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The dynamics of interstitial dopants govern the properties of a
wide variety of doped crystalline materials. To describe the hop-
ping dynamics of such interstitial impurities, classical approaches
often assume that dopant particles do not interact and travel
through a static potential energy landscape. Here we show, using
computer simulations, how these assumptions and the result-
ing predictions from classical Eyring-type theories break down in
entropically stabilized body-centered cubic (BCC) crystals due to
the thermal excitations of the crystalline matrix. Deviations are
particularly severe close to melting where the lattice becomes
weak and dopant dynamics exhibit strongly localized and hetero-
geneous dynamics. We attribute these anomalies to the failure
of both assumptions underlying the classical description: (i) The
instantaneous potential field experienced by dopants becomes
largely disordered due to thermal fluctuations and (ii) elastic inter-
actions cause strong dopant–dopant interactions even at low dop-
ing fractions. These results illustrate how describing nonclassical
dopant dynamics requires taking the effective disordered poten-
tial energy landscape of strongly excited crystals and dopant–
dopant interactions into account.
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Doping pure crystalline solids with small amounts of intersti-
tial impurities is a widely used method to enhance material

properties such as heat and electric conductivity (1–4) or to tai-
lor mechanical properties (5). Prototypical examples include the
introduction of carbon atoms in iron crystals to make steel or the
doping of plastic crystals with Li ions to create solid-state batter-
ies (4). To ensure longevity of doped materials, it is essential that
the spatial homogeneity and transport dynamics of the dopants
within the crystal are well controlled and understood. Although
theories and models are abundant (5–11), it remains unclear how
large thermal excitations of the matrix lattice affect the dynam-
ics of dopants. This becomes of particular interest during the
processing of doped crystals, where they are heated close to or
beyond their melting point. For example in body-centered cubic
(BCC) iron doped with carbon, significant deviations from the
exponential increase of diffusivity with temperature, expected
from Arrhenius’ law, are observed close to the melting temper-
ature where lattice excitations are strong (12). Whereas doping
is typically performed to tailor material properties at the macro-
scopic scale, these enhanced properties emerge from the dynam-
ics and interactions between dopants at the scale of individual
atoms (13). In classical theories for dopant dynamics, impurity
particles are described as hopping through a potential energy
landscape that is set by a perfect lattice symmetry, with tran-
sition rates governed by the energy barriers between adjacent
interstitial sites and their occupancy (6, 7, 14). In reality, ther-
mal fluctuations of atoms away from their equilibrium lattice
positions will randomize the instantaneous potential energy land-
scape that the dopants experience; this action could lead to fail-
ure of classical approaches to capture the physics of impurity
diffusion when lattice excitations become pronounced. This fail-
ure may be particularly severe for crystals of the BCC symmetry,
such as the high-temperature lattice of sodium, lithium, and iron.
In these high-temperature BCC phases, thermal fluctuations are

large due to the relatively low coordination number; in fact,
these fluctuations increase the entropy of the solid to such an
extent that they are responsible for its thermodynamic stability
(15). For impurity transport in structurally disordered colloidal
glasses, it was recently shown that thermal fluctuations that cre-
ate time variations in the potential energy landscape can have a
strong effect on the dopant diffusivity (16, 17); yet these effects
remain largely unexplored for very soft crystals that exhibit an
on-average ordered lattice.

In this paper we study the dynamics of interstitial dopants
in BCC crystals prepared from colloidal particles interacting by
long-ranged electrostatic interactions. Using Brownian dynamics
simulations we probe in detail how strong thermal fluctuations
of the base crystal affect the spatial homogeneity of the dopants
and their motion through the lattice. Dopants within a static base
crystal obey quantitative predictions of classical transition-state
theory; by contrast, the same impurities diffusing in a fluctuat-
ing crystal exhibit completely different behavior. We show how
thermal excitation of the lattice causes clustering of the inter-
stitials while simultaneously giving rise to strong disorder in the
instantaneous potential energy landscape. This results in het-
erogeneous and anomalous dynamics of interstitials within an
on-average perfect lattice. We support these observations with
direct imaging experiments on a colloidal system, using confocal
microscopy. These data illustrate how large thermal fluctuations
can give rise to heterogeneous dynamics in ordered solids, which
cannot be captured by classical hopping theories.

The classical approach to describe the diffusion of interstitial
impurities through a crystalline matrix starts with the assumption
that the dopants experience a static potential energy landscape
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set by the summation of interactions between a dopant and
all particles in the base crystal (14). Assuming that interac-
tions between dopants are negligible, i.e., that the dopant con-
centration is low and the interstitial site occupancy approaches
zero, this reduces to a simple transition-state theory for ther-
mally activated jumps between neighboring minima in the energy
landscape.

In a BCC crystal the minima in which interstitial impurities
will reside are the tetrahedral sites (Fig. 1B, green spheres) (18).
We can identify two transition paths between tetrahedral sites
that are most likely to contribute to the motion of a dopant. The
first one comprises the shortest path from one tetrahedral site to
another (T–T transition) during which displacement the particle
crosses a saddle point in the energy landscape. The second one
(T–O–T transition) goes from a tetrahedral site through an octa-
hedral site to an adjacent tetrahedral site (18). The rate at which
these hops occur is governed by the energy barrier UA separating
two sites along either path.

We parameterize our simulations to match an experimental
system of charged poly(methyl methacrylate) particles in an apo-
lar solvent, which forms BCC crystals at low densities (19, 20).
In these colloidal systems, the main control parameter is particle
volume fraction φ. The crystals are formed from colloids with a
diameter σb = 1.8 µm and doped with interstitial impurities with
σd = 0.9 µm. The interactions are described by Yukawa poten-
tials to map the simulated phase behavior as a function of φ onto
that determined experimentally (Fig. S1 and Materials and Meth-
ods). For a perfect BCC lattice we can now compute the acti-
vation energy for both the T–T and T–O–T paths by summing
the potential energy fields, taking long-ranged contributions into
account. The BCC crystal exhibits a periodic network of energy
minima (Fig. S2), which provides an efficient means for inter-
stitial motion on large length scales (18). For the colloidal BCC

Fig. 1. (A) Schematic representation of a BCC unit cell. (B) The interstitial
sites in a plane of the BCC unit cell with tetrahedral sites in green and octa-
hedral sites in red. The T–T path (green) and T–O–T path (red) are indicated
with lines connecting the interstitial sites. The potential field felt by the
dopant is shown in the background. The values are the potential energy
with respect to the global minimum at the tetrahedral site. Yellow indicates
values of 20 kBT and above. (C) Hopping barrier UA(φ) along a T–T (circles)
and a T–O–T (squares) path from numerical calculations. The solid lines are a
parametric fit to UA(φ) as described in the text, and the dashed line indicates
the melting point φm.

crystal, the numerically enumerated transition energies are few
to several kBT and the differences in activation energy between
the T–T and T–O–T paths are small (symbols in Fig. 1C). To
describe these data phenomenologically, we consider the dif-
ference between the summed potential field at the interstitial
site where U exhibits a minimum and the transition maximum
UA(φ) =U+(φ) − U−(φ) = ε

(
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g+a(φ)
− e
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)
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3φ

)
1
3 is the normalized lattice constant in units σb and

the geometrical constants g− and g+ account for the potential
energy fields at the minima and maxima, respectively. We use
this empirical equation to fit the simulation data at discrete val-
ues of φ; with values of g+ = 0.348, g−= 0.345 for the T–T transi-
tion and g+ = 0.297, and g−= 0.295 for the T–O–T this relation
describes our numerical calculation data well (lines in Fig. 1C).

Within the classical approach, the rate at which transitions
occur is governed by a thermally activated process of the Eyring
type: kh = kh,0 exp(−UA/kBT ). The Brownian attempt fre-
quency is given by kh,0(φ) =D0/d

2
h (φ) = kBT/(d

2
h (φ)6πησd/2),

in which dh is the length of the transition path and D0

is the self-diffusion coefficient of the interstitial impurities
in a solvent of viscosity η. The long-time diffusion coef-
ficient of the interstitial impurities as a function of vol-
ume fraction of the BCC crystal can now be predicted as
Dl(φ) = d2

h (φ)kh(φ) =D0 exp(−(UA(φ)/kBT )β) in which the
stretch exponent β accounts for a distribution in hopping times
due to the similar barriers of the two different transition paths.

To test the validity of this prediction based on classical
transition-state theory, we simulate the Brownian dynamics of
interstitial impurities within a static and perfect BCC crystal
(Fig. 2A). The potential energy field experienced by the dopants
exhibits clear minima at the tetrahedral sites (crosses, bottom
of Fig. 2G). This leads to characteristic hopping dynamics in
the trajectories of individual interstitial impurities, with particles
vibrating within a tetrahedral site until they hop to a neighbor-
ing site (Fig. 3 A and C). Over time, the interstitial impurities
probe the entire matrix by traveling through the interconnected
network of local minima (Fig. S2). This action gives rise to a
mean-squared displacement 〈∆r2(τ)〉 as shown in Fig. 4B, Left);
at short times vibrations within the interstitial sites give rise to
subdiffusive motion. This transitions into diffusive behavior at
times longer than the Brownian self-diffusion time, τ � τB , as
particles explore the lattice by hopping between interstitial sites;
this is characterized by a long-time diffusion coefficient Dl (cir-
cles in Fig. 4A and Fig. S3). The simulation data for this static
scenario are described very well by the prediction for Dl(φ) from
transition-state theory, with β= 0.61±0.01 used as a fit parame-
ter (line in Fig. 4A). The fact that β deviates from unity indicates
a heterogeneous hopping process occurring via both the T–T and
T–O–T transitions; the relative occurrence of T–T vs. T–O–T
hops is expected to be 3.5:1 based on the difference in activa-
tion energies, taking into account the number of possible T–T
and T–O–T transitions from a given tetrahedral site. We note
that at this point, we have not established an exact and quanti-
tative relationship between the value of β and the ratio of hops
occurring via the two possible transition routes.

In real materials, at least one crucial assumption in this clas-
sical approach fails as the matrix in which dopants diffuse is
also excited by thermal fluctuations. Especially for BCC crys-
tals in close proximity to their melting point, where doped crys-
tals are typically processed to induce ductility and malleability,
these fluctuations are known to be strong (15). Allowing the
BCC phase in these colloidal systems to fluctuate retains an on-
average perfect structure as evident from distinct Bragg peaks in
their structure factor (Fig. S4). However, snapshots of the instan-
taneous structure show significant deviations from a perfect lat-
tice as particles displace significantly from their equilibrium
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Fig. 2. Structural features of the BCC crystal for the simulation with a static (A, D, and G) and a dynamic (B, E, and H) base crystal and the experiments
(C, F, and I). (A–C) Snapshots of BCC crystals at φ= 0.14, in which particles are color coded according to their instantaneous bond-order parameter q̄6 and
dopant particles are rendered in orange (A and B only). (D–F) Pair correlation functions g(r). (G–I) Potential energy landscape through four unit cells within
the on-average ordered lattice, where black disks indicate the hard-sphere radius of the base crystal particles and the gray areas indicate the volume, from
which the center of mass of dopants is excluded, due to dopant–base particle overlap.

positions. Reconstructions of the system in which the particles
are color coded according to their instantaneous bond-order
parameter q̄6 (21) illustrate the significant amount of thermal
disorder within these BCC crystals, both in silico and in exper-
iments (Fig. 2 B and C). The thermally excited excursions of
particles from their average lattice position translate into peak
broadening in the pair-correlation function g(r) (Fig. 2 E and
F). We note that g(r) for experiment and simulation are in
excellent agreement, even though the field of view in our mea-
surements is limited due to experimental constraints. Despite
the strong thermal disorder in these fluctuating BCC crystals, it
can still be structurally distinguished from a liquid by means of
spherical harmonic bond-order parameters (Fig. S5), to probe
local structure, and the existence of well-defined Bragg peaks in
the structure factor (Fig. S4) that signals the presence of long-
ranged order.

The effect of the instantaneous deviations from a perfect lat-
tice due to thermal excitations becomes apparent when we plot a
snapshot of the potential energy landscape that a dopant particle
experiences at a given time. Instead of the regular landscape that
exhibits minima at tetrahedral sites, the fluctuating BCC crys-
tal presents an apparently disordered potential energy landscape
(Fig. 2H) in which the variations in the height of energy bar-
riers and the depth of localization wells are significantly larger
compared with the perfect lattice. Also from experimental data
we can reconstruct the potential energy landscape; we obtain the
particle positions from 3D image stacks. Using the pair interac-
tion potential obtained by inversion of pair correlation functions
(22) and assuming pairwise additivity, we can compute the poten-
tial energy of inserting a dopant particle at a given location within
the lattice. Also the energy landscapes reconstructed in this way

from snapshots of the experimental system exhibit strong disor-
der (Fig. 2I).

This high degree of instantaneous disorder in the energy land-
scape results in very different interstitial dynamics from those
predicted by the classical theory. The dopant particles are more
strongly localized, and transitions between minima appear at
much lower frequency compared with those in a static crys-
tal (Fig. 3). As a consequence, the ensemble-averaged mean-
square displacements exhibit a localization plateau that extends
by several orders of magnitude (Fig. 4B, Right), resulting in a
strongly reduced rate of diffusion at long times. To confirm that
the interstitial mean-squared displacement converges to a dif-
fusive behavior at long times, we run a longer simulation up to
2 · 104 τB ; indeed the upturn we see in Fig. 4B becomes diffusive
at even longer times (Fig. S3C).

To extract Dl from these data, we extrapolate the mean-
squared displacement to infinite time; see Fig. S3: Determination
of the Long-Time Diffusion Coefficient for a detailed description
of our method. Allowing the crystal that surrounds the intersti-
tial impurities to fluctuate results in more than two orders-of-
magnitude reduction in the diffusion rate (blue symbols, Fig. 4A).
Clearly, the effect of thermal excitations of the lattice cannot be
ignored in describing dopant dynamics in BCC crystals.

Two possible contributions to this drastic reduction in inter-
stitial diffusion rate can be identified. First, static or low-
temperature BCC crystals feature a percolated path of T–T
transitions, providing an efficient pathway for interstitial diffu-
sion over large length scales (18). This percolated path results
from the center-of-inversion symmetry of the BCC lattice. In the
thermal BCC phase, especially close to melting, thermal exci-
tations of the lattice are so pronounced that the instantaneous
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Fig. 3. (A and B) Trajectory of a single interstitial dopant in the crystalline
matrix over ∆t = 29 τb in a static BCC crystal (A) and ∆t = 150 τb in a
dynamic BCC crystal (B). (C) Interstitial displacement with respect to t = 0 in
a static (bottom line) and a dynamic (top line) base crystal.

center-of-inversion symmetry is lost. Note that this applies only
to instantaneous snapshots of the structure, whereas time aver-
aging cancels out these fluctuations and restores the BCC sym-
metry, for example evidenced by the distinct Bragg peaks in the
time-averaged structure factor (Fig. S4). As thermal fluctuations
break the local and instantaneous symmetry, the percolated tran-
sition path that relies on this symmetry is also lost; this is evi-
denced in potential energy isosurfaces reconstructed from snap-
shots of the thermal BCC lattice in Fig. S2.

Second, as the potential energy landscape is strongly time vary-
ing, hopping now requires not only a fluctuation large enough
to escape a local minimum, but also the simultaneous availabil-
ity of a low-energy pathway that remains open during the transi-
tion event. In effect, two competing frequencies come into play:
(i) that of escape attempts of the dopant and (ii) the frequency
with which the potential energy landscape reconfigures. As the
Brownian time scales of the base crystal and the dopants do not
differ by much due to the moderate size asymmetry, escape events
now become cooperative and thus significantly less likely. It is
known that the effect of fluctuating barriers on hopping is strongly
nonmonotonic and can lead to either enhancement, when the
two frequencies become resonant, or reduction in transition rates
(23, 24). As we work in the classical limit, where the transition
itself is not instantaneous but requires a finite time, this poses the
additional constraint that the path remains open for the duration
of the transition event, which further slows down hopping. The
combination of these events leads to a strong quenching of the
interstitial mobility in fluctuations of BCC lattices.

A key feature for particles in disordered potential landscapes
is the emergence of heterogeneous dynamics. To investigate this,
we plot the time-averaged 〈∆r2〉 for all interstitial particles indi-
vidually. For the static crystal, no heterogeneities in particle
dynamics are observed, with all mean-squared displacements col-
lapsing onto the ensemble average (Fig. 4B, Left). By contrast,
for the fluctuating BCC crystal, strongly heterogeneous dynam-
ics are observed, with a large inhomogeneity in the single-particle
behavior (Fig. 4B, Right).

To explore the origins of these distinct heterogeneous dynam-
ics within an on-average ordered solid, we reconstruct snapshots
of the interstitial positions. Whereas dopants are homogeneously
distributed for the static crystal (Fig. 5A), they exhibit strong clus-
tering in the fluctuating BCC over the entire range of base crystal
densities φ (Fig. 5B and Fig. S6). We hypothesize that this clus-
tering is caused by the lattice strain accompanying the insertion
of a single interstitial impurity into a tetrahedral site. Clustering
between interstitials minimizes the overall elastic deformation of
the matrix and is thus energetically favorable. This gives rise to an
emergent elastic attraction between the impurity particles. Sim-
ilar lattice-strain–mediated interactions are well established to
exist for crystallographic defects that cause a lattice deformation
(25). Indeed, we observe a strong increase in the lattice strain,
defined as the average displacement of base crystal particles from
their equilibrium position ∆rb,l normalized to the lattice con-
stant a , as a function of the distance to a nearest impurity.

We observe that the clusters are highly dynamic, with spon-
taneous particle association and dissociation (Figs. S6–S8 and
Movies S1 and S2). This indicates a dynamic equilibrium be-
tween singlets (S ) and bound states (B) nS
Bn , in which the
association constant depends on the effective attractive poten-
tial Ueff emerging through the elasticity of the matrix: ka ∝
exp(Ueff /kBT ). We observe a significant fraction of singlets
in stable coexistence with clusters, which does not evolve over
time after equilibrating our simulation system (Fig. S9). This
suggests that the effective attraction strength is of the order of
the thermal energy kBT : the dynamic equilibrium between clus-
ters and singlets resulting from a balance between the configu-
rational entropy of distributing impurities across the lattice and
the enthalpic gain upon forming a cluster. This is further corrob-
orated by the distribution of cluster sizes P(SC ) (Fig. 5F). These
data are well described by an exponential decay as indicated by

A

B

Fig. 4. (A) Long-time diffusion coefficients Dl as a function of distance to
the melting point φ− φm for static (circles) and dynamic (triangles) crystals,
with φm = 0.061 as determined in Fig. S1. Open symbols indicate Dl deter-
mined from the mean-squared displacements at τ = 5 · 102τb, whereas solid
symbols are computed by extrapolating 〈∆r2〉 to infinity. The solid line is
a fit to the transition-state prediction for Dl(φ), as described in the text. (B)
〈∆r2〉 for individual particles, with the ensemble-average 〈∆r2〉 (thick line)
superposed for a fixed (Left) and a dynamic (Right) crystal.
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the solid line in Fig. 5F. This indicates that clusters are formed
by an open association process governed by a dynamic reaction
equilibrium between unimeric dopants and clusters.

Intuitively, one may expect that particles present in an attrac-
tive cluster of dopants would exhibit lower mobility than their
singlet counterparts as their local density is higher. Surprisingly,
we observe the opposite; trajectories of dopants reveal that the
degree of localization is in fact reduced for particles in clus-
ters compared with singlets within the same lattice (Fig. 5D).
To determine the origins of this counterintuitive observation, we
determine the instantaneous deviation of particle positions away
from their equilibrium site in the lattice ∆rb,l as a function of
the distance to the nearest dopant ∆rb,d/a . Especially for low-
volume fractions, where deviations from classical transition-state
theory are large, we observe a strong increase in the lattice strain
in proximity to a dopant (Fig. 5E) whereas the average orien-
tational bond-order q̄6 is maintained (Fig. S5). This result sug-
gests that dopant particles, especially those present in clusters,
locally weaken the lattice, resulting in larger mobility for both the
dopants and the surrounding crystalline matrix. Interestingly, the
fact that deviations in the dynamics of interstitial impurities are

Fig. 5. (A and B) Dopant positions in a snapshot at φ= 0.07, in which par-
ticles belonging to the same cluster are color matched, whereas singlets are
displayed in gray for static (A) and dynamic (B) base crystals. (C and D) Par-
ticle trajectories of all particles over a time interval of 2 · 103τb for static (C)
and dynamic (D) base crystals. (E) Lattice strain ∆rb,l/a, taken as the aver-
age deviation of particle positions with respect to their equilibrium site, as
a function of distance to a dopant for φ= 0.07 (circles) and 0.12 (squares).
(F) Distribution of cluster sizes P(SC ) for φ= 0.07, fitted with an exponential
distribution P(SC ) ∝ e−Sc/S∗c with S∗c = 0.96 the characteristic cluster size
(red line).

exacerbated close to the melting transition is also observed in the
carbon-doped BCC phase of iron (12).

In this paper we demonstrated how thermal fluctuations can
lead to the failure of classical theories for dopant dynamics and
give rise to complex heterogeneous and anomalous dynamics
within an on-average ordered matrix. Large instantaneous devi-
ations from a perfect lattice due to thermal excitations cause a
disordered potential energy landscape in which interstitial atom
diffusion can be orders of magnitude slower than expected based
on transition-state theory. Our simulations also give rise to a
microscopic picture of the strongly heterogeneous dynamics of
interstitial dopants: Elastic interactions between dopants cause
them to agglomerate within the lattice, which in turn locally soft-
ens the matrix and gives rise to enhanced mobility. The coupling
between spatial organization of the dopants, the local properties
of the matrix, and resulting dopant dynamics can be expected
to play a crucial role in the effective tailoring of material prop-
erties using doping. Arriving at a complete description of these
complex dynamics would require extension of classical lattice
dynamics to account for both the fluctuating and locally disor-
dered energy landscapes, for which a framework was developed
for glasses (24), and for the emergent interactions and spatial
inhomogeneity of the dopants.

Materials and Methods
Simulations. We perform Brownian dynamics simulations using HOOMD-
BLUE, a GPU accelerated software package, in single-precision mode (26,
27). Analysis routines are all written in the python programming lan-
guage, using scipy, (28) numpy (29), lmfit (30), scikit-learn (31), matplotlib
(32), and mayavi (33) libraries. For the calculation of bond-order parame-
ters we use BondOrderAnalysis (21) and we calculate Voronoi cells using
the voro++ package (34). All quantities are expressed in normalized units,
in terms of base particle diameter σb, base particle self-diffusion time
τb, and kBT , respectively. All raw data and scripts can be accessed via
https://github.com/sprakellab/dopantdynamics.

Simulations are performed in the canonical ensemble (or N,V,T system)
with periodic boundaries. Systems consist of two types of particles, one that
forms the crystalline matrix (σb = 1.8 µm) and the dopants (σd = 0.9 µm).
This size ratio of 0.5 is experimentally accessible and close to that for carbon-
doped iron and lithium impurities in silicon (35). The particles interact via
Yukawa potentials parameterized using experimental data (see below). The
simulations assume pairwise additivity of the potentials; in the experimen-
tal system of charged colloids many-body effects are known to occur (36).
Nonetheless, in previous work we have established that pairwise additive
BD simulations can capture the main behavior of experimental crystals of
the charged colloids we simulate here (37).

Brownian dynamics integration, using the overdamped Langevin equa-
tions, is performed with a time step of 2.5 · 10−5τb, in one of two ways:
Either both particle types are integrated for the dynamic crystal or only
the dopant particles are subjected to integration for the static matrix. In
all cases we simulate N = 13,718 base crystal particles. Dopant particles are
placed randomly at tetrahedral interstitial sites in the pristine BCC lattice
in a ratio of 1:47. Simulations are run for at least 2 · 103τb, preceded by an
equilibration time of 2 · 102τb.

Experiments. Some aspects of the simulation results are experimentally ver-
ified by studying a system of polymethyl methacrylate particles, stabilized
by polyhydroxystearic acid (20). Particles with diameters of σb = 1.8 µm
and σb = 0.9 µm are prepared using established procedures (38). We sus-
pend the particles in a density-matching solvent mixture of cis-decalin
and tetrachloroethylene, in which 10 mM Aerosol OT is added to charge
the particles (20). We image the samples in three dimensions and time
using confocal fluorescence microscopy, using a VisiTech Infinity-3, mounted
on a Nikon Ti-U and equipped with a Hamamatsu ORCA-Flash 4.0 cam-
era. Three-dimensional volumes of 50 × 50 × 30 µm3 are acquired at
1 Hz. Particle centroid positions are determined and linked together in
time, using well-established methods based on the fitting of a Gaussian
curve (39).

Mapping. The particles in the simulation interact via the Yukawa poten-

tial U(r)/kBT = ε
exp(−κσ( r

σ
−1))

r/σ . In the solvent we use, the inverse screening
length κ is determined to be 1.8/σb (20). To define the interaction strength
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ε we map the simulation data onto the experimentally determined melting
point of the BCC crystal (Fig. S1). An εb,b of 713 gives a melting point at a
volume fraction φ of 0.061 in silico, close to the melting point found experi-
mentally, φ= 0.060. For the smaller dopants we assume a particle-size inde-

pendent surface charge density such that εd,d = 227. The cross-interactions
between dopant and matrix are taken as the average of the base–base inter-
action and the dopant–dopant interaction (εb,d = 470). Data analysis meth-
ods are described in Supporting Information.
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