic virus strains. If the vaccine strains do not antigenicallymatch
the circulating strains, vaccine efficacy is reduced considerably, as
was the case in the 2014-2015 influenza season.3-5 Furthermore,
the seasonal influenza vaccines will afford little or no protection
against antigenically distinct pandemic influenza viruses, which are
often of alternative subtypes to which antibodies are virtually
absent in the human population. During the last decades zoonotic
transmissions of highly pathogenic avian influenza viruses, in par-
ticular those of the H5N1 subtype, have been reported regularly.
The capacity of A(H5N1) and avian viruses of other subtypes
including A(H5N6),6 A(H7N7),7 A(H7N9),8 A(H9N2)9 and A
(H10N8)10 to infect humans fuelled the fear for a pandemic out-
break caused by any of these viruses.

H5N1 vaccines that were produced according the procedures
used for the production of seasonal influenza vaccines proved to be
poorly immunogenic and in most cases the use of adjuvants was
required for the efficient induction of protective antibody levels.11

Furthermore, the pandemic of 2009 caused by swine-origin influ-
enza viruses of the A(H1N1) subtype (H1N1pdm09) taught an
important lesson. The production of tailor made pandemic influ-
enza vaccine proved to be a time-consuming process and in many
countries vaccines became available after the peak of the
pandemic.12

These limitations of the currently available vaccine production
technologies and vaccines underscore the pressing need for game-
changing vaccines. In addition to improving immunogenicity in
the high risk groups, novel vaccines are required that induce long-
lasting immunity against a wide range of influenza viruses and that
can be produced rapidly in the face of a pandemic outbreak. To
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improve immunogenicity of influenza vaccines specifically in the
elderly, high-dose vaccines and an adjuvanted vaccine have been
developed. The latter has been in use in Europe and the US since
1997 and 2015, respectively.

The use of viral vectors for influenza vaccine production
may be a solution to some of the problems discussed above.
In this review we discuss various viral vectors that have been
tested as candidate influenza vaccines in animal models and in
clinical trials. Most viral vectors are considered live vaccines
but their replication is attenuated or even deficient. Therefore,
vector-based vaccines are considered safe in general and some
of them can even be safely used in immunocompromised.
Despite their attenuated phenotype, viral vectors are immuno-
genic and induce virus-specific antibody and T cell responses
after systemic or parenteral administration. Additionally, most
viral vectors can easily be propagated to high virus titers and it
is relatively easy to insert genes encoding antigens of choice
into the vector. Viral vector technology also allows the produc-
tion of modified influenza viral antigens in vivo. These modifi-
cations can improve the immunogenicity of the influenza viral
proteins or alter the specificity of the immune response. In this
review, we discuss reports on vectored influenza vaccines and
discuss their advantages and disadvantages.

Vectored influenza vaccines

Pox virus vectors

Smallpox, caused by variola virus, was the first viral disease that
was widely prevented and eradicated by vaccination. Originally,
Edward Jenner was able to prevent experimental smallpox
infection of humans by priming the immune system with the
closely related cowpox virus. Vaccinia virus (VV), closely
related to the causative agent of cowpox, was thereafter used as
one of the vaccines to eradicate smallpox. Since VV has optimal
properties to be used as a viral vector, soon after its initial use as
cloning vector in 198213,14 VV was used as a vaccine vector to
express influenza virus antigens. Smith et al were the first to
generate VV expressing the influenza HA gene and this vaccine
was able to induce an antibody response in rabbits and could
protect hamsters from lethal challenge.15 Since then, recombi-
nant VV were designed that express all influenza virus pro-
teins.16 Although VV vectors expressing influenza antigens
were capable of inducing protective immune responses in vari-
ous animal models, substantial reactogenicity of this vector was
frequently observed, which has been addressed by the use of
further attenuated and/or replication-deficient strains of VV.
An overview of poxvirus-based influenza vaccines can be found
in Table 1.

Modified vaccinia virus Ankara (MVA) vectors
MVA, an attenuated VV strain, is derived from chorioallantois
vaccinia virus Ankara through serial passaging in chicken
embryo fibroblasts,17,18 resulting in major deletions in the viral
genome that influenced many virulence and immune evasion
factors.19-21 Consequently, MVA replication is highly restricted
to avian cells and MVA is unable to produce infectious progeny
in most mammalian cell types.22 Since MVA is replication-
deficient in mammalian cells and therefore lowly reactogenic in

humans, it is an attractive vector for vaccination purposes. This
was demonstrated in field trials, where MVA was successfully
used as a safe smallpox vaccine in over 120,000 individuals in
the absence of any serious adverse events.23

However, the use ofMVA as a vaccine vector hasmultiple alter-
native advantages. Notably, MVA safety was confirmed in various
in vivomodels, including avian species and mammals with immu-
nodeficiencies,24-27 leading to classification of MVA as a biosafety
level 1 (BSL-1) pathogen. Additional advantages of MVA as a vac-
cine vector include: easy insertion of antigens of interest into the
viral genome, transient expression of heterologous antigens in vivo
and induction of both humoral and cellular responses in animal
models and humans. Finally, an interesting characteristic of MVA
is that compared to VV, MVA has lost the capacity to evade the
host innate immune system.28-35 Consequently, vaccination with
MVA has an intrinsic immunostimulatory activity (potentially
comparable to adjuvants used in combination with vaccination)
that leads to rapid influx of various types of immune cells.34

Although a potential negative effect of pre-existing vector immu-
nity on immunogenicity is always a concern with the use of vec-
tored vaccines, this does not seem to be a major problem with
MVA-based vaccines. It has been shown in humans that a second
booster vaccination with aMVA expressing an influenza virus HA,
still resulted in potent antibody responses against the protein of
interest. Similar observations were made in other studies with
MVA expressing other proteins (reviewed in 36). This indicates
that recombinant MVA remain immunogenic, despite vector
immunity.

MVA holds great promise as a vaccine vector and was initially
shown to be a promising influenza vaccine in 1994 by Sutter et al.37

This vaccine was engineered to express the HA and nucleoprotein
(NP) gene from influenza virus A/PR/8/34. In addition, recombi-
nantMVA expressing other proteins from various influenza strains
were generated and tested in animalmodels.

MVA-HA vaccines
To induce sterile immunity against influenza viruses, HA is the
surface antigen of choice since it efficiently stimulates B-cell
responses and the production of virus neutralizing antibodies
(VN) in vivo. Therefore, MVA vector vaccines expressing HA
of various subtypes have been constructed and tested in animal
models. It should be noted however that most antibodies
directed to HA are strain-specific and display poor cross-reac-
tivity with HAs of alternative subtypes, or even with HA mole-
cules from other viruses of the same subtype. Therefore,
MVA-HA vaccines often offer protection from infection with
the homologous influenza A virus, but not or poorly against
infection with heterologous viruses.

Recombinant MVAs expressing the HA gene of the
H1N1pdm09 influenza virus A/California/07/09 have been
tested for immunogenicity in mice, ferrets and macaques. In
different studies, mice could be fully protected from disease
after challenge infection with the homologous virus and protec-
tion correlated with the induction of VN antibody and T-cell
responses.38,39 In addition, intra-subtypic cross-immunity was
observed to some extent as MVA-H1(A/Cal/07/09) could also
protect mice from infection with various A(H1N1) swine influ-
enza viruses.38 Immunization of ferrets with a similar recombi-
nant MVA induced robust antibody responses and partially
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Table 1. Overview of poxvirus-based influenza vaccines.

Vector Model Antigen Modification Subtype Reference

Poxviruses HA n/a H1N1, H5N1 37,38,43-45,68

HA HAstem H5N1 51

HA Mosaic H5 63

NP n/a H5N1 51

M1 n/a H5N1 51

M2 n/a H5N1 51

PB2 n/a H5N1 51

NA n/a H5N1 38,67

HA/NP n/a, HAstem H1N1, H5N1 36,51-53,68

NP/M1 n/a H3N2 56,57

HA/NA n/a H5N1 54,68

HA/M2 HAstem, M2e repeats H1N1, H5N1, H7N2, H9N2 51

HA/NP/M2 HAstem, M2e repeats H1N1, H5N1, H7N2, H9N2 51

HA/NP/NA/M1/M2 n/a H5N1 54

HA n/a H1N1, H7N9 39,50

HA n/a H5N1 66

NP/M1 n/a H3N2 57

HA n/a H1N1, H5, H5N1, H5N8, H7N2, H7N7, H7N9, H9N2 26,77-81,83,84,89-93

NP n/a ? 93

HA/NP n/a H5 93

HA/NA n/a H5N1 94,95

NP/M1 n/a H3N2 55,57

HA n/a H5, H5N1 81,85,86,88

HA n/a ? 77

HA n/a H3N8 96

HA n/a H3N8 49,69-74

NP n/a H3N8 49

HA n/a H2N2 15

HA n/a H2N2 15

(Continued)
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protected from challenge infection with an antigenically closely
related H1N1pdm09 virus, A/NL/602/09.40 Macaques were also
fully protected from H1N1pdm09 virus infection (A/Norway/
3487/09) by 2 immunizations with a MVA-based H1N1pdm09
vaccine.41 Taken together, these data indicate that an MVA-
based vaccine is able to induce protective immunity against the
virus that caused the influenza pandemic in 2009, but the
extent of cross-protection against unrelated H1N1 viruses is
limited.

Highly pathogenic avian influenza viruses of the H5N1 subtype
cause endemic outbreaks in poultry. However, since 1997, zoonotic
transmission of various A(H5) viruses have caused many cases of
human infection6,42 of which almost 400 had a fatal outcome. The
zoonotic transmission of A(H5N1) viruses, their continuous circu-
lation in wild and domestic birds and the fact that only a few amino
acid substitutions are necessary to confer transmissibility between
mammals,43 underscore the pandemic potential of these viruses.
The circulation of A(H5N1) viruses belonging to antigenically dis-
tinct clades has complicated vaccine development and has necessi-
tated the selection of various prototypic vaccine strains.
Recombinant MVA vaccines expressing HA genes derived from
various A(H5N1) strains have been constructed and tested for pro-
tective efficacy against viruses belonging to different clades in vari-
ous animal models. Vaccination with MVA expressing the HA
gene of influenza virus A/Vietnam/1194/04 (clade 1) completely
protected mice and chickens from infection with the homologous
virus and also offered mice protection against infection with influ-
enza viruses A/HK/156/97 (clade 0) and A/Indonesia/5/05 (clade
2.1).26,44,45With regard to inducing antibodies that cross-react with
the HA of viruses belonging to heterologous clades of A(H5N1)
viruses, MVA-H5(A/Vietnam/04) performed superior compared
to MVA expressing HA of influenza A viruses A/Indonesia/5/05
(clade 2.1), A/HK/156/97 (clade 0), A/Turkey/Turkey/1/05 (clade
2.2), A/Chicken/Egypt/3/06 (clade 2.2) or A/Anhui/1/05 (clade
2.3).45,46 Finally, immunization with MVA-H5(A/Vietnam/04)
protected macaques from challenge infection with the both homol-
ogous virus and clade 2.1 virus A/Indonesia/5/05.47 This favorable
outcome justified testing ofMVA-H5(A/Vietnam/04) in a phase 1/
2a clinical trial that showed that this vaccine candidate was immu-
nogenic in man. VN antibodies were induced against the homolo-
gous strain that cross-reacted not only with heterologous A(H5N1)
viruses, but even with a newly emerging A(H5N8) avian influenza
virus.48,49 The vaccine was well tolerated and serious adverse events

were not observed. Collectively, these data show that MVA-based
A(H5) vaccines are safe and able to induce cross-clade specific anti-
bodies at levels that are considered protective.

In addition, MVAs expressing HA genes derived from A(H3)
and A(H7) influenza viruses have been tested in animal models. A
MVAvaccine expressing theHA gene of anA(H3N8) equine influ-
enza virus (A/equine/Kentucky/1/81) was tested in ponies and was
shown to induce antibody and T-cell responses, and afforded pro-
tection from disease caused by challenge infection with the homol-
ogous virus.50 Recently, avian influenza viruses of the A(H7N9)
subtype have caused frequent infection of humans, especially in
Southeast China, often with fatal outcome. A candidate MVA-
based vaccine expressing the HA gene of one of these viruses (A/
Shanghai/2/13) was constructed and tested in ferrets. It was shown
that immunization with MVA-H7(A/Shanghai/2/13) induced VN
antibodies and offered partial protection against challenge infection
with a closely-related A(H7N9) virus.51

MVA-NP, MVA-M1, MVA-NA and MVA-PB1 vaccines
Whereas HA is regarded as the antigen of choice for the induction
of VN antibody responses, the more conserved internal NP and
Matrix 1 (M1) protein are often regarded as antigens of choice for
the induction of T-cell responses, in particular CD8C CTL
responses. In general, the HA-based vaccines induce a relatively
narrow antibody response, which afford little cross-protective
immunity to viruses of other subtypes. In contrast, the use of more
conserved influenza virus proteins in vaccines may lead to
the induction of T-cells directed to epitopes that are shared by
influenza viruses of various subtypes and may confer broader pro-
tection. For the induction of broadly-protective immunity, MVA-
M1, MVA-NA, MVA-PB1 and MVA-NP vaccines were con-
structed and tested in animal models. Of note, vaccines that aim at
the induction of T cell immunity exclusively will not afford sterile
immunity, because initial infection and some degree of virus repli-
cation cannot be prevented.However, CTL recognize and eliminate
virus-infected cells and thereby contribute to viral clearance and
recovery.

Hessel et al constructed a recombinantMVA expressing the NP
gene of an A(H5N1) virus (MVA-NP(A/Vietnam/1203/04)).
Immunization of mice with this vaccine candidate not only pro-
tected animals from infection with the homologous virus, but also
against infection with viruses of the A(H7N1) and A(H9N2) sub-
type.52 However, a similar MVA-NP(A/Vietnam/1203/04)

Table 1. (Continued )

Vector Model Antigen Modification Subtype Reference

HA n/a H5N1, H5N8 79,96

HA n/a H1N1, H5N1 40,46

NP n/a H5N1 40

HA/NP n/a H1N1, H5N1 40

HA n/a H5N1 47,48

NP/M1 n/a H3N2 58-62
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construct failed to induce protective immunity in macaques.41 The
use of MVA expressing the M1 or PB1 gene from an A(H5N1)
virus also failed to induce protective immunity against infection.52

MVA expressing the NP gene of an equine A(H3N8) virus (MVA-
NP(A/Equine/Kentucky/1/81)) offered ponies partial protection
from infection, but only after initial priming with a DNA vaccine
expressing the same antigen.50 MVA expressing the NA gene from
an H1N1pdm09 virus afforded partial protection against
H1N1pdm09 challenge infection.39

Simultaneous delivery of multiple influenza virus antigens by
MVA
In order to elicit both protective antibody and T-cell responses
simultaneously, MVA expressing both the HA and NP gene
have been constructed. In mouse studies, the use of a MVA-
H1CNP(A/PR/8/34) vaccine induced virus-specific antibodies
and T-cell responses and fully protected mice from infection
with the homologous virus and partially protected against
infection with a unrelated A(H3N2) virus.37,53 Similarly, an
MVA-H1CNP was constructed that contained the HA gene of
an H1N1pdm09 and the NP gene of a A(H5N1, A/Vietnam/
1203/04) virus. In mice, vaccination afforded complete protec-
tion from infection with the homologous A(H1N1) and A
(H5N1) strains and partial protection from infection with a
virus of the A(H3N2) subtype.54 A similar MVA-H1CNP con-
struct was tested in macaques, full protection was observed
against infection with H1N1pdm09 virus. When the HA gene
was replaced by that of an A(H5N1) virus, macaques were only
partially protected from infection with the H1N1pdm09
virus.41 An MVA simultaneously expressing the HA and NA
genes of A(H5N1) virus A/Vietnam/1203/04 and the IL-15
gene was tested in mice and was shown to afford protection
against infection with the A(H5N1) virus.55

AMVA vaccine designed to induce T-cell responses, expressing
the NP and M1 genes of an A(H3N2) virus was extensively tested;
first in animal models and then in clinical trials. Immunization of
mice with MVA-NPCM1(A/Panama/2007/09) afforded protec-
tion against development of severe disease after infection with
H1N1pdm09 and A(H3N2) influenza viruses, but not against
infection with the mouse-adapted A(H1N1) virus A/PR/8/34. In
these studies the recombinant MVA was given in adjunct with
recombinant adenovirus expressing the same genes.With the same
vaccination strategy chickens were protected from infection with a
A(H7N7) virus. Thus with recombinant MVA expressing the con-
served NP and M1 genes simultaneously broad immune responses
are induced that protect against various subtypes of influenza A
virus.56-59 This vaccination regimen proved immunogenic in pigs,
but the protective potential was not tested in this species.58 An
MVA-NPCM1 vaccine was subsequently tested in phase 1/2a clin-
ical trials and was shown to induce virus-specific CD8C T-cells in
humans and protect from experimental challenge infection with an
A(H3N2) virus.58,60,61 Furthermore, this vaccination regimen was
again shown to be safe and immunogenic in the elderly,62 and
could be co-administered with TIV.63

Universal influenza vaccines on basis of MVA
Because of the variable nature of influenza viruses and the
extensive antigenic variation they display, the availability of so-
called universal vaccines is highly desirable. Some of the MVAs

that were discussed above induced cross-reactive immune
responses, in particular based on the induction of virus-specific
T cells. Commonly unmodified antigens are being used, but
currently various modifications of viral proteins are being
tested in order to design vaccines that induce broader immu-
nity. Some of these modified influenza viral antigens are now
being expressed by recombinant viral vectors, including MVA,
and are being tested in animal models.

Recently, Kamlangdee et al generated an MVA-H5Mosaic
construct, an MVA expressing a computationally generated
mosaic A(H5) gene reflecting gene sequences of 2,145 A
(H5N1) virus isolates. The MVA-H5Mosaic vaccine was capa-
ble of inducing antibodies that reacted with A(H5N1) viruses
from all clades, but that did not cross-react with viruses of
other HA subtypes. Interestingly, immunized mice were not
only protected from infection with various A(H5N1) viruses,
but also from infection with A/PR/8/34, a virus of the A
(H1N1) subtype. Protection from challenge infection with an A
(H3N2) could not be achieved.64

Another vaccine approach of interest is the design of vaccines
that can induce broadly-reactive and VN antibodies to the
conserved stalk region of the HA molecule.65 A single study has
performed vaccination challenge experiments with MVA
expressing the HA-stalk, either alone or in combination with
other antigens.52 The use of MVA-H5Stalk(A/Vietnam/1203/04)
alone or in combination with an MVA expressing 4 M2e repeats
from A(H5N1), A(H9N2), A(H7N2) and A(H1N1) did not
afford protective immunity. However, when the MVA-H5Stalk
(with or without the MVA expressing M2e) construct was com-
bined with an MVA expressing an NP gene (MVA-NP(A/Viet-
nam/1203/04)), mice were protected from infection with A
(H5N1), A(H7N1) and A(H9N2) viruses.52 Co-administration of
an NP expressing vaccine seemed essential in achieving cross-
protection in these studies, corresponding to the induction of
broadly-reactive virus-specific CD4C and CD8C T-cells.

Thus, it was shown that influenza virus antigens can be
modified to optimize induction of (cross-reactive) immune
responses and these modified viral antigens can readily be
expressed by recombinant MVA vectors. Thus MVA provides
an ideal platform for the expression of modified influenza viral
proteins, smartly designed for the induction of broadly protec-
tive immunity.

NYVAC, Raccoonpox, Canarypox and Fowlpox vectors
Next to MVA, other attenuated poxviruses have been used as viral
vectors for the development of candidate influenza vaccines.
Immunization of chickens with recombinant NYVAC, a VV strain
highly attenuated by deletion of 18 open reading frames from the
viral genome,66 expressing the HA gene of an avian A(H5N1) virus
(NYVAC-H5(A/Chicken/Indonesia/7/04)), afforded protection
against infection with a heterologous A(H5N2) virus.67 Recombi-
nant Raccoonpox (RCN) viruses expressing the HA, NA or NP
genes of A(H5N1) influenza virus A/Vietnam/1203/04 were con-
structed and evaluated for their protective capacity in mice. Inter-
estingly, protection from A(H5N1) challenge infection could be
demonstrated but was dependent on the route of administration.
Intra-dermal immunization with RCN-HA afforded protection,
protection was also observed with RCN-NA but only after intra-
nasal administration.68,69
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Canarypox (CNPV) is a host-restricted member of the poxvirus
family that is unable to produce infectious progeny virus in mam-
malian cells, making it potentially safe as a viral vector for human
use. At present, recombinant CNPV are used as influenza vector
vaccines for vaccination of horses against equine influenza of the A
(H3N8) subtype. Recombinant CNPV vaccines expressing HA
genes of various A(H3N8) strains were immunogenic in horses
and protected against infection with virus of this subtype.70-75 Fur-
thermore, maternal antibodies induced by CNPV-HA were pas-
sively transferred to foals of vaccinated pregnant horses.76 In
addition, CNPV was also used as a vaccine vector to protect pigs
and cats from avian influenza virus of the A(H5N1) subtype. Pigs
were vaccinated with CNPV-HA(A/Chicken/Indonesia/7/03) and
proved to be protected from infection with an unrelated virus of
the A(H5N2) subtype.67 In cats, the same vaccine afforded protec-
tion from infection with various A(H5N1) viruses.77

Fowlpox virus (FPV) is the causative agent of an economically
important disease of chickens. However, several attenuated FPV
vector vaccines expressing influenza virus antigens are currently
licensed as A(H5N1) influenza vaccines for use in poultry. Initial
studies performed in 1998 showed that FPV-HA vaccines could
protect chickens and turkeys from experimental challenge infec-
tions.78 Comparable to MVA, it was recently shown that FPV as a
vector efficiently induces both B- and T-cell responses in chick-
ens,79 however it has also been shown that pre-existing immunity
to FPV or influenza antigens could pose a potential problem when
using FPV-based influenza vaccines.80

An experimental FPV-based A(H5) vaccine, expressing the HA
gene of an A(H5N8) virus (A/Turkey/Ireland/1378/83) was exten-
sively tested in chickens and was shown to offer protection against
infection with the homologous virus, but also against viruses of
the A(H5N1), A(H5N2), A(H5N3), A(H5N8) and A(H5N9) sub-
types.81-83 Various other FPV-H5 vaccines were constructed and
tested in chickens and ducks and proved to afford protection
against infection with homologous and heterologous viruses.84-89

Furthermore, recombinant FPV vaccines were generated express-
ing the HA genes of A(H1), A(H7) and A(H9) viruses. An FPV-
H1(A/PR/8/34) failed to protect chickens from infection with an
A(H7N7) virus,90 but vaccination with recombinant FPV express-
ing the homologous HA gene afforded full protection.90,91 Similar
results were obtained with a recombinant FPV vaccine expressing
the HA gene of avian A(H9N2) influenza virus.92,93 Interestingly,
co-expression of IL-6 or IL-18 genes improved immunogenicity of
FPV-HA vaccines in chickens and ducks.85,89

Recombinant FPV vaccines expressing influenza virus NP
and NA genes were tested as well. A recombinant FPV express-
ing NP failed to protect chickens from infection. However, a
FPV-based vaccine expressing both the HA and NP genes
simultaneously protected chickens completely from homolo-
gous challenge infection.94 Notably, recombinant FPV express-
ing both the HA and NA gene of A(H5N1) virus A/Goose/
Guangdong/3/96 protected chickens completely not only
against infection with the homologous virus, but also against
infection with a virus of another subtype, namely A
(H7N1).95,96 Although FPV vector vaccines expressing influ-
enza viral antigens rarely have been used in non-avian species,
FPV-HA was capable of inducing antibody responses in cats 97

and afforded protection in pigs when challenged with a low-
pathogenic A(H5N2) influenza virus.67

Alphavirus vectors

Alphaviruses are single-stranded RNA viruses with a positive
sense genome of the Togaviridae family. Several alphaviruses
are being developed as vaccine vectors, including semliki forest
virus (SFV), sindbis virus (SIN) and Venezuelan equine
encephalitis (VEE). These vectors often are replication deficient
replicons that do not encode viral structural proteins, as these
regions of the genome are replaced by transgenes of interest.
Viral RNAs are self-replicating and are capable of transgene
expression at high levels.98 As an added advantage, when using
alphavirus replicons pre-existing immunity to the vector should
not pose a problem and multiple sequential vaccinations are a
possibility.99-102 Furthermore, VEE is an appealing vaccine vec-
tor, as it was previously shown that VEE mainly targets anti-
gen-presenting cells in the lymphoid tissues and therefore
primes rapid and robust immune responses.103

SIN, SFV and VEE have all been tested as influenza vaccine vec-
tors (Table 2). An SFV vaccine expressing the HA and NP genes
could protect mice from infection with A(H1N1) virus;99 the same
held true for a SIN replicon expressing either the HA gene or an
immunodominant CD8C T-cell NP epitope.104,105 VEE was more
extensively evaluated as an influenza vaccine vector, VEE-H1(A/
PR/8/34) vaccination protected mice from infection with homolo-
gous virus,101 even in aged animals.106 Immunization of chickens
with VEE expressing the HA gene of A(H5N1) virus A/HK/156/97
also afforded full protection against this virus.107 Finally, vaccina-
tion of pigs has been studied using different VEE constructs,
expressing HA genes of the A(H1) and A(H3) subtypes and an NP
gene of an A(H3N2) swine influenza virus. In all cases antibodies
were induced by vaccination, and pigs could at least be partially
protected from infection with the homologous virus.108-112 Hetero-
subtypic immunity could be induced when pigs were vaccinated
with the VEE-NP construct,112 however VEE-based vaccines
performed poorly in the presence of maternal antibodies.108

A VEE-based candidate vaccine against cytomegalovirus
(CMV) has been tested in clinical trials, was shown to be
immunogenic, well tolerated and safe in humans.113 Clinical
trials with alphaviruses-based vector influenza vaccines have
not yet been conducted, however since these replicons are
potentially efficacious (even in the face of pre-existing immu-
nity) and safe, they hold promise as influenza vector vaccines.

Herpes virus vectors

Several recombinant herpes viruses have been tested in animal
models as candidate influenza vaccines (Table 2). Duck enteri-
tis virus (DEV), an alphaherpesvirus and the causative agent of
duck plague, has caused fatal infections in many species of
waterfowl. However, deletion of glycoprotein C (gC) leads to
an attenuated DEV that may be exploited for the development
of vectored vaccines. Construction of the first DEV-based can-
didate A(H5N1) influenza vaccine was initially described in
2011.114 Subsequently, it was shown that DEV encoding differ-
ent HAs of A(H5N1) viruses could protect chickens and ducks
from lethal infections with these viruses115-117 and was capable
of inducing both humoral and cellular immune responses.118

Infectious laryngotracheitis virus (ILTV), another alphaher-
pesvirus that causes disease in mainly poultry, has been tested

2886 R. D. DE VRIES AND G. F. RIMMELZWAAN



Table 2. Overview of vector-based influenza vaccines.

Vector Model Antigen Modification Subtype Reference

Alphavirus HA n/a H1N1 100,103,105

NP CD8 epitope n/a 104

HA/NP n/a H1N1 98

HA n/a H1N1, H3N2 107-111

NP n/a H3N2 111

HA/NP n/a H3N2 107

HA n/a H5N1 106

Herpesvirus HA n/a H1N1, H3N2, H3N8 130,131,133

HA n/a H1N1 129,134

HA/NA n/a H1N1 128

HA n/a H5N1, H5N2, H7N1 115,117-126

NA n/a H5N1 120

HA/NA n/a H5N1 120

HA n/a H5, H5N1 114

HA n/a H3N8 131

HA n/a H3N8 132

VSV HA n/a H1N1, H5N1 136,139,143,145

HA Chimeric cH5/1, cH9/1 140

NP n/a H1N1 139

HA/NP n/a H1N1 139

HA/NA n/a H1N1, H5N1 140

HA n/a H5N1, H7N1 142

HA n/a H5N1 144

(Continued)
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as an influenza vaccine for poultry. Attenuated strains of ILTV
expressing HA genes obtained from various A(H5N1) and A
(H5N2) influenza virus strains were generated and shown to
offer protection against these viruses.119,120 However, ILTV
should be attenuated sufficiently, as pathogenicity caused by
the vector was still observed in a single study.119 ILTV vaccines
expressing the NA gene were also generated but were poorly
immunogenic; co-expression of HA genes was always required
to obtain protective immunity.121

Another alphaherpesvirus of poultry, turkey herpesvirus
(HVT) has also been extensively studied as influenza vaccine
vector in chickens. HVT encoding the HA gene of an A(H5N1)
virus afforded protection from infection with various A(H5N1)
viruses.122-124 Similarly, a recombinant HVT-H7 vaccine pro-
tected chickens against infection with the homologous A
(H7N1) virus.125 Since chickens are often vaccinated at very

young age (1 day after birth), maternal antibodies against the
vector or against the protein encoded by the transgene could
influence vaccine efficacy. Interestingly, HVT was shown to be
immunogenic even in the presence of these maternal antibod-
ies.126 Marek’s disease virus (MDV), an alphaherpesvirus
closely related to HVT, was shown to be an effective vaccine
vector against A(H5N1) virus and even performed better than
HVT in a side-by-side comparison in chickens.127

Pseudorabiesvirus (PrV) is an alphaherpesvirus of pigs and
attenuated strains of PrV have been generated and used for control
of Aujeszky’s disease in pigs.128 Attenuated PrV expressing foreign
antigens were generated and are attractive as bivalent vaccines for
pigs. The use of PrV-H1 influenza vaccines partially protected pigs
from H1N1pdm09 virus infection. Recombinant PrV expressing
the NA gene derived from a swine A(H1N1) influenza virus only
protected pigs to a limited extent.129,130 A recombinant PrV

Table 2. (Continued )

Vector Model Antigen Modification Subtype Reference

NDV HA n/a H1N1, H5N1 147,158,159,167

HA Soluble H5N1 158

HA n/a H5N1, H5N2, H6, H7, H7N2, H7N9, H9N2 149,150,152,153,155-166

HA Soluble H5N1 158

HA Ectodomain H5N1 151

HA/NA n/a H5N1 155

HA n/a H6 165

HA n/a H5N1, H5N8 149,154

HA n/a H5N1 168,169

Baculo HA n/a H1N1, H5N1, H6N8, H7N9, H9N2 171-178

PIV-5 HA n/a H3N2, H5N1, H7N9 180-182

NP n/a H5N1 182

HA n/a H7N9 181

HA/NP n/a H7N9 181

HA n/a H3N2 179
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expressingHA from a swine A(H3N2) virus was tested inmice and
induced protective immunity against infection with heterologous A
(H3N2) virus.131

An attenuated strain of equine herpesvirus (EHV-1), an
alphaherpesvirus that infects horses, has an impressive safety
record in horses and other mammalian species and therefore
should be considered an attractive vaccine vector. The HA gene
from an equine A(H3N8) influenza virus was cloned into
EHV-1 and could induce antibody responses that react with
multiple A(H3N8) strains in mice and horses.132,133 Interest-
ingly, the protective efficacy of these vaccines was only assessed
in dogs, which upon vaccination were partially protected from
infection with a canine A(H3N8) influenza virus strain.132 In
addition, recombinant EHV-1 were constructed that express
the HA gene derived from H1N1pdm09 virus. This vaccine
candidate afforded mice complete and pigs partial protection
from infection.134,135

Herpes viruses encoding influenza virus antigens have
mainly been tested as candidate vaccines for poultry in which
their protective effectiveness was confirmed. Like other DNA
viruses, herpes viruses have a relatively large genome and anti-
gens of interest can easily be cloned into multiple insertion
sites. Although an advantage, it also complicates characteriza-
tion of the vector because the insertion site of the transgene
may influence its immunogenicity.122

Vesicular stomatitis virus vectors

Vesicular Stomatitis Virus (VSV) is a rhabdovirus and has a
negative sense RNA genome. Candidate influenza vaccines
based on VSV have been constructed and have numerous
advantages over other vectors. VSV is immunogenic,136,137 has
a broad tissue tropism and can easily be delivered locally. In
contrast to other vectors (like adeno- and poxviruses), there is
little evidence for VSV seropositivity in humans, eliminating
concerns of pre-existing immunity to the vector. On the other
hand, use of VSV as a vector is not without concern: VSV can
cause disease in humans138 and is known to be neuro-invasive
in some species.139 Currently, there is no human safety data
available for VSV-vectored vaccines and additional experi-
ments are required. An overview of VSV-based influenza vac-
cines can be found in Table 2.

VSV expressing the HA gene of influenza virus A/WSN/33
(H1N1) proved to be immunogenic in mice and protected the
animals from challenge infection.137 Since VSV also proved to
be pathogenic in mice, most studies with VSV as vector relied
on recombinant attenuated VSV viruses with a truncated or
deficient G protein. In similar experiments, mice could only be
partially protected from infection with influenza virus A/PR/8/
34 after vaccination with VSV expressing the corresponding
HA gene, whereas expression of only the NP failed to afford
protection. However, combination of the HA and NP con-
structs resulted in full protection from infection.140 Further-
more, a VSV expressing the HA gene of influenza virus A/
Vietnam/1203/04 (H5N1) and the NA gene of influenza virus
A/PR/8/34 (H1N1) completely protected mice from infection
with a 6:2 reassortant A(H5N1) virus (HA and NA from A/
Vietnam/1203/04).141 VSV-H7(A/FPV/Rostock/34) expressing
the HA gene of an A(H7N1) virus afforded chickens protection

from developing disease after caused by a virus of the same
subtype.142

VSV-based candidate A(H5N1) vaccines were constructed
and tested in chickens, mice and macaques. Immunization with
VSV expressing the HA gene of 2 different avian A(H5N1)
viruses completely protected chickens from A(H5N1) virus
challenge.143 Also in mice and macaques VSV-based A(H5N1)
vaccines proved to be immunogenic144-146 and mice immunized
with a recombinant VSV expressing the HA gene of a clade 0 A
(H5N1) virus were protected from infection with viruses of the
same clade and those of clade 1.144,146

VSV has also been used to construct vaccines that aim at the
induction of broadly reactive HA-stalk specific antibodies as a
universal influenza vaccine approach. As suggested previously,
repeated vaccination with various chimeric HA molecules can
boost the induction of stalk-specific antibody responses.147

Therefore, mice were primed with a recombinant VSV express-
ing an HA gene with the stalk region of influenza virus A/PR/
8/34 and the globular head domain of an A(H9N2) virus. Sub-
sequently mice were boosted with a VSV, expressing an HA
gene with the same stalk but with the head domain of an A
(H5N1) virus (VSV-cH5/1). As expected, mice could be pro-
tected from infection with influenza virus A/PR/8/34 by this
vaccination regimen.141 Priming with VSV encoding the full-
length HA gene of A/PR/8/34 (H1N1) followed by boost with
the VSV-cH9/1 construct also afforded protection against
infection with a virus of the A(H5N1) subtype.141 Interestingly,
in both experiments it was shown that intra-nasal prime-boost
regimens performed better than IM vaccination.

Newcastle disease virus vectors

Newcastle disease virus (NDV) is a single-stranded negative
sense RNA paramyxovirus that causes disease in poultry. NDV
has several favorable properties as a vaccine vector; no pre-
existing immunity in humans exists, NDV can easily be attenu-
ated and reverse genetics systems to rescue recombinant NDV
are in place. Thus far, NDV has been extensively characterized
as an influenza vaccine vector in poultry, where it serves as a
bivalent vaccine capable of inducing immunity against both
NDV and influenza virus. As an added advantage, NDV is eas-
ily administered to poultry through nasal spray, drinking water
or ocular drops. An overview of NDV-based influenza vaccines
can be found in Table 2.

The first study using NDV as a vaccine vector for influenza
was NDV-H1, that expressed the HA gene of influenza virus A/
WSN/1933. Complete protection of mice against homologous
challenge infection was achieved, demonstrating that NDV can
be used as an influenza vaccine vector.148 Consequently, a
recombinant NDV expressing HA genes of A(H5N1) viruses
has been licensed as a poultry vaccine in some countries and
was shown to have a protective effect against challenge infec-
tion with A(H5N1) viruses in chickens and ducks in various
studies.149-163 The NDV based A(H5N1) vaccine offered only
partial cross-clade protection, but was immunogenic in the
presence of maternal antibodies.162,163 Expression or co-
expression of NA by NDV did not improve immunogenicity in
chickens.156 Also NDVs expressing the HA genes of A(H6), A
(H7) and A(H9) subtypes were tested in poultry. Although
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most challenge viruses were low-pathogenic, a reduction or
complete abrogation of virus shedding could be obtained after
inoculation with the respective homologous viruses.161,164-167

To develop NDV-based vaccines for use in humans, their per-
formance has also been tested in mammalian species. In mice,
protective immunity against A(H5N1) viruses was induced
after vaccination with NDV expressing the homologous HA
gene.159,160 In one single study, cross-reactive cellular immune
responses against A(H1N1) viruses were observed after vaccina-
tion with a NDV-H5 construct.168 The immunogenicity of
recombinant NDV expressing the HA and NA genes of influenza
virus A/Vietnam/1203/04 (H5N1) was tested in non-human pri-
mates. Both constructs induced VN and local IgA antibody
responses and afforded protection from A(H5N1) challenge
infection.169,170 Small numbers of clinical trials have been per-
formed with NDV, which showed that the vector is well tolerated.

Baculovirus vectors

Baculoviruses are extensively used as tool to express and pro-
duce influenza virus proteins. Currently, a recombinant HA
protein vaccine produced in baculoviruses was approved for
human use in the United States. However, baculoviruses have
also been explored as live vaccine vectors. Since baculoviruses
can readily be manipulated to express foreign antigens and can
infect mammalian cells without causing cytopathic effect they
are potentially promising vaccine vectors for influenza
(Table 2).171

Initially, it was reported that vaccination with recombinant
baculovirus expressing the HA gene of influenza virus could
induce complete protection from homologous challenge infec-
tion.172 Interestingly, in this study the control group that
received an ‘empty’ baculovirus, not expressing the HA gene,
was also protected from challenge infection. Potentially the
induction of strong non-specific innate immune responses by
vaccination with baculovirus was responsible. Subsequently,
several baculoviruses expressing the HA genes of various A
(H5N1) influenza viruses were tested in mice and afforded pro-
tection against infection with both homologous viruses and A
(H5N1) viruses from different clades.173,174 Bivalent baculovi-
rus vaccines, expressing 2 different HA genes from A(H5)
viruses simultaneously, were also successful in affording cross-
clade immunity.175,176 Finally, recombinant baculoviruses
expressing HA genes of A(H6), A(H7) and A(H9) influenza
viruses were capable of inducing protective immunity against
infection with homologous viruses in mice.177-179

Although recombinant baculovirus vector vaccines were
tested in mice, efficacy data in other animal models is still lack-
ing. Short-term production of baculovirus-based influenza
virus vaccines for use in clinical trials is therefore not likely.

Parainfluenza virus 5 vectors

Parainfluenza virus 5 (PIV-5) is, like NDV, a negative sense
RNA paramyxovirus that is only recently being explored as an
influenza virus vaccine vector (Table 2). Favorable properties
of PIV-5 as a vector include: broad tissue and cell tropism, no
clinical disease in humans and availability of reverse genetics

systems. Although PIV-5 does not cause disease in humans,
PIV-5 has been associated with ‘kennel cough’ in dogs.180

In an initial study, vaccination with PIV-5 expressing the
HA of an A(H3) virus afforded protection against homologous
challenge infection.181 PIV-5 expressing the HA genes of A/
Vietnam/1203/04 (H5N1) and A/Anhui/1/13 (H7N9) also
completely protected mice from infection with the homologous
influenza virus.182,183 PIV-5 expressing an internal protein of
influenza virus, in this case the NP gene of A/Vietnam/1203/
04, was constructed, but could only partially protect mice from
homologous challenge infection. Interestingly, PIV-5 express-
ing the same NP gene completely protected mice from a heter-
ologous challenge infection with A(H1N1), cellular immune
responses targeting NP were the responsible correlate of protec-
tion.183 Similar results were obtained with recombinant PIV-5-
NP(A/Anhui/1/13) in guinea pigs challenged with a homolo-
gous A(H7N9) influenza virus.182

PIV-5 has been evaluated in mice and guinea pigs, but
was not tested as an candidate influenza vaccine in other
animal models. Furthermore, clinical trials in humans have
not been performed with PIV-5 yet, so safety and efficacy
data is therefore not available. Finally, little is known about
pre-existing immunity to the vector in humans. However,
in dogs, a PIV-5 vector vaccine expressing the HA gene of
influenza virus could still induce robust antibody responses
in the presence of PIV-5-specific immunity.180 It remains to
be determined whether PIV-5 is safe and immunogenic
when used in humans.

Adenovirus vectors

Recombinant adenoviruses (rAd) have attractive properties to
serve as vaccine vectors: high titer stocks can be grown, genes
of interest can easily be inserted into the stable viral genome,
long-term storage at 4 degrees is possible and rAd infects a
variety of hosts, tissues and cell types.184 Furthermore, rAd can
even induce robust immune responses when administered
orally or intra-nasally, potentially bypassing pre-existing
immunity against the vector.184 Finally, even replication-
deficient rAd are known to be immunogenic; adenovirus 5
(Ad5) is a replication-deficient vector that has been evaluated
for gene delivery, anti-cancer therapy and as an infectious dis-
ease vaccine. An overview of adenovirus-based influenza vac-
cines can be found in Table 3.

A live adenovirus vaccine that contains 2 different serotypes
is already in use for vaccination of humans for decades,185 indi-
cating that adenoviruses are safe and immunogenic in humans.
However, continuation of clinical trials with rAd5 is currently
hampered by 2 trial failures: one death was reported after intra-
venous rAd5 administration,186 another study showed
increased risk of acquiring HIV-1 infection after vaccination
with rAd5 expressing HIV-1 genes gag, pol and nef.187 How-
ever, recombinant adenovirus expressing the HA gene of influ-
enza virus A/PR/8/34 proteins proved to be safe and
immunogenic in humans, inducing mainly a robust antibody
response.188 A more recent trial in humans with rAd4 express-
ing the HA gene of an A(H5N1) influenza virus reported
enhanced immune responses after co-administration with an
HA protein vaccine in the absence of serious adverse events.189
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Finally, a rAd expressing the NP and M1 genes of influenza
virus and a rAd5 expressing the HA gene of an A(H1) virus
and co-expressing dsRNA as adjuvant were safe and immuno-
genic in humans.190,191

In addition to the 2 discussed trial failures, a second
drawback for the use of rAd in humans is the potential of
pre-existing immunity against adenovirus interfering with
vaccine efficacy. Currently, as alternatives, non-human
adenoviruses 190,192-194 and low-prevalent adenoviruses 195

are being explored as novel vaccine vectors.

Ad-HA vaccines
Adenoviruses expressing HA genes of a number of different
subtypes (A(H1, H3, H5, H7 and H9)) have been tested in vari-
ous animal models. In the first study with rAd5, a vaccine that
expressed the HA gene of an A(H3N2) influenza virus of
swine-origin protected mice from challenge infection with a
heterologous A(H3N2) virus.196 A rAd expressing the HA gene

of a different A(H3) virus was shown to be efficacious in
pigs,197 even in the presence of maternal antibodies.198 Adeno-
virus vaccines expressing the HA gene of A/PR/8/34,
completely protected mice from homologous challenge infec-
tion.195,199,200 Pigs could also be protected from A/PR/8/34
virus infection by vaccination with rAd5 expressing the HA
gene from the H1N1pdm09 virus A/Cal/04/09. Interestingly,
pigs were also partially protected by vaccination with this con-
struct from infection with a heterologous A(H1N2) virus.201 A
rAd expressing the HA gene from A(H5N1), protected mice,
chickens and ferrets from infection with the homologous
virus,202-204 when the HA gene of A/HK/156/97 was introduced
into rAd cross-clade protection was reported.205 The rAd
expressing the HA gene of an A(H7) virus was immunogenic
in chickens and capable of protecting chickens from homolo-
gous challenge infection.206 In 2013, a comprehensive study
testing rAd5 vectors expressing the HA genes from avian
viruses of the A(H5), A(H7) and A(H9) subtype (and

Table 3. Overview of adenovirus-based influenza vaccines.

Vector Model Antigen Modification Subtype Reference

Adenoviruses HA n/a H3N2, H5N1, H7N7, H9N2 191,193-195,199,201-204,206

HA Soluble head H1N1 198

HA Glycan shielded H5N1 207

NP n/a H1N1, H5N1 192,208,209,214

M2 Consensus n/a 180

HA/NP n/a H5N1, H7N7, H9N2 206

HA/NA n/a H1N1 211

NP/M2 n/a H1N1 216

NP/M2 Consensus H1N1 210

HA/NA/M1 n/a H1N1, H5N! 213

NP/M1/M2 miRNAs H1N1 211

HA n/a H5N1 203,215

NP n/a H5N1 215

M2 n/a H5N1 215

HA/NA Consensus H1N1 212

NP/M2 n/a H1N1, H5N1 215,216

HA/NP/M2 n/a H5N1 215

HA n/a H1N1, H3N2 196,200

NP n/a H3N2 196

HA/NP n/a H3N2 196

HA n/a H5N1, H7N3 202,205

HA n/a H1N1, H5N1 187,188,190

NP/M1 n/a H3N2 189

AAV HA n/a H1N1 222

HA Broadly neutralizing ab n/a 223,224

NP n/a H1N1 222

M1 n/a H1N1 222

HA/NP/M1 n/a H1N1 222

HA Broadly neutralizing ab n/a 224

HUMAN VACCINES & IMMUNOTHERAPEUTICS 2891



combinations thereof) showed that mice could be protected
from homologous challenge infection. Heterosubtypic immun-
ite was never observed, however it was shown that simulta-
neous vaccination with 5 different rAd5-HA vaccines was
feasible and protected from challenge infection with viruses of
all subtypes under investigation.207

Comparable to expressing modified influenza antigens in
other vectors with the goal of inducing universal influenza
immunity (i.e. ‘headless’ HA, chimeric HA, consensus sequen-
ces), a rAd expressing a modified HA gene was constructed.
This HA gene was modified to shield the immunodominant
head region by glycans to re-direct the immune response from
the HA head region to target the more conserved stalk region
and afford broad protection. Indeed, a rAd expressing the HA
gene of an A(H5) influenza virus, either wildtype or glycosy-
lated, afforded cross-clade protection in mice, the glycosylated
HA performed better than its wildtype counterpart.208 Hetero-
subtypic immunity with these glycan-shielded constructs has
not been reported yet.

Ad-NP, Ad-M1, Ad-M2 and Ad-NA vaccines
Different vaccination regimens with rAd constructs expressing
the NP gene were tested in animal models with some reports of
heterosubtypic immunity. A rAdC7 expressing the NP gene of
A/PR/8/34 could partially protect mice from infection with
some - but not all - influenza viruses of the A(H5N1) sub-
type.193 Vice versa, rAd expressing the NP gene of an avian A
(H5N1) virus completely protected mice from infection with A
(H1N1) virus.209 However, vaccination of pigs with a compara-
ble rAd5-NP construct could not afford protection from
homologous challenge infection, whereas addition of a rAd5-
HA construct to the vaccine cocktail completely restored the
protective capacities.197

Vaccination of mice with a combination rAd5 vaccine,
including constructs expressing both the NP and M2 genes,
protected mice from homologous challenge infection.210 A
rAd5 expressing an M2 consensus sequence could even afford
protection from infection with various A(H1N1) influenza
viruses181 and abrogated contact transmission to sentinel
mice.211 When both NP and M1 consensus gene sequences
were expressed by rAd, vaccination led to partial immunity to
A(H1N1) virus infection in mice. A similar rAd vaccine,
expressing the NP and M1 genes from an A(H3N2) virus,
induced T-cell responses and proved to be safe in humans.190

Recently, a novel approach was tested when rAdC68 was con-
structed to express miRNAs that target NP, M1 and M2 RNA
from A/PR/8/34 influenza virus, and these constructs protected
mice from A(H1N1), A(H5N1) and A(H9N2) challenge
infection.212

A bivalent rAd5 vaccine, expressing the HA and NA consensus
gene sequences of multiple H1N1pdm09 viruses protected both
mice and ferrets from infection with H1N1pdm09 influenza
virus.213 A trivalent vaccine expressing the M1 gene in addition to
the HA and NA genes from either 1918 pandemic A(H1N1) or
avian influenza A(H5N1) protected mice from challenge infection
with A(H5N1) viruses from different clades. Taking this one step
further, pentavalent vaccines that expressed the HA, NA and M1
genes from avian A(H5N1) and the HA and NA genes from 1918

pandemic A(H1N1) performed superior in inducing protection
fromA(H5N1) infection.214

Adenovirus heterologous prime boost regimens
Recombinant Ad5 was extensively tested in heterologous
prime boost vaccination regimens, in which animals were
primed with DNA encoding the HA, NP and/or M2 genes
and subsequently boosted with rAd5 expressing the same
proteins. DNA priming followed by rAd5-NP(A/PR/8/34)
boost vaccination completely protected mice from homolo-
gous challenge infection and afforded heterosubtypic immu-
nity upon infection with A(H3N2) and some A(H5N1)
influenza strains.215 On the contrary, ferrets could not be
protected from A(H5N1) infection by this vaccination regi-
men.216 Similar negative results were obtained in ferrets with
rAd constructs expressing the M2 gene.216 In heterologous
prime boost regimens where DNA vaccination was followed
by vaccination with a bivalent rAd5 construct expressing
both the M2 and NP genes, mice were completely protected
from infection with A(H1N1) and A(H5N1),217 but conflict-
ing results were again obtained in ferrets.216,217 Recombinant
Ad5 expressing the HA gene was always protective in ferrets
when a DNA prime followed by rAd5 boost regimen was
used, inducing protection against infection with the homolo-
gous virus in all cases.216

Adeno-associated virus vectors

Adeno-associated virus (AAV) is a parvovirus that is replica-
tion-deficient in humans. Like adenovirus, AAV has a broad
cell, tissue and host tropism and therefore is a potential good
vector vaccine.218 However, drawbacks of using AAV include:
limited capacity for transgenes, presence of pre-existing immu-
nity in humans and the technical challenge of producing high
titer stocks. Initially, AAV was not explored as a vaccine vector
as it was considered to be poorly immunogenic, however vacci-
nation studies in mice showed that AAV-2 expressing an HSV-
2 glycoprotein was immunogenic and a potent inducer of T-
cell and antibody responses,219 and currently modifications are
being made to AAV to increase immunogenicity.220

A limited number of studies evaluating AAV as a vector
for influenza vaccination has been performed (Table 3). Ini-
tially, an AAV expressing the HA gene or NP gene was
shown to be protective in mice.221,222 A more recent study
tested AAV vaccines expressing the HA, NP or M1 genes of
H1N1pdm09 in mice. Whereas AAV-HA afforded full pro-
tection from H1N1pdm09 infection, AAV-NP protected
mice partially and AAV-M1 did not afford protection.
Simultaneous vaccination with all 3 constructs afforded pro-
tection from homologous challenge infection.223 Recently, in
an alternative vaccination approach, AAV was constructed
to express a transgene encoding a influenza virus-specific
broadly neutralizing antibody. AAV constructs expressing
the broadly neutralizing antibody ‘F10’ protected mice from
infection with 3 different A(H1N1) strains,224 whereas AAV
expressing the broadly neutralizing antibody ‘FI6’ protected
mice and ferrets from infection with various A(H5N1) and
A(H1N1) viruses.225

2892 R. D. DE VRIES AND G. F. RIMMELZWAAN



Conclusions

Viral vectors have potential as novel vaccine candidates in
times of pressing need for game-changing vaccines that induce
broadly protective immunity against a wide variety of influenza
viruses. The major advantage of viral vectors is the possibility
of expressing any foreign antigen with or without modification
in vivo. Since the proteins are expressed in their native confir-
mation, antibody responses of the desired specificities are
induced. In addition, viral vectors allow de novo protein synthe-
sis in the cytoplasm of infected cells facilitating endogenous
antigen processing and MHC class I presentation of immuno-
genic peptides, which is a requirement for the efficient induc-
tion of virus-specific CD8C T-cell responses. Although all
vectors discussed have their own respective advantages and dis-
advantages, most are replication-deficient in mammalian host
cells and are therefore safe for human use, even in immuno-
compromised individuals. Pre-existing immunity to the vector
may pose a problem for some vectors, however there are viral
vectors available (like VSV) for which the human population is
immunologically na€ıve. Other vectors (like MVA) proved to be
immunogenic even in the presence of pre-existing immunity.
For some vector technologies there are some safety concerns,
like the use of herpes viruses that persistently infect their hosts
and DNA vaccines that might integrate into the host genome.
These properties might restrict their applicability as prophylac-
tic vaccines.

As discussed in this review, viral vectors as potential influ-
enza vaccine candidates were not only evaluated in animal
models and humans, they were also extensively tested in influ-
enza A virus reservoir species. Vaccination of reservoir species
could potentially limit transmission of avian and swine influ-
enza A virus transmission, and therefore limit the zoonotic
transmission of these potential (pre-)pandemic viruses to the
human host.

In the future, more novel vector-based influenza candidate
vaccines will be developed and tested in clinical trials. There
is potential for improvement by the modification of viral anti-
gens, like the ‘headless’ or ‘shielded’ HA constructs, to
broaden the reactivity of vaccine induced antibodies. In addi-
tion to modifying influenza virus antigens, post-translational
modifications and modifications to promoter sequences could
also alter and improve the immunogenicity.226,227 The biggest
challenge of taking vector-based vaccines to the market may
be obtaining approval from the regulatory authorities. Only
when their safety and superiority over existing vaccine formu-
lations have been demonstrated, implementation of these
novel vector-based vaccines may be considered.
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QIV Quadrivalent inactivated vaccine
LAIV Live-attenuated influenza vaccine
IM Intra-muscular
HA Hemagglutinin
NA Neuraminidase
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VV Vaccinia virus

MVA Modified vaccinia virus Ankara
BSL-1 Biosafety level 1
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VN Virus neutralizing
HI Hemagglutination inhibition
M1 Matrix 1
rAd Recombinant adenovirus
RCN Raccoonpox virus
CNPV Canarypox virus
FPV Fowlpox virus
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SIN Sindbis virus
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DEV Duck enteritis virus
gC Glycoprotein C
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