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The potential of untargeted metabolomics to answer important
questions across the life sciences is hindered because of a paucity
of computational tools that enable extraction of key biochemi-
cally relevant information. Available tools focus on using mass
spectrometry fragmentation spectra to identify molecules whose
behavior suggests they are relevant to the system under study.
Unfortunately, fragmentation spectra cannot identify molecules
in isolation but require authentic standards or databases of
known fragmented molecules. Fragmentation spectra are, how-
ever, replete with information pertaining to the biochemical pro-
cesses present, much of which is currently neglected. Here, we
present an analytical workflow that exploits all fragmentation
data from a given experiment to extract biochemically relevant
features in an unsupervised manner. We demonstrate that an
algorithm originally used for text mining, latent Dirichlet allo-
cation, can be adapted to handle metabolomics datasets. Our
approach extracts biochemically relevant molecular substructures
(“Mass2Motifs”) from spectra as sets of co-occurring molecular
fragments and neutral losses. The analysis allows us to isolate
molecular substructures, whose presence allows molecules to be
grouped based on shared substructures regardless of classical spec-
tral similarity. These substructures, in turn, support putative de
novo structural annotation of molecules. Combining this spectral
connectivity to orthogonal correlations (e.g., common abundance
changes under system perturbation) significantly enhances our
ability to provide mechanistic explanations for biological behavior.
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Mass spectrometry (MS)-based metabolomics aims to cap-
ture the entire small-molecule composition of biologi-

cal systems. Analysis of MS metabolomics data are challenging
as many molecules cannot be identified from their mass (e.g.,
isobaric molecules, and isomers) (1–3). Separation by liquid
chromatography before MS (LC-MS) can add discriminatory
information but does not solve the problem as isomers can
exhibit similar chromatographic behavior, and chromatographic
retention time is currently unpredictable.

Fragmentation spectra have been used to partially overcome
this problem (4–6). Most tools compare individual fragmenta-
tion spectra to reference spectra (5, 7) stored in public databases,
for example, MassBank (8) or Human Metabolome Database
(9), and are thus constrained by the limited number of refer-
ence spectra (10–12). Poor identification coverage can result
in poor biochemical insight. We propose a method that ana-
lyzes all acquired fragmentation spectra to expose underly-
ing biochemistry without relying on metabolite identification,
inspired by machine-learning techniques developed initially for
text processing (13).

The paucity of techniques that share information across
fragmentation spectra can be explained by the complexity of
fragmentation data (14). One example, “Molecular Networking,”
clusters MS1 peaks by their MS2 spectral similarity such that one

structurally annotated metabolite in a cluster facilitates struc-
tural annotation of its neighbors (15, 16). However, spectral fea-
tures causing the clustering must be extracted manually, and only
MS2 spectra with high overall spectral similarity are grouped.
Another package, MS2Analyzer (17) mines MS2 spectra for spe-
cific features defined by the user (i.e., mass fragments and neutral
losses). Some will be common to many experiments (e.g., CO or
H2O losses), but sample-specific features are easily overlooked.
Although Molecular Networking requires no user intervention,
it may fail to group molecules that share small substructures,
whereas MS2Analyzer can find all molecules that share a particu-
lar set of features provided they are user specified. Our approach,
MS2LDA, which is based on latent Dirichlet allocation (LDA)
(13), retains the benefits of both of these approaches while losing
the shortfalls—it can find relevant substructures based on the co-
occurrence of mass fragments and neutral losses, and group the
molecules accordingly. Although adapted to other domains [e.g.,
genomics (18) and transcriptomics (19)], LDA has never been
used to exploit the parallels between MS2 data and text.

Fragmentation spectra contain recurring patterns of fragments
and losses due to common biological substructures (e.g., a hex-
ose unit, or a carboxyl group loss). We assume each observed
spectrum is composed of one or more such substructures, an
assumption successfully used in other workflows (6, 20); however,
no unsupervised strategy exists that finds mass fragmental-based
substructures without training data. Fig. 1 demonstrates the
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Fig. 1. Analogy between LDA for text and MS2LDA. LDA finds top-
ics interpreted as “football related,” “business-related,” and “environ-
ment related.” MS2LDA finds sets of concurring mass fragments or losses
(Mass2Motifs) that can be interpreted as “Asparagine-related,” “Hexose-
related,” and “Adenine-related.”

parallels between text and fragmentation data. LDA decomposes
documents into topics based on co-occurring words, whereas
MS2LDA decomposes fragmentation spectra into blocks of co-
occurring fragments and losses, referred to as “Mass2Motifs.”
Using all of the fragmentation spectra generated by data-
dependent mass fragmentation analysis (DDA), MS2LDA learns
the conserved substructures (the Mass2Motifs) and the decom-
position of the fragmentation spectra into Mass2Motifs.

Our analysis pipeline (SI Appendix, section 1) performs
data preprocessing, extracts Mass2Motifs, and allows interac-
tive exploration of the results. Through the analyses of four
beer extracts, we show that, without labeled training data
or metabolite identification, MS2LDA extracts mass patterns
indicative of biological substructures that can be structurally
annotated, some of which are pathway related. These can
aid in the putative de novo annotation or functional clas-
sification of otherwise-unidentifiable molecules. Many more
molecules can be annotated in this way than through com-
parison with reference spectra. Grouping of molecules based
on common substructures is particularly useful for hypothesis-
generating research. For example, hypotheses as to the source
of variation in metabolite abundances can be obtained by
linking MS1 abundance changes to the presence of common
substructures.

MS2LDA
Data, in the form of .mzXML (full scan) and .mzML (fragmen-
tation) files, are preprocessed using XCMS (21) and MzMatch
(22) for peak detection and RMassBank (23) for detecting MS1–
MS2 pairs, before matrix formation by aligning MS2 features
across different spectra. The resulting matrix has MS2 features
(fragments and losses) as rows, and MS2 peaks as columns. The
values in the matrix are the MS2 feature intensities, which are
subsequently transformed into integer “counts” (SI Appendix,
section S1).

For LDA inference, we have implemented both collapsed
Gibbs sampling (24) and variational Bayes (13) in Python. The
output is a set of Mass2Motifs and assignments of Mass2Motifs
to each MS1 peak. In addition, we provide an optional elemental
formula assignment step (25–27) to assign candidate elemental
formulas to the MS2 features and MS1 peaks. On a laptop (Intel
Core i7; 16-GB RAM), running the workflow for one beer sam-
ple takes around 20 min for the feature extractions, and between
1 h (Gibbs sampling) and 30 min (variational Bayes) for the
inference. The LDA output can be explored in the MS2LDAvis

module [customized from LDAvis (28)]. Full details are provided
in SI Appendix, section S1. We used MS2LDAvis to inspect
Mass2Motifs with degree ≥10 (i.e., that were present in 10
or more spectra) and structurally characterized them (assigned
a substructural annotation) at varying levels of confidence (SI
Appendix, section S2.1) through expert knowledge and match-
ing of the Mass2Motif spectra to reference spectra in MzCloud
(www.mzcloud.org).

Results
The MS2LDA workflow was independently applied to four beer
extracts. After preprocessing, each sample consisted of around
1,000 MS peaks in both positive and negative ionization mode
(SI Appendix, section S2.2). Three hundred Mass2Motifs were
extracted for each data file and checked for biochemical rel-
evance. Thirty to 40 Mass2Motifs in each of the positive ion-
ization mode files were structurally characterized (SI Appendix,
Table S-4) and diverse biochemically relevant substructures
found included histidine, phenylalanine, adenine, hexose units,
and structural features such as water or carboxyl group loss.

The degree of Mass2Motifs (the number of spectra in which
they occurred) varied from 1 to over 200, demonstrating that
MS2LDA can extract both generic and specific structural fea-
tures. The number of Mass2Motifs within each spectrum also
varied (around 600 spectra in each file consisted of one
Mass2Motif, 300 of two, 50 of three, and 20 of four or more).
Across the four files, an average of 70% of spectra (SI Appendix,
section S2.3) include at least one characterized Mass2Motif,
demonstrating the power of MS2LDA for data reduction—
that is, structurally characterizing just 30–40 of the discovered
Mass2Motifs provides biochemical insight into 70% of the spec-
tra. For comparison, we matched spectra to the MassBank and
National Institute of Standards and Technology (NIST) libraries
(SI Appendix, section S2.4) at a threshold of 90% normalized
score, obtaining hits for only 25 and 6% of the spectra, respec-
tively, demonstrating the wide coverage possible with MS2LDA.

Automatic, Unsupervised, Chemical Substructure Discovery. Mass2-
Motifs cover a diverse set of biochemical features, including
amino acid related (i.e., histidine, leucine, tryptophan, and tyro-
sine), nucleotide related (i.e., adenine, cytosine, and xanthine),
and other molecules such as cinnamic acid, ferulic acid, ribose,
and N-acetylputrescine. Mass2Motifs related to the same sub-
structure or structural feature were consistently found across
multiple beers (e.g., hexose-related Mass2Motifs were present
in all positive-ionization mode files). Differences in degree and
absence of some Mass2Motifs across the extracts show that
MS2LDA captures variability in metabolic composition.

An example of ferulic acid (a compound present in cereals, an
ingredient of beer) is given in Fig. 2. Two of the 11 spectra that
include Mass2Motif 19 are shown. Conserved mass fragments are
clearly visible across the two spectra. Unlike existing software,
for example, MS2Analyzer (17), our method is unsupervised and
has no need for prior knowledge about fragments of interest. It
is of note that the neutral loss of the complete ferulic acid moiety
was also included by MS2LDA, demonstrating that both frag-
ments and losses can be present in a motif. MS2LDA is able to
extract a relatively rare biochemically relevant pattern (present
in 11 of the spectra), despite the individual spectra being quite
different.

Positive-ionization mode fragmentation spectra generally pro-
vide larger sets of conserved fragments but some Mass2Motifs,
for example, those related to phosphate and sulfate groups
[fragments at 78.9593 ([PO3]−) and 79.9575 ([SO3]−) m/z,
respectively] were more easily identifiable in negative mode;
an argument to use both ionization modes. Three of the char-
acterized positive-mode Mass2Motifs pointed to the highly
similar aromatic substructures of phenylethene, cinnamic acid
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Fig. 2. Two spectra, from the Beer3 positive-ionization mode file, each of
which includes Mass2Motif 19, annotated as the plant-derived ferulic acid
substructure. The mass fragments and neutral losses (arrows originating
at the precursor ions) included in Mass2Motif 19 are highlighted in color.
Fragments not explained by Mass2Motif 19 are light gray. The probabilistic
nature of MS2LDA means that Mass2Motifs will not necessarily be identical
in all spectra in which they appear.

(cinnamate), and phenylethyleneamine (i.e., [phenylalanine–
CHOOH]), demonstrating discrimination of very similar yet
functionally different substructures (SI Appendix, section S2.6).

Structurally Characterized Mass2Motifs Validated in Authentic Stan-
dards. Reference molecules in the beer extracts were identi-
fied based on chromatographic coelution and corresponding
exact mass. As their identity is known, we can validate our
structurally characterized Mass2Motifs. Of the 45 reference
molecules, we could identify, 38 included one or more char-
acterized Mass2Motifs, 32 of which were validated (i.e., do
indeed include the relevant substructure), despite the fact that
the Mass2Motif was characterized without a reference molecule
identification.

Some examples are provided in Fig. 3. The spectra for pheny-
lalanine (Fig. 3A) and histidine (Fig. 3B) share Mass2Motif 262,
indicating the presence of a free (underivatized) carboxylic acid
group. The loss of CHOOH (Mass2Motif 262) is in fact a com-
mon characteristic for many other underivatized amino acids and
free organic acids and was associated with 10 of the 18 iden-
tified amino acid structures [the remaining 8 prefer alternative
fragmentation routes—e.g., see the amine loss (Mass2Motif 214)
in tryptophan, Fig. 3C]. The other Mass2Motifs (115, 241) in
Fig. 3 A and B are related to phenylalanine and histidine, respec-
tively (more details in SI Appendix, section S2.7). Fig. 3D is
the MS2 spectrum of adenosine, which consists of an adenine
molecule conjugated to a ribose sugar molecule. The two asso-
ciated Mass2Motifs (156, 220) represent these two biochemi-
cally relevant structural features (i.e., adenine substructure and
a ribose sugar loss).

Spectra can include multiple Mass2Motifs. In each of Fig. 3 A–
D, we observe two or more Mass2Motifs. We know of no other
method that can do this without training spectra consisting of
known structures, or prior knowledge of interesting feature com-
binations. Multiple Mass2Motifs can also explain the same fea-
ture in one spectrum, that is, the fragments 110.0717 (C5H8N3,
[M+H]+) and 120.0803 (C8H10N, [M+H]+) in Fig. 3 A and
B are explained by Mass2Motifs 241 and 115 and also by the
46.0054 loss (CHOOH) of Mass2Motif 262. This demonstrates
the manner in which MS2LDA decomposes molecules into their

constituent building blocks, allowing for de novo metabolite
annotation.

Mass2Motifs Aid de Novo Metabolite Annotation. On average, 70%
of the fragmented MS1 features are explained by at least one
structurally characterized Mass2Motif and can therefore be
automatically classified. For comparison, we performed spectral
matching using the NIST MS/MS database for small molecules
(chemdata.nist.gov/mass-spc/msms-search/) and MassBank (8)
on seven of the metabolites annotated via the ferulic acid
Mass2Motif. Only one returned a ferulic acid-related hit, despite
the clear presence of ferulic acid in all spectra (Fig. 2). The
Mass2Motif itself can be represented as a spectrum and be sub-
jected to spectral matching, resulting in transferulic acid as the
best hit (hinting at the possibility of automatic Mass2Motif anno-
tation). Spectra that are explained by the Mass2Motifs related
to histidine, tyrosine, and tryptophan were also subjected to
spectral matching. From 39 metabolites annotated with help of
MS2LDA, 7 resulted in correct hits with another 8 producing
structurally related hits (SI Appendix, section S2.4). These results
clearly demonstrate the annotative power of MS2LDA, through
which annotations can be made by matching only small portions
of the spectra and therefore allowing annotation (classification)
of molecules not present in databases. In summary, our exper-
iments show that MS2LDA is able to annotate approximately
three times as many metabolites as spectral matching. In addi-
tion, MS2LDA can annotate and group spectra based on neutral
losses (e.g., the loss of CHOOH), which is not possible with spec-
tral matching.

To further assess the use of the structurally characterized
Mass2Motifs in metabolite annotation, we used MS2LDA to
decompose 1,953 and 5,670 spectra from MassBank and the
Global Natural Products Social Molecular Networking (GNPS)
(15), respectively, into 500 Mass2Motifs each. These datasets
are those used for training in ref. 6. In contrast to the beer
data, none of these spectra is derived from Orbitrap instruments.
The structural identity of all metabolites is known, providing a
ground truth. In both cases, the Mass2Motifs characterized from
beer were included in the analysis and kept fixed, whereas all
other Mass2Motifs are learned during LDA inference (details
in SI Appendix, section S2.8). This therefore assesses the extent
to which structurally characterized Mass2Motifs in one analysis
can be used for metabolite annotations in another (from another
instrument type). We manually verified all metabolites that
include the formerly characterized Mass2Motifs and found that,
at a probability threshold of 0.1, 81.5 and 63.3% of substructure
annotations (for MassBank and GNPS, respectively) were vali-
dated (see SI Appendix, section S2.8, Fig. S-12, for detailed anal-
ysis of Mass2Motifs). In total, 694 (MassBank) and 613 (GNPS)
spectra were found to have one or more validated substructure
annotations (note that this is based solely on the Mass2Motifs
annotated in the beer analysis, demonstrating a wide coverage
from a small number of Mass2Motifs). MS2LDA also discovered
MassBank- and GNPS-related substructures, complementary to
those found in beer, showing its generic use. We repeated the
analysis on a complex biological mixture (a human urine sample)
and matched the Mass2Motifs discovered in beer to those found
in urine. Matched standards in the urine are then used to validate
the Mass2Motifs structural characterizations. At the 0.1 thresh-
old, 74.3% of characterizations were validated. These results
clearly demonstrate the potential of MS2LDA for substructure
annotation.

One illustrative example of annotation with MS2LDA is pro-
vided in Fig. 4. A subset of the network produced by MS2LDAvis
(SI Appendix, section S1.4) is shown, consisting of molecules
related to two Mass2Motifs (ferulic acid and ethylphenol). All
but one molecule includes just one of the Mass2Motifs, but one
belongs to both (the fragments belonging to each Mass2Motif
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Fig. 3. Mass2Motif spectra of identified metabolites: (A) L-histidine, (B) L-phenylalanine, (C) L-tryptophan, and (D) adenosine. Characterized motifs are
indicated by color. Full details of the mentioned Mass2Motifs can be found in SI Appendix, section S2.7.

are clearly visible). The presence of both Mass2Motifs allows
us to putatively annotate it as feruloyltyramine (314.1386 m/z;
[C18H20NO4]+) despite spectral matching producing no rele-
vant hits (SI Appendix, Table S-9). The output of Molecular Net-
working (15, 29) is shown on the Right of Fig. 4 (described in
SI Appendix, section S2.9). This produces clusters interpretable
as ferulic acid and ethylphenol related, but as each molecule
can belong to only one cluster, feruloyltyramine is assigned to
the ethylphenol cluster and its relationship with ferulic acid
is lost. Allowing each spectra to include multiple Mass2Motifs
thus gives far greater potential in making de novo structural

Fig. 4. Mass2Motifs 19 and 58 were found to be representative of ferulic acid and ethylphenol, respectively. Eleven and 42 MS1 features in the Beer3
dataset were explained by those two Mass2Motifs. Of those, one was explained by both, aiding in its annotation as feruloyltyramine (314.1386 m/z;
[C18H20NO4]+). On the Right of the plot, we show the clusters containing these MS1 features created using the molecular networking tool (15) [Top,
ferulic acid; Bottom, tyramine (ethylphenol)]. Node coloring and size are irrelevant here. The compound containing both Mass2Motifs is forced into the
ethylphenol cluster, losing its relationship with ferulic acid.

annotations of molecules. A lower perplexity of the LDA model
compared with a standard multinomial model supports these
results (SI Appendix, section S2.10). The phenomenon of indi-
vidual spectra containing multiple correct substructure annota-
tions is widespread. In the MassBank and GNPS datasets, we
counted the number of spectra associated with one, two, three,
and four different manually validated annotations from the beer-
characterized Mass2Motifs. Of the 694 MassBank spectra (613
GNPS) that had one or more validated substructure annotations,
212 (GNPS 34) had two or more; 39 (GNPS 4), three or more;
and 3, four (GNPS 0) (SI Appendix, Fig. S-14).
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Fig. 5. Log fold-change heat maps for the (A) guanine and (B) pentose loss
Mass2Motifs. Each row is an MS1 peak, and columns represent samples. Bold
names could be matched to a reference compound. Detailed annotations of
metabolites can be found in SI Appendix, Table S-18.

Differential Expression of Mass2Motifs Reveals Biochemical Changes
Across Samples. Annotating more metabolites is beneficial when
investigating the changes in metabolite intensity across multiple
samples. As MS2LDA groups metabolites in a biochemically rel-
evant manner, we can go a step further and consider the differ-
ential expression (DE) of Mass2Motifs in a manner similar to
approaches taken in transcriptomics where it is common to con-
sider the shared DE of a group of related transcripts as indica-
tive of their contribution to a common aspect of cellular biology
(30). For example, consider a standard metabolomics experiment
comparing MS1 intensities across multiple replicates of two con-
ditions. After the MS1 peaks have been matched across samples,
those that share a Mass2Motif (defined in a single MS2LDA
analysis of one of the samples or an additional pooled sam-
ple) can be grouped, and the DE of the groups computed. To
demonstrate, we compared three full-scan replicates of beers 2
and 3 using MS1 groupings defined by the Mass2Motifs from
the MS2LDA analysis of Beer3. DE of groups was assessed
using PLAGE (31). Fig. 5A shows MS1 peaks associated with
a guanine-related Mass2Motif suggesting that, in Beer3, free
guanine is more abundant, whereas in Beer2, guanine conju-
gates dominate. Similarly, molecules associated with the pentose
Mass2Motif (Fig. 5B) show DE between beers 2 and 3. We inves-
tigated whether or not similar outcomes could be achieved with
spectral similarity clustering. However, the 12 pentose-related
metabolites were distributed across 10 clusters hiding the corre-
lated intensity change (see SI Appendix, section S2.11, for more
examples).

Discussion
MS2LDA was inspired by the idea that conserved fragments
and neutral losses can be indicative of metabolite substructures
and the implied parallel with topic modeling of text. No alter-
native tools exist that allow for the unsupervised substructure
mining from MS fragmentation data while also allowing for mul-
tiple such substructures to be present within one metabolite.
MS2LDA can group molecules that share substructures without
high similarity across their entire MS2 spectra. It reduces com-
plex fragmentation datasets into metabolites explained by one or
more patterns of concurring mass fragments or neutral losses—
Mass2Motifs.

MS2LDArelieson reliablematchingof MS1peaks toMS2 spec-
tra and works best for complex mixtures where a large number
of metabolites are fragmented and information-rich MS2 spec-
tra are available (e.g., generated by ramped or stepped collision
energy).High-resolutionMSfragmentationcandifferentiatemass
fragments and neutral losses even at low mass range of 50–70 m/z
(SI Appendix, section S2.12). Manual structural characterization
of many Mass2Motifs is straightforward, and the structural fea-
tures or substructures can be propagated to all connected MS2
spectra. Based on initial experiments, automated Mass2Motif
annotation is promising (19 of the characterized positive-mode

beer Mass2Motifs were correctly annotated, despite the fact that
losses are not currently supported by spectral matching tools and
had to be omitted; SI Appendix, section S2.13).

Metabolite annotation and identification is a bottleneck in
high-throughput metabolomics. MS2LDA can assist by automat-
ically assigning possible substructures to a fragmented LC-MS
peak via the Mass2Motifs present in its MS2 spectrum. MS2LDA
can thus quickly classify MS1 peaks into functional classes with-
out knowing the complete structure of the metabolite. On aver-
age, over 70% of the fragmented metabolites were explained
by one or more structurally annotated Mass2Motifs, a massive
improvement on results reported in a recent study, again using
beer as an exemplar, where only 2–3% of the high-abundance dif-
ferentially expressed molecular features could be classified (11).
Validation on data from the MassBank and GNPS databases
also demonstrated the validity of our structurally characterized
Mass2Motifs and also showed how fixed Mass2Motifs character-
ized in one analysis could be used in other datasets, even those
produced from different laboratories on different instruments.
In addition, the biochemically relevant metabolite grouping pro-
vided by MS2LDA allows us to identify Mass2Motifs that are
enriched with metabolites with correlated intensity variation.

Computationally, MS2LDA is more costly than simpler tools,
but not prohibitively so. For example, using variational Bayesian
inference, the GNPS dataset (5,670 spectra) could be decom-
posed into 500 Mass2Motifs in approximately 4 h on a laptop. As
LDA has been used on very large text corpora [e.g., 3.3 million
documents from Wikipedia (32)], the technology exists to com-
fortably scale this type of analysis to larger metabolomic datasets.
In addition, we envisage MS2LDA being used in conjunction
with a standard MS1 analysis via fragmentation of a pooled sam-
ple from which Mass2Motifs can be linked to MS1 intensity
variability as described in Differential Expression of Mass2Motifs
Reveals Biochemical Changes Across Samples.

The MS2LDA approach is markedly different from other anal-
ysis tools as multiple Mass2Motifs can be associated with one
metabolite, and determination of the fragments/neutral losses
that are part of a conserved structural motif is unsupervised. Our
proposed focus on mining the MS2 fragmentation data alone
to aid in identification of functional classes of metabolites is
unique and complementary to existing use of fragmentation data.
We anticipate MS2LDA to be particularly useful in research
areas such as clinical/pharmaco and nutritional metabolomics,
environmental analysis, and natural products research, as it can
quickly recognize substructure patterns related to drugs and
food-derived metabolites in an unsupervised way. Although we
have demonstrated MS2LDA on DDA data, we see no reason
why it would not work on data-independent acquisition data in
which fragments have been matched to MS1 ions using, for exam-
ple, MS-DIAL (33).

Materials and Methods
All data and code are available from dx.doi.org/10.5525/gla.researchdata.313.

Materials. Four beer samples were used as representative of diverse com-
plex mixtures (SI Appendix, section S3). Ten milliliters of beer were sampled
directly after opening and stored at −20◦C before extraction. After thaw-
ing, (i) 200µL of beer was mixed with 600µL of methanol/chloroform, (ii)
sonicated for 5 min at room temperature; (iii) and centrifuged for 5 min
(12,000×g) at room temperature. The supernatants were stored at −80◦C.
Urine fragmentation data from an earlier approved and published study on
metabolite annotation of urinary metabolites were used for validation pur-
poses (16). HPLC-grade methanol, acetonitrile, and analytical reagent-grade
chloroform were acquired from Fisher Scientific. HPLC-grade H2O was pur-
chased from VWR Chemicals. Formic acid (for MS) and ammonium carbonate
were acquired from Fluka Analytical (Sigma-Aldrich).

Methods. A Thermo Scientific Ultimate 3000 RSLCnano liquid chromatog-
raphy system (Thermo Scientific) was coupled to a Thermo Scientific
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Q-Exactive Orbitrap mass spectrometer equipped with a HESI II inter-
face (Thermo Scientific). Thermo Xcalibur Tune software (version 2.5)
was used for instrument control and data acquisition. Column tempera-
ture was maintained at 25 ◦C. The hydrophilic interaction liquid chroma-
tography (HILIC) separation was performed with a SeQuant ZIC-pHILIC
column (150×4.6 mm, 5 µm) equipped with the corresponding precol-
umn (Merck Sequant). A linear LC gradient was conducted from 80%
B to 20% B over 15 min, followed by a 2-min wash with 5% B, and
7-min reequilibration with 80% B, where solvent B is acetonitrile and
solvent A is 20 mM ammonium carbonate in water. The flow rate was
300 µL/min, column temperature held at 25 ◦C, injection volume was
10 µL, and samples were maintained at 4 ◦C in the autosampler (1). Sam-
ples were measured in randomized order (34) (SI Appendix, section S4). MS
and MS/MS settings can be found in SI Appendix, section S5. For positive
and negative-ionization combined fragmentation mode, the duty cycles
consisted of a full scan in positive-ionization mode, followed by a TopN
data-dependent MS/MS (MS2) fragmentation event taking the 10 most
abundant ion species not on the dynamic exclusion list, followed by the

same two scan events in negative mode. MS/MS fragmentation spectra
were acquired using stepped higher collision dissociation combining 25.2,
60.0, and 94.8 normalized collision energies in one MS2 scan. In full-scan
mode, the duty cycle consisted of two full-scan events. The duty cycles for
positive- and negative-ionization separate fragmentation modes, respec-
tively, consisted of one full-scan (MS1) event and one Top10 MS/MS (MS2)
fragmentation event.
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