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Despite its relevance in biology and engineering, the molecular
mechanism driving cavitation in water remains unknown. Using
computer simulations, we investigate the structure and dynamics
of vapor bubbles emerging from metastable water at negative
pressures. We find that in the early stages of cavitation, bubbles
are irregularly shaped and become more spherical as they grow.
Nevertheless, the free energy of bubble formation can be perfectly
reproduced in the framework of classical nucleation theory (CNT)
if the curvature dependence of the surface tension is taken into
account. Comparison of the observed bubble dynamics to the
predictions of the macroscopic Rayleigh-Plesset (RP) equation, aug-
mented with thermal fluctuations, demonstrates that the growth
of nanoscale bubbles is governed by viscous forces. Combining the
dynamical prefactor determined from the RP equation with CNT
based on the Kramers formalism yields an analytical expression for
the cavitation rate that reproduces the simulation results very well
over a wide range of pressures. Furthermore, our theoretical predic-
tions are in excellent agreement with cavitation rates obtained from
inclusion experiments. This suggests that homogeneous nucleation
is observed in inclusions, whereas only heterogeneous nucleation on
impurities or defects occurs in other experiments.

cavitation | water | negative pressure | bubble nucleation |
liquid-vapor transition

ue to its pronounced cohesion, water remains stable under

tension for long times. Experimentally, strongly negative
pressures exceeding —120 MPa (1-6) can be sustained before the
system decays into the vapor phase via cavitation, i.e., bubble
nucleation. Recently, cavitation in water under tension has drawn
research interest due to its importance in biological processes, like
water transport in natural (7-10) and synthetic (11, 12) trees, spore
propagation of ferns (13), and poration of cell membranes (14, 15).
Furthermore, cavitation in water appears to be the driving force
behind the sonocrystallization of ice (16, 17), and preventing its oc-
currence remains a challenge in turbine and propeller design (18).
Studying the onset of cavitation has also proven to be a valuable tool
to locate the line of density maxima in metastable water (4), which
contributes to the ongoing effort of explaining the origin of water’s
anomalies (6, 19). Interest in the topic is magnified by the startling
discrepancy arising when cavitation in water is investigated using
different experimental methods. Although agreement between
different methods is excellent in the high-temperature regime,
where the liquid is unable to sustain large tension, a significantly
higher degree of metastability is reached when studying cavitation
in inclusions along an isochoric path (1-5) compared with other
techniques (20, 21) at low temperatures (22).

Due to the short time scale on which the transition takes place
and the small volume of the critical bubble at experimentally
feasible conditions, direct observation of cavitation at the mi-
croscopic level remains elusive. However, cavitation rates are
directly accessible in experiment and some microscopic insight
into the cavitation transition can be obtained from these data by

13582-13587 | PNAS | November 29,2016 | vol. 113 | no. 48

means of the nucleation theorem (23), which relates the variation
in the height of the free energy barrier separating the metastable
liquid from the vapor phase upon change of external parameters
to properties of the critical bubble (4, 21). The microscopic in-
formation that can be inferred is limited, and because not all
quantities entering the nucleation theorem are known, ad hoc
assumptions have to be introduced. For state points where cavi-
tation is a rare event, classical nucleation theory (CNT) can be
invoked to provide a qualitative understanding of the transition
(24). However, although CNT provides a physically meaningful
and appealingly simple picture of nucleation processes, the esti-
mates for the nucleation rates obtained from CNT are known to
differ substantially (up to many orders of magnitude) from those
measured in experiments (22, 25, 26).

Computer simulations are a natural choice to investigate cavi-
tation in water with molecular resolution on the time scales gov-
erning the emergence of microscopic bubbles in the liquid.
Although cavitation in simple liquids has been studied extensively
using computer simulations (27-33), simulation studies of cavita-
tion in water were focused on methodological aspects (34-36) or
performed at state points in vicinity of the vapor-liquid spinodal
(37, 38). In this work, we apply a combination of several com-
plementary computer simulation methods to identify the molec-
ular mechanism of cavitation. A statistical committor analysis
carried out on reactive trajectories reveals that the volume of the
largest bubble in the system constitutes a good reaction coordinate
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Cavitation, the formation of vapor-filled bubbles in a liquid at
low pressures, is a powerful phenomenon with important
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bubble growth is governed by the viscosity of the liquid. Al-
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for bubble nucleation. We compute the dynamics of nanoscale
bubbles along this reaction coordinate and demonstrate that the
pressure dependence of the bubble diffusivity can be reproduced
by Rayleigh-Plesset (RP) theory generalized to include thermal
fluctuations, thereby elucidating the crucial influence of viscous
damping on bubble growth. Based on the Kramers formalism and
the RP equation we obtain an analytical expression for the nu-
cleation rate that yields excellent agreement with numerical results
obtained for a wide range of pressures with a method akin to the
Bennett-Chandler approach for the computation of reaction rate
constants. The obtained rates are validated for selected points by
comparison with estimates from transition interface sampling and
support estimates obtained from inclusion experiments. To aug-
ment the microscopic picture of cavitation, we characterize the
morphology of bubbles in water under tension and analyze the
bubble surface in terms of its hydrogen bonding structure.

Classical Nucleation Theory

Our investigations are guided by CNT, which posits that the
decay of the metastable liquid under tension proceeds via the
formation of a small vapor bubble, whose growth is initially
opposed by a free energy barrier. According to Kramers theory
(39, 40), the escape rate k from a well over a high barrier for a
system moving diffusively in a potential U(g) along a coordinate
q is given by k=[([,exp[-pU(q)ldq)( [, exp|BU(q)]/D(q)dq)] ™"
Here the symbols U and n indicate that the integration is carried
out over the well and the barrier, respectively, and D(q) is the
diffusion coefficient. To describe bubble nucleation, we use the
volume v of the largest bubble in the system as the order parameter
[committor calculations (41) indicate that v is indeed a good re-
action coordinate; Fig. S1], and we replace the potential energy by
the potential of mean force —kgT In[voP(v)], where kg is the
Boltzmann constant, P(v) is the probability density that the largest
bubble is of size v, and v is an arbitrary constant volume. Assuming
that the diffusion coefficient does not change appreciably on the
top of the barrier and approximating the barrier to second order,
one obtains the nucleation rate (number of nucleation events per
unit time and unit volume)

I wD(v*) P(v*)
T \2nksT V

, (1]

where v* is the critical bubble volume, 1/ is the total volume of
the system, and w is related to the barrier curvature « by w® = —«.
This functional form provides a physical picture of the waiting
time associated with (rare) transitions by factorizing the rate J
into a kinetic part «D(v*) and the probability density P(v*) of
encountering a bubble with volume v, i.e., a configuration that
relaxes to the vapor or the liquid phase with equal probability. In
the following, we will compute the probability P(v*) to find a
bubble of critical size and derive an analytical expression for
the diffusion constant D(v*) needed in the CNT rate expression.

Free Energy of Cavitation at Negative Pressures

Using umbrella sampling simulations, we have computed the
equilibrium bubble density p(v) at a temperature 7'=296.4 K and
various pressures (Materials and Methods). For large bubbles,
p(v) is equal to the probability density P(v)/V for the volume of
the largest bubble as needed in Eq. 1 (42). The equilibrium
bubble density is related to the Gibbs free energy g(v) of a bubble
of volume v by g(v) =—kgT In[p(v)/p,], where p, is a constant
included to make the argument of the logarithm dimensionless.
The value of py is fixed by requiring that the Gibbs free energy of
a bubble of size v=0 vanishes. Note that the constant p,, re-
quired to relate the cavitation free energy g(v) to the equilibrium
bubble density p(v), is not specified in the framework of CNT.
Various choices for py have been made in the literature without
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rigorous justification, as discussed in Materials and Methods.
Here we use information from molecular simulations to determine
the value of p, unambiguously (Supporting Information).

We obtain a quantitative description of the cavitation free en-
ergy within CNT by examining the free energetic cost of the
bubble interface, i.e., the free energy without the mechanical work
pv gained from expanding the system under tension, per surface
area (Fig. S2). Remarkably, the free energetic cost of the vapor—
liquid interface is independent of pressure within the accuracy of
our computations (Fig. S3), and as such, for the wide range of
pressures investigated, the free energy of cavitation differs only by
the mechanical work pv. We find that CNT describes the free
energy of bubble nucleation accurately, provided that the curva-
ture dependence of the surface tension y is taken into account. In
particular, the free energy of cavitation is reproduced by

§0) =47 () 21

where r(v) = (3v/4r)"/? is the radius of a sphere with volume v.
Here, the parameters y, =20.24 kgT/nm? and §=0.195 nm are
obtained from a fit to the free energetic cost of the liquid—vapor
interface. Bubble free energies g(v) for various pressures as well as
the estimates from Eq. 2, which agree almost perfectly with the
simulation data (dashed black lines), are shown in Fig. 1. Over the
range of bubble volumes studied here, the value of 6 obtained
from the fit is positive, which indicates that the concave curvature
of the interface decreases the surface tension y, thereby favoring
bubbles over droplets (a discussion of the curvature dependence
of the surface tension is provided in Supporting Information).

Bubble Morphology

At the conditions studied here, bubbles are essentially voids in
the metastable liquid, which, for bubble volumes v < 10 nm?,
rarely contain vapor molecules (34, 35). Visual inspection indi-
cates that small bubbles mostly have an irregular shape, which
becomes more compact as the bubbles grow larger (some repre-
sentative bubbles of different size are depicted in Fig. 24). Larger
bubbles are predominantly compact and may be viewed as re-
sembling spheres with strongly undulating surfaces (34, 35). This
observation is confirmed by computing the average asphericity of
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Fig. 1. Free energy g(v) of bubble nucleation as a function of bubble volume
v for various negative pressures at T=296.4 K obtained from umbrella sam-
pling calculations. Dashed lines indicate CNT predictions from Eq. 2, which
describes the free energy very accurately over the investigated pressure range.
In the framework of CNT, the curves can be understood as a result of the
competition between the free energetic cost of forming the liquid-vapor in-
terface (which dominates in the case of small bubbles) and the mechanical
work gained from expanding the system under tension (favoring large bub-
bles). The location of the resulting maximum in the free energy corresponds to
the volume of the critical bubble, v*: bubbles of this volume are least likely to
be encountered in an equilibrium configuration, and overcoming this free
energy barrier is the rate-limiting step in cavitation away from the spinodal.
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bubbles defined as @ = Amax/Amin — 1, Where Ama and Amin are the
largest and smallest eigenvalues of the gyration tensor of the
bubble, respectively. As shown in Fig. 24, the asphericity is only
weakly dependent on pressure and decreases with increasing
bubble volume.

The free energetic cost of forming bubbles in water is in-
timately connected to breaking and rearranging hydrogen bonds
(HBs) at the interface. The hydrogen bonding structure at the
liquid-vapor interface depends on the size of the bubble (43, 44).
For small bubbles, HBs in the liquid are rearranged, and the
fraction of broken HBs at the interface is similar to that of the
bulk liquid, whereas in the case of large bubbles, the bubble
surface becomes similar to the flat vapor-liquid interface. As
shown in Fig. 2B, the number of broken HBs per molecule at the
interface increases with bubble size, and the fraction of free OH
groups at the interface decays roughly linearly with its mean
curvature 7~ over the studied range of bubble volumes.

Bubble Dynamics

Because CNT with a curvature-dependent surface tension de-
scribes the free energy of cavitation very accurately, thus pro-
viding the volume v* of the critical bubble and the curvature —@?
of the barrier, all that is needed to predict rates via Eq. 1 is the
diffusivity D(v*) of the bubble volume in the barrier region. In
the following, we use the Rayleigh-Plesset (RP) equation (45—
47), which describes the dynamics of a vapor bubble in a fluid at
the macroscopic level, to derive an analytical expression that
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0 0.5 1 1.5 2 2.5 3
'/ nm”

Fig. 2. Shape and hydrogen bonding structure of bubbles. (A) Asphericity a
as a function of bubble volume from configurations obtained via umbrella
sampling. By construction, a is zero for a perfect sphere, and higher values
indicate shapes with higher aspect ratios. Also shown are bubbles (not to scale)
observed at p=-150 MPa whose asphericities and volumes are indicated by
arrows. (B) Fraction of free OH groups n¢on/Nmo at the bubble surface as a
function of the inverse radius r~' of a sphere with volume v. The arrow indi-
cates the fraction ngop/nNme for a flat interface at 300 K at ambient pressure
from ref. 64. Note that we give the fraction of broken hydrogen bonds per
molecule, so the highest possible value is 2. The depicted configuration con-
tains a bubble of critical size at a pressure of p=-150 MPa, where the yellow
spheres indicate the unoccupied grid points forming the largest bubble.

13584 | www.pnas.org/cgi/doi/10.1073/pnas.1608421113

relates the microscopic diffusion constant D(v*) to the macro-
scopic properties of the liquid.

The RP equation is the equation of motion for the volume v of
a spherical bubble evolving with internal pressure py, in a liquid
with mass density m, viscosity #, and surface tension y:

2 l 1 .
. my 3v 4n 4y v
”“"757—4”(45) %% P 27(3V) _??;}' B3]

Here, for simplicity, we neglect the curvature dependence of the
surface tension but stress that the following derivation can be
easily generalized (Supporting Information), and all results shown
in Figs. 3 and 4 were obtained including this correction. Neglect-
ing the inertial terms on the left-hand side of the RP equation,
one finds

o (A7) ] L ds)
v——4’7|:p+2}/(3v>:|— [4]

=
<
=
&

where we assumed that the pressure inside the bubble is negligible.
In the above equation we have rewritten the right-hand side to
indicate that the time evolution of the volume v can be viewed
as an overdamped motion on the CNT free energy g(v)=
(36m?) 13y 4 pv under the effect of the friction T'(v )=4n/3v.

Because thermal fluctuations play an important role for mi-
croscoplc bubbles, the RP equatlon is augmented with a random
force F(t)=+/2kpT /T (v)&(t), where £(¢) is Gaussian white noise
and the magmtude of the force is determined by the fluctuation—
dissipation theorem. The diffusion coefficient for the bubble
volume then follows from the Einstein relation, D(v) =3kgTv/4n
(note that this result also holds if the surface tension depends on
the mean curvature of the bubble). Inserting the critical
v* =321y /3|p|®, we finally obtain the diffusion coefficient at the
top of the barrler needed for the rate calculation

SﬂkBT}/3
nlpl’

Including the curvature dependence of the surface tension for v*
and y yields a similar but slightly more complicated formula
(Supporting Information).

A comparison between the diffusion constant D(v*) obtained
from the RP equation combined with CNT and the estimate
obtained directly from simulation (Materials and Methods) is
shown in Fig. 3. The viscosity at negative pressures needed in the
formula for the diffusion constant was determined in molecular
dynamics simulations using the Green—Kubo relation (Fig. S4).
The analytical formula obtained from the RP-CNT approach
underestimates the diffusivity only by about a factor of 2 com-
pared with simulation results, which is remarkable considering
that this estimate is obtained from a macroscopic approach
based on hydrodynamics. Moreover, by virtue of the pressure
dependence of v* in CNT, it predicts the scaling « [p|™ of the
diffusion constant with pressure accurately, suggesting that the
dynamics of bubble growth are essentially controlled by the vis-
cosity of the liquid.

D(v')= [5]

Cavitation Rates

We are now in a position to predict cavitation rates according to
Eq. 1 over a wide range of pressures, including the strongest
tensions observed in experiment. As a point of comparison, we
have computed cavitation rates numerically using a method akin
to the divided-saddle method (48) based on the Bennett—Chan-
dler (BC) (49, 50) approach and transition interface sampling
(TIS) (51), respectively (Materials and Methods). The obtained
cavitation rates, shown in Fig. 4, vary by more than 30 orders of
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Fig. 3. The diffusion constant D(v*) on top of the free energy barrier
obtained from the Rayleigh-Plesset equation predicts the correct scaling
with pressure p. The RP estimate (orange line) was obtained by using the
volume v* of the critical bubble and the curvature —w? of the barrier from
CNT, including a curvature dependent surface tension. The scaling behavior
of the diffusion constant obtained from simulation (blue squares) is illus-
trated by a fit xp~3 (dashed black line).

magnitude over the studied range of pressures. The numerical
results are accurately reproduced by CNT based on Eq. 1 with a
curvature-dependent surface tension and the correct value of p, as
well as the kinetic prefactor from the RP equation. In contrast,
“plain” CNT, i.e., CNT with a constant surface tension and a
commonly used expression for p, (Materials and Methods), un-
derestimates the cavitation rates by more than 15 orders of mag-
nitude. This shortcoming illustrates the importance of including
microscopic information, such as a curvature-dependent surface
tension and the correct value of p,, for the accurate prediction
of rates.

By computing the cavitation pressure pc,, from the rates shown
in Fig. 4 we can directly compare the results obtained here to the
conflicting experimental estimates for the limit of metastability of
water under tension. The obtained estimate for the cavitation
pressure peay ~—126 MPa is in line with the results obtained in
inclusion experiments (1-6). In contrast, the predicted cavitation
tension is more negative by about 100 MPa than the data obtained
via other experimental techniques would suggest (20, 22). Because
the simulation setup excludes impurities in the fluid by design, this
suggests that cavitation in these cases is indeed heterogeneous as
was suspected in previous works (4, 21), which explains the sig-
nificantly lower stability of water under tension in these experi-
ments (a detailed discussion is provided in Supporting Information).

Conclusions

At ambient temperature and strong tension, bubbles in meta-
stable water are essentially voids in the liquid whose shape can
deviate significantly from the assumption of a spherical nucleus
made in CNT, depending on their size. Nonetheless, provided
the dependence of the surface tension on the average curvature
is included, the free energetics of bubble formation can be
quantitatively described in the framework of CNT. We find that
the curvature contribution favors the cavity over the droplet, i.e.,
>0, in agreement with experimental results (4). In light of
conflicting results on the sign of § in water, further study is re-
quired to elucidate the influence of the chosen water model and
biasing toward certain cavity shapes on the obtained value of 6.

By including the effect of thermal fluctuations in the Ray-
leigh—Plesset equation, we obtain an estimate for the bubble
diffusivity that accurately reproduces the pressure dependence
found in simulation and scales inversely with the viscosity of the
liquid. Combining the kinetic prefactor determined for this dif-
fusivity with the equilibrium bubble density yields a CNT ex-
pression for the cavitation rate that reproduces the nucleation
rates very well for negative pressures. However, the microscopic
mechanism for cavitation is expected to change for higher pressures

Menzl et al.

and temperatures, where the saturated vapor density is significantly
higher than at the temperature studied here. At those conditions,
similarly to droplet nucleation (52), the transport of molecules across
the interface via evaporation and condensation will have a stronger
influence on the kinetics of bubble growth, thereby diminishing the
influence of viscous damping on the dynamics of the bubble.

The estimate for the cavitation pressure obtained from our
rate calculations agrees well with the data from inclusion ex-
periments, thus calling the conflicting results harvested by other
techniques into question. Because the latter methods greatly
underestimate the stability of water under tension, heteroge-
neous cavitation due to impurities is a likely explanation for
this discrepancy.

Materials and Methods

Simulation Details. We simulate N = 2,000 water molecules in the isothermal-
isobaric ensemble at a temperature of T=296.4K using a rigid, non-
polarizable 4-site transferable intermolecular potential (TIP4P/2005) (53),
where the long-range interactions are treated with Ewald summation. The
rate computations are carried out using molecular dynamics by integrating
the equations of motion with a time step of 2 fs using a time-reversible
quaternion-based integrator that maintains the rigid geometry of water
molecules (54). Constant pressure is ensured by a barostat based on the
Andersen approach (55) coupled to a Nosé-Hoover thermostat chain (56).
Equilibrium free energies are computed by use of umbrella sampling (US) in
conjunction with the hybrid Monte Carlo (HMC) (57) scheme. Here we use a
modified version of the Miller integrator (58) with a Liouville operator de-
composition according to Omelyan (59), which reduces fluctuations in the
total energy significantly, thereby allowing the use of a time step of 7 fs.
Each HMC step consists of three MD integration steps, constant pressure was
implemented by isotropic volume fluctuations according to the Metropolis
criterion, and sampling was enhanced by replica exchange moves (60) be-
tween neighboring windows. For the direct computation of cavitation rates
we use transition interface sampling (TIS) (51), where we implemented time
reversal and replica exchange moves in addition to shooting moves (described
in detail in refs. 41, 61, and 62). The probability histograms for the individual
windows in US and TIS were spliced together using a self-consistent histogram
method (63).

BC-based
® 102°F o TIS .

"plain" CNT :
107 : iy
107 T
. 1 L R .
-150 -135 -120
p/MPa

1 1
-165 -105
Fig. 4. Predictions obtained from CNT using microscopic information are
in excellent agreement with cavitation rates J from direct simulation. The
estimates obtained from simulations by a variant of the Bennett-Chandler
method (blue squares) agree well with the transition interface sampling
(red circles) reference calculations (Materials and Methods). Predictions of
curvature-corrected CNT (orange line) with the correct value of p, using
the kinetic prefactor shown in Fig. 3 yield excellent agreement with sim-
ulation results, whereas plain CNT (gray line) severely underestimates the
cavitation rate. For plain CNT, we chose p, =n;n,, where n; and n, are the
number density of the liquid and the vapor, respectively (68). These rate
estimates allow for a direct comparison with conflicting experimental
predictions on the stability of water under tension by computing the
cavitation pressure p.,. Following ref. 22, we define p., such that the
probability to observe a cavitation event is P=1/2 in a system of volume
V =1,000 um? over an observation time of z=1 s. Assuming that the cavitation
events are associated with an exponential waiting time, as is typical for activated
processes, a rate of J=In2/(Vz) (dashed black line) is compatible with this re-
quirement. Its intersection with the CNT prediction gives the cavitation pressure
Peav & —126 MPa.
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Order Parameter. We study homogeneous bubble nucleation from over-
stretched metastable water using the volume of the largest bubble as a local
order parameter. Estimates for the volume v of each bubble present in the
system are obtained by use of the V-method, which was developed to give
thermodynamically consistent estimates for the bubble volume (35). (Note
that the nomenclature was adapted to facilitate readability: v/¢ in this work
corresponds to VY, ./v in ref. 35.) The V-method is a grid-based clustering
approach to bubble detection (30), calibrated such that its estimate v for the
volume of a bubble corresponds to the average change in system volume
due to the presence of such a bubble:

V() = Vi, [6]

Here ¢ is the preliminary bubble volume estimate from the grid-based
method, i.e., the total volume of all vapor-like grid cubes belonging to the
bubble, and (V),, is the average volume of the system when n bubbles of
size ¢ are present. As such, v(&) corresponds to the average change in system
volume when a single bubble of size ¢ is added to or removed from the
system. For large bubbles, i.e., for bubble volumes where n(¢) is either zero
or one and there are no larger bubbles present in the system, Eq. 6 becomes

V(&) =(V): —(V), [71

where (V). is the average volume of the system when the largest bubble is of
size £ and (V) is the average volume of the unconstrained metastable liquid
at the thermodynamic state point.

On average, because the vapor density in the interior of bubbles is neg-
ligible, volume estimates obtained by Eq. 7 are equal to those obtained by
computing the equimolar dividing surface between liquid and the largest
cavity for each configuration. As a result, the obtained estimates for the
bubble volume fulfill the nucleation theorem (23), i.e., dg(v*)/dp=v*, and
pv corresponds to the mechanical work gained with respect to the meta-
stable liquid by expanding the system volume at negative pressures. Details
on the calibration of the V-method for the state points investigated in this
work are given in Fig. S5.

Bubble Density. To compute the equilibrium bubble density p(v), we first carry
out a straightforward molecular dynamics simulation and compute
{n(v, Av)), the average number of bubbles with a volume in a narrow in-
terval [v, v+ Av]. To compute n(v, Av) for larger bubbles which do not form
spontaneously on the time scale of the simulation, we carry out umbrella
sampling simulations with a bias on the volume of the largest bubble. The
resulting curves are joined, thus yielding p(v)=(n(v, Av))/({(V)Av) over a
wide range of bubble volumes.

Detecting Hydrogen Bonds at the Liquid-Vapor Interface. We identify mole-
cules as belonging to the bubble surface when they are within 3.5 A of the
bubble. This cutoff radius is identical to the radius of the exclusion spheres used
to determine occupied grid points during the evaluation of the order param-
eter (for an in-depth description, see ref. 35), and thus, all water molecules
forming the boundary layer in our bubble detection procedure are part of the
interface. When analyzing whether two water molecules form a hydrogen
bond with each other, we use the criterion used in ref. 64 in a study of the flat
vapor-liquid interface to facilitate easy comparison between the obtained re-
sults. For molecule A to be considered as donating a hydrogen bond to mole-
cule B, two criteria have to be fulfilled simultaneously: The distance between
the oxygens do,0, <3.5 A and the maximum angle Op —H---Og > 140°.

Rate Calculation. We use a method based on the Bennett-Chandler approach
(49, 50) to obtain rates estimates without any assumptions about the dy-
namics of the bubble in the liquid. In addition to the states A (metastable
liquid) and B (far enough to the right of the free energy barrier such that the
system is committed to transitioning to the vapor phase), we introduce a
state S around the dividing surface, akin to the approach taken in the
divided-saddle method (48). An ensemble of trajectories, each L steps long, is
generated by propagating checkpoints selected from the region S forward
and backward in time. From these trajectories one then computes the time

1. Green JL, Durben DJ, Wolf GH, Angell CA (1990) Water and solutions at negative
pressure: Raman spectroscopic study to -80 megapascals. Science 249(4969):649-652.

2. Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Liquids at large negative pressures:
water at the homogeneous nucleation limit. Science 254(5033):829-832.

3. Alvarenga AD, Grimsditch M, Bodnar RJ (1993) Elastic properties of water under
negative pressures. J Chem Phys 98(11):8392-8396.
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correlation function Cag(t), which is the conditional probability to find the
system in B at time t provided it is in A at time 0,
_ hA(O)he(f)> ¢hs)
= 0[N el
Here hp/p is 1 when the system is in state A/B and zero else, Ns[x(7)] is the
number of configurations of a trajectory x(z) in the saddle domain, and (:*-)g
denotes an average over the trajectories generated from points in S. The ratio
(hs)/{ha) is the equilibrium probability of finding the system in S relative to the
equilibrium probability of state A, and it can be determined from the free
energy g(v). The transition rate constant kag is then obtained by computing
the numerical derivative dCsg/dt in the time range where Cag(t) is linear.
Nucleation rates calculated at p=-165 MPa and —150 MPa using transi-
tion interface sampling (51) (TIS; red circles in Fig. 4) agree with the esti-
mates of the BC-based approach up to statistical error. As an additional
point of comparison, we used the BC-based approach to compute rates at
T =280 K and p=-225 MPa, where nucleation is spontaneous on the time
scale of an unconstrained molecular dynamics simulation starting in the
metastable liquid. The estimate J=3.1x10°ps~'-nm~3 obtained from
straightforward MD simulations in ref. 34 agrees well with the BC-based
estimate of J=7.4x10ps™" -nm=3.

Computation of the Diffusion Constant. Because the volume of the largest
bubble is a good reaction coordinate for the transition, its diffusivity can be
computed via mean first passage times (65, 66). Assuming that the diffusion
coefficient does not change significantly in the barrier region, i.e., D(v) =D(v?*),
to second order it can be expressed as D= b?(1 - pb%w?/6)/(2(z(b))), where b is
the distance of the absorbing boundary from the top of the free energy barrier,
approximated by an inverted parabola with curvature —w?, and (z(b)) is the
mean first passage time for a given value of b. As a starting point at the top of
the barrier we used equilibrium configurations created by umbrella sampling
where the system contained a cluster of critical size and drew the particle ve-
locities as well as the thermostat and barostat velocities at random from the
appropriate Maxwell-Boltzmann distributions.

Plain CNT. As a point of comparison, we obtain an estimate for the cavitation
rates from CNT with a constant surface tension yo = 17.09 kg7 /nm? for TIP4P/
2005 water (67). The CNT estimate for the rate is given by

\/keTr3
J= Opoe-/nsnyg/m?_ [o]

The equation above was obtained from Egs. 1 and 5, where w=p?/,/32zy3
and the probability density P(v)/V=p,exp(-pg(v*)). Here g(v*)=
16773/3p? and the normalization constant was chosen as p,=nn, ~
4.4x 1073 nm~®, where n; and n, are the number density of the metastable
liquid and the number density of the vapor at coexistence (68), respectively.
Note that the prefactor pj is not uniquely defined in the framework of CNT,
and various choices have been used in the literature (25, 26, 68). These choices
lead to estimates ranging from py =9.4x 107" nm=® to py = 2.4x 108 nm~® at
p=-135 MPa (we obtain p, = 0.02 nm~% from the simulation data shown in Fig.
S2). The resulting predictions for the cavitation rates underestimate the values
determined from simulation by 6-27 orders of magnitude.
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