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Imagine a scenario where personal belongings such as pens, keys,
phones, or handbags are found at an investigative site. It is often
valuable to the investigative team that is trying to trace back the
belongings to an individual to understand their personal habits,
even when DNA evidence is also available. Here, we develop an
approach to translate chemistries recovered from personal objects
such as phones into a lifestyle sketch of the owner, using mass
spectrometry and informatics approaches. Our results show that
phones’ chemistries reflect a personalized lifestyle profile. The col-
lective repertoire of molecules found on these objects provides a
sketch of the lifestyle of an individual by highlighting the type of
hygiene/beauty products the person uses, diet, medical status, and
even the location where this person may have been. These findings
introduce an additional form of trace evidence from skin-associated
lifestyle chemicals found on personal belongings. Such information
could help a criminal investigator narrowing down the owner of an
object found at a crime scene, such as a suspect or missing person.
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Trace evidence analysis plays a major role in forensic science
because it reveals connections between people, objects, and

places (1, 2). At a crime scene, traces collected from hairs,
clothes or carpets fibers, soil, and pieces of glass (3–6) can shed
light on events of the crime, and provide information about who
was present before and after an unlawful act. Traditionally, both
DNA and fingerprints at crime scene are used to identify a
suspect with a high degree of certainty. However, both analyses
have limitations. DNA analysis is limited because in many cases
samples have degraded, contain insufficient amounts of DNA,
are samples from which DNA cannot be obtained easily, or are
contaminated (3), leading to difficulties in recovering the geno-
mic profile of the suspect (7). Fingerprints collected at a crime
scene have proven to be a very powerful approach but have
limitations because they can be insufficient for matching to a
specific individual if it is only a partial print (8) or overlap with
other interfering fingerprints (9), and many materials, such as
many fabric types and rough surfaces, are unsuitable for finger-
print analysis. Objects touched by subjects often provide only
finger smears without visible fingerprints, rendering fingerprint
matching to individuals useless. However, even if good finger-
prints or high-quality DNA can be obtained, the person may
simply not be in the database against which fingerprints and/or
DNA is searched. Consequently, complementary approaches for
matching samples either to individuals or to profiles that aid in
identification would help an investigative team locate individuals
from trace evidence commonly recovered at crime scenes.
In a scenario where personal belongings such as pens, keys,

phones, handbags, or other personal objects are found at a crime
scene, the chemical interpretation of skin traces recovered from
these objects can help understand the individuals’ personal
routine. This can be accomplished by revealing information re-
garding habits, lifestyle, and disease status associated with cer-

tain types of medication, thus narrowing the pool of individuals
to whom an object may have belonged.
Recent work demonstrates that the external environment in-

fluences the chemical composition of the outermost layer of the
skin. Our daily routines leave chemicals on skin surface origi-
nating from our surroundings and the human habitats to which
we are exposed (10–12). Skin-associated chemicals also arise
from personal habits including diet, exercise, clothes, medica-
tions, and personal care products. Together, these sources rep-
resent the vast majority of identifiable chemical entities on the
human skin surface (13). Although no approach has been de-
veloped yet to capture such lifestyle-derived skin-associated
chemicals from objects, the detection of molecular traces from
the skin has been used in the past and involves very sensitive
techniques. Due to its superb sensitivity (14), mass spectrometry
(MS) is a powerful tool widely used for forensic applications (15)
by providing either molecular (16–19) or elemental analysis (20–
22). Specific sets of known molecules are usually targeted in
forensics applications, for example, to identify traces of illicit
drugs or explosives (23–26). However, individually targeting
molecules for detection is not sufficient to describe the lifestyle
of a given person, whereas a complete chemical signature
obtained through the chemical analysis of a swab of the personal
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object might reveal personal habits and enable investigators to
develop a composite sketch of a person’s lifestyle.
To test how much we can learn about personal lifestyles through

the analysis of chemical traces recovered from personal belongings,
we decided to use mobile phones. Phones offer a broad range of
uses, in addition to staying in touch with loved ones, games, or
connecting to the world through the Internet. They offer self-
monitoring applications, including personal health tracking (27–32),
environmental exposures (33, 34), and weather monitoring, and
therefore we spend a lot of time on our phones. New applications
increase the amount of time we spend on our phones (in part be-
cause this is an explicit goal of many application developers). Be-
cause of their utility, phones are handled frequently and provide
ample opportunity to transfer skin molecules by contact.
In this proof-of-principle study, we aimed to (i) take an in-

ventory of the chemistries recovered from phones of individuals
and (ii) evaluate the relationships between chemistries that can
be found on phones and skin of the owners. The goal of this work
is not to identify the person based on the metabolomic signa-
tures. Rather, it aims to determine how much we can learn about
the personal lifestyle of the individuals based on skin-associated
chemistries detected on their personal objects. We applied
untargeted MS-based methods, combined with computational
approaches, to take a broad look at the chemicals on hands and
phones of 39 individuals. We show that the chemistries detected
on phones and hands are distinct and reflect a personalized

lifestyle profile that is even detected after 4 mo, and that phones’
molecular patterns match skin molecules detected on the hands
of individuals. Lifestyle chemistries originating from hygiene
products, beauty products, medications, and diet are detected on
phones of individuals, and these traces provide information re-
garding personal habits and can construct a profile of individual
lifestyle. Finally, spatial mapping of lifestyle chemicals on hands
and phones correlate the abundance of chemicals detected on
different parts of phones with those found on hands. Our results
highlight the potential of molecular signatures from personal
objects in assisting forensic analysis by providing insights into the
personal habits of an individual.

Chemical Patterns Among Phones and Hands of Individuals
Before we characterized specific molecules that illuminate the
lifestyle of individuals, we first compared the chemical signatures
of samples from each individual to test whether the chemical
patterns recovered from phones match the molecules found on
hands of the owners. We also evaluated how time affects such
global comparisons. We collected eight samples from each right
hand (three samples from the palm and one sample from each
finger) and four samples from each phone (two from the screen
and two from the back) (Fig. 1A). Additionally, we chemically
monitored phones and hands of 10 individuals 4 months after the
first sample collection to determine long-term reproducibility
and signature stability. A total of 588 metabolomic samples were
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analyzed using a previously validated ultra-performance liquid
chromatography/quadrupole time-of-flight (UPLC-Q-TOF) tandem-
mass spectrometry (MS/MS) workflow (13), to detect metabolites
present on hands and items (Fig. 1B).
We compared the molecular profiles collected from phones and

hands of 39 individuals and 10 individuals 4 months later (Fig. 1C).
We show that phone and hand samples, separately (Fig. 2 A and
B) or combined together (Fig. 2C), from different sites (phone,
back and front; hand, palm and fingers) within the same individual
are significantly different (P < 0.001) from the samples of the
corresponding sites from other individuals, suggesting that phone
chemistries are more similar to the hand of the owner than to
hands of other individuals.
We also observed that phone chemicals collected from 39 in-

dividuals (Fig. S1A) and from 10 individuals 4 months later (Fig.
S1B) are distinct [time 1: 33-fold better than random guessing
(Fig. S1A); time 2: 9.4-fold of the accuracy of random guessing
(Fig. S1B); each individual has the same number of samples; thus,
the probability of guessing correctly is 1/39]. Similarly, hand
metabolomic signatures discriminate each person with accuracies
38.5- and 10-fold of baseline for the first time point and the second
time point, respectively (Fig. S1 C and D). These findings suggest
that the chemical signatures from hands might reflect a person-
alized lifestyle that can be transferred to phones.
Therefore, we tested whether molecular patterns detected on

phones match the chemistries of the corresponding hands. Al-
though phones likely represent a longer-term accumulation of
lifestyle chemistries than hands, chemicals recovered from phones
(front and back) still match the hands of owners significantly (Fig.
2C and Fig. S1 E and F). Matching hands to samples from the
back of the phone appears to be much more accurate [time 1: 69%
(Fig. S1G); time 2: 85% (Fig. S1H)] than matching samples from
the front of phones [time 1: 33% (Fig. S1I); time 2: 25% (Fig.
S1J)], suggesting that molecules from hands transfer better to the
back of phones. A significantly higher number of chemicals were
detected on the back of phones than on the front (P < 0.0005)
(Fig. S2 A–D).
The correlation between the number of molecules detected on

hands and those recovered from phones shows that the trans-
ferability and recovery of hand chemistries on phones differs
among individuals (Fig. S2E). Factors that could influence
transferability include the contact and cleaning frequencies. The
composition of the material of the surface in contact with the
hands (front, glass, vs. back, plastic) may also affect the results.
Mainly, as reported for bacterial communities while this manu-
script was being prepared (35), chemicals recovered from the

back of phones could come mostly from our hands, whereas
those on the front of the phone from the face.
Although further studies are needed to determine the trans-

ferability of hands molecules on different surfaces such as plastic,
wood, and glass, our results demonstrate that the chemical signa-
tures detected on phones match the chemicals detected from the
hand of the owner. Therefore, it may be possible to develop a
lifestyle sketch of the person who has touched the objects based on
the skin-associated molecules that are detected on phones. Specific
chemistries may narrow a list of possibilities in an investigation by
revealing the medications that an individual is taking, the food they
eat, the clothes they wear, and personal care products they use.

Molecular Networking to Characterize Matched Chemicals
Between Phones and Hands of Individuals
Because the results above show that the chemical signatures
from phones match the chemistry found on the hands of indi-
viduals, we hypothesized that chemical traces of personal be-
longings can provide sufficient information to gain insights into
the lifestyle of an individual such as diet, medical condition, and
personal hygiene or personal care, such as the use of specific
deodorants, lotions, or shampoo.
We recently demonstrated that molecular networking can be

successfully used to organize large-scale MS dataset collected
from the human skin surface (13). Molecular networking sug-
gested that we could measure the medications, type of food, and
personal care products each individual uses. Molecular network-
ing is a MS visualization approach that matches MS/MS similari-
ties and also uses the relationships between MS/MS spectra to
dereplicate MS/MS signatures by matching them to reference MS/
MS spectra of known chemicals (36–38). Briefly, molecular net-
working first uses MScluster algorithm (39) to merge all identical
spectra, followed by spectral alignment to compare pairs of related
MS/MS spectra via cosine similarity scoring to generate familial
groupings, where 1 indicates a perfect match. We recently de-
veloped the infrastructure to perform these tasks via a web in-
terface at gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp (40).
The resulting network is then exported and visualized in Cyto-
scape software (41, 42) with nodes connected by edges where each
node corresponds to a consensus MS/MS spectra.
Based on this potential, we used molecular networking to match

specific skin-associated traces found on a phone to the hand of the
corresponding individual (Fig. 1C). A molecular network was gen-
erated from hands and phones of 39 individuals and resulted in
10,383 nodes, where each node represents consensus of at least
three identical MS/MS spectra (Fig. S3; gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=eea01f9ec9ea44bc80d76de30da67be4, ftp://massive.
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ucsd.edu/MSV000078993). Based on MS/MS similarities, we first
evaluated the number of chemicals shared between hands and
phones of individuals. Fifty-three percent of the spectra were shared
between hands and phones of all volunteers, highlighting that many
skin-associated molecules are found on personal objects (Fig. 3A).
Forty-two percent of the nodes were found only on hands, and 5%
of nodes are found only on phones.
Using the parent ion masses, we evaluated the frequency of

ions detected from molecules associated with the phone and
hand of each individual. Our results show that, for both phones
(Fig. 3B) and hands (Fig. 3C), many chemicals are found only in
one or few of the volunteers. Only a few ion signatures are
shared among all individuals, suggesting that specific chemistries
link the phone and hand of each person.
To gain insights into the lifestyle of each person, we used a color

coding in Cytoscape (41) (42) to differentiate nodes that belong to
a specific group, leading to further characterization of individual-
specific ion signatures (Fig. S3). We annotated molecules with
Global Natural Products Social Molecular Networking (GNPS)
libraries (gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) using
accurate parent mass and MS/MS fragmentation patterns (gnps.
ucsd.edu/ProteoSAFe/result.jsp?task=0671dd76c8334d528f5b4
b5ac243e045&view=group_by_compound). Such annotations are
in agreement with the level 2 of annotation defined by the 2007
metabolomics standards initiative (43). The annotated com-
pounds lists were then correlated to the information provided by
volunteers for this study, regarding the food they consume and
the hygiene products and medications they were using.

Unique Chemicals Detected on Both Phones and Hands. The molec-
ular network highlights the presence of unique chemicals that are
specific to each person (Fig. S3). Through annotations, molec-
ular networking reveals a large variety of lifestyle traces of

molecules on phones that are also found on hands of individuals
(Dataset S1). On the basis of annotated hand-associated chem-
istries found on phones, we can gain insights into the lifestyle of
the individual to whom the phone belonged by matching the
annotated molecules to the type of hygiene/beauty products,
pesticides/insecticides, plasticizer exposures, diet, and medica-
tions (Dataset S1). Some representative examples of unique
lifestyle chemicals detected on hand and phone of a specific
individual are shown in Fig. 4.
We were able to detect a skin inflammation medication (clo-

betasol propionate) on both the hand and phone of volunteer 9,
as well as a lipid, trihydroxy palmitic acid, used to produce soap
and cosmetics (44) (Fig. 4 A and B, and Fig. S4 A and B). A
molecular family of the trehalose fatty acids, usually used as
pigment dispersant allowing pigments to be blended in various
high-end cosmetics (α,α′-trehalose 6-palmitate [M+Na]+ m/z
603.334 and its analog [M+Na]+ m/z 631.366) (45), was found in
samples from individual 38 (Fig. 4C and Fig. S4 C and D). A hair
regrowth treatment, minoxidil, was used by person 2 (Fig. 4D and
Fig. S4E); an active ingredient of eye drops, tetrahydrozoline,
was used by individual 10 (Fig. S4F); and an antifungal medi-
cation was exclusively detected on person 16 (Fig. 4E and Fig.
S4G). Furthermore, molecules likely derived from diet and/or
hygiene products were also detected. Among them are sinense-
tin-type molecules, frequently found in citrus fruits (46) and
detected only on the hand and phone of person 32, who is a large
consumer of oranges and uses a lot of citrus-based cleaning
products (Fig. 4F and Fig. S4H). Oral medications such as an
antidepressant citalopram (consumed 20 mg/d) was also detected
on the hand and phone of volunteer 21 (Fig. 4G and Fig. S5A).
As highlighted by the specific molecular cluster in Fig. 3G, not
only was the drug detected in volunteer 21’s samples but also its
oxidized metabolite citalopram N-oxide ([M+H]+ m/z 341.169),
displaying a mass shift of 15.994 Da and a similar MS/MS frag-
mentation pattern compared with the drug itself (Fig. 3G and
Fig. S5B). Consistent with previous findings, consumed drugs
that are detected on hands might originate from sweat secreted
on the skin (47, 48) or can be transferred upon contact (25, 49).

Chemicals Shared Across Phones and Hands of Individuals. Some
chemicals detected on phones and hands were shared among
several individuals including nobiletin, found in citrus peel (50)
(Fig. S6A and Dataset S1); chlorhexidine, an antiseptic used in
cosmetics (51) (Fig. S6B and Dataset S1); the sunscreen ingre-
dients avobenzone and octocrylene (13) (Fig. S6C and Dataset
S1); caffeine that was consumed daily and most likely originates
from secreted sweat on hands (52, 53) (Fig. S6D and Dataset
S1); aspartame (Dataset S1); and diethyltoluamide (DEET)
(Fig. S6E and Dataset S1) that was detected months after its
original application by two volunteers. Remarkably, the data
show that lifestyle signatures can be revealed months after the
event that generated the signature. DEET, the active ingredient
of antimosquito sprays and lotions (54), was found on individuals
1 and 12 (Fig. S6E and Dataset S1). DEET was observed 4 months
later on individual 1, nearly 5 months after the original application.
The antimosquito lotion had not been applied by this person
during this period yet continues to be readily recovered from his/
her phone (Fig. S7 A and B). On the other hand, the trehalose
fatty acids cluster and minoxidil that were continuously used by
volunteers 2 and 38, respectively, were also stably detected after
4 months (time 2), reflecting the same lifestyle over time for
these individuals (Fig. S7 A, C, and D).

Unique Chemicals Detected Only on Hands. Molecules from diet
were often individual specific. For example, piperine from black
pepper (55) was only found on the hand of person 3 (Dataset
S1), and capsaicin, the active ingredient in chili peppers (56), was
detected only on the hand of person 28 (Dataset S1). Some
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ber of shared nodes (5,452 out of 10,383; ∼53%) between all hands (brown)
and phones (blue), and unique hand (4,376 out of 10,383; ∼42%) and phone
nodes (555 out of 10,383; ∼5%). The frequency of molecules found on (B)
phones and (C) hands was calculated by counting in how many volunteers
each MS/MS cluster from the network was detected (Fig. S3; gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=eea01f9ec9ea44bc80d76de30da67be4).
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molecules such as antihistamine that were taken as solution (Fig.
S8A and Dataset S1), ibuprofen (Fig. S8B and Dataset S1), and
pet pesticides (Fig. S8C and Dataset S1), used occasionally by
volunteers, were found on hands of individuals but not on their
phones. As highlighted above, the detection of molecules on the
hands can result from sweat secreted by the skin (47, 48) or can
be transferred upon contact (25, 49). The detection of chemicals
on hands but not on phones indicates that not all lifestyle sig-
natures from the hands are recovered on the phones, reinforcing
that the overall profile is important to an investigator rather than
the detection of individual molecules.
The combined molecular networks of the two time points from

the 10 individuals reveal that the percentage of stable chemicals
varies from person to person (Figs. S7 and S9A). Ten percent to
28% of detectable MS/MS spectra that originate from the hand
(Fig. S9B) and phone (Fig. S9C), respectively, are stable over
time and are still detected on phones after 4 months. This result
suggests that, although personal lifestyle might change over time,
for the same person many lifestyle traces recovered from phone
can still match the original phone’s and hand’s chemistries after
considerable time has elapsed.

Predicting Lifestyle of Individuals Based on Phone
Metabolomic Signatures
In addition to correctly and efficiently matching the molecular
traces recovered from phones to the hands of the corresponding
individuals, molecular networking helps gain insight into the
individual’s lifestyle by identifying molecules detected on per-
sonal phones. For example, detecting sunscreen-derived mole-
cules indicates that this person likely lives in a sunny area and
spends time outside, caffeine indicates the person is a coffee
consumer, nicotine indicates a smoker or at least someone who is
exposed to smoke, medicines help establish the medical status
of an individual, and detection of citrus-derived molecules ob-
served on some individuals’ hands and phones indicate they may
eat oranges or lemons. The combination of many such lifestyle
routines defines a unique skin chemical signatures.
Because a combination of chemicals to predict lifestyle is more

informative than a unique single molecule, we organized the anno-
tated molecules (Dataset S1) using a hierarchically clustered heat
map (Figs. 1C and 5, and Fig. S10A) based on presence/absence data
regarding detection of annotated MS/MS spectra on the phones and

 Individual 2 (Hand + Phone)
 Individual 9 (Hand + Phone)
 Individual 16 (Hand + Phone)
 Individual 21 (Hand + Phone)
 Individual 32 (Hand + Phone)
 Individual 38 (Hand + Phone)

Skin inflammation
GlucocorticoidA

C Trehalose fatty acids

603.334

631.366

631.366

603.334

603.334

OO

O

OH
OH

HO

HO

HO
OH

O

OH

O
alpha,alpha'-Trehalose 6-palmitatelose 6-p66alose 6-palose 6-p

531.153 55 .1531

Antifungal medicationE

ON

O

N

N

N

O

Cl

O

ClH

Hair loss treatment
MinoxidilD

210.135

OH

N

N

NN NH
H

H

403.136 254.19
373.125

Sinensetin
FlavanoidF

O

O

O

O

O

O

O

G Antidepressant medication

Citalopram

N

O

N F

341.169

325.175

325.175

Citalopram 
N-Oxide

F

O

O-

N+

N

Trihydropalmitic acid

305.23 305.23 329.23

OH

OH

OH
HO

O

B

467.2
Cl

F

O
HO

O
O

O

HH

Fig. 4. Molecular networking to characterize and match lifestyle chemistries from hands and phones of individuals. The full network is shown in Fig. S3 for
dataset ftp://massive.ucsd.edu/MSV000078993 and ftp://massive.ucsd.edu/MSV000078832. Each node, representing a minimum of three identical MS/MS spectra,
corresponds to a consensus MS/MS spectra. An edge represents the similarity between MS/MS spectra. The network nodes were annotated with colors. Each color
represents unique molecular features matched between hand and phone of the same individual. Single nodes represent very unique features found in hand and
phone of an individual that do not display structural similarities with any other molecule in the network. Representative lifestyle molecular annotations include
molecules from hygiene/beauty products, diet, and medicines such as the following: (A) skin inflammation treatment clobetasol propionate, (B) trihydropalmitic
acid, (C) trehalose fatty acids, (D) hair loss treatment minoxidil, (E) antifungal medication ketoconazole, (F) sinensetin flavonoid found in citrus, and (G) anti-
depressant medication (citalopram) and its metabolite (citalopram N-oxide). Green circles highlight compounds that are associated with the chemical structures
shown in the figure.
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hands of individuals. Therefore, hierarchical clustering reveals an
overall view of an individual’s lifestyle that helps predict personal
habits and routine (Fig. 5 and Fig. S10A). Although some annotated
molecules are found on the phones and hands of multiple individ-
uals, the heat map reveals specific signatures that reflect a person-
alized lifestyle. The origin of each molecule highlighted in the heat
map was represented using a lifestyle-associated legend, allowing an
easier interpretation of the molecules detected and how they relate
to lifestyle (Fig. 5 and Dataset S1). As shown in Fig. 5, a chemical
signature reflects several lifestyle characteristic features of a person.
The personal habit, includes the kind of hygiene products a person
uses, such as plant-based products, foaming products, or sunscreens;
the kind of beauty products the individual uses, such as makeup and
fragrance; and the type of food the person eats or drinks, such as
spices or coffee. Skin-associated chemicals detected on phones also
indicate where the person has been and their medical status. Below,
we highlight representative examples that illustrate how an in-
vestigator might obtain insight into the lifestyle of the individual
through analysis of the chemistries using untargeted metabolomics.
A group of chemicals detected on phone and matched to hand

of individual 1 provides information regarding his/her lifestyle.
Based on this signature (Fig. 5A), we can tell that this person
uses plant-based products because rutin, a flavonoid glycoside
found in many plants (57), was detected on his/her phone and

hand (Dataset S1). This person likely lives in a sunny area and
spends a lot of time outside (avobenzone and oxybenzone, two
active ingredients of sunscreen). Volunteer 1 uses a skin mois-
turizer (dexpanthenol) (Dataset S1) (58), and flavoring products
due to the detection of a flavoring agent (m-anisic acid), a molecule
commonly added to fragrances (Dataset S1) (59). Furthermore,
DEET (Fig. S6E) was detected and is associated with mosquito
lotions, suggesting that the person is likely a camper or backpacker.
We confirmed that this person, a female, spends time outside and
indeed went camping and used DEET.
Volunteer 16, in addition to using an antifungal treatment, uses

moisturizer due to the detection of dexpanthenol, often found in
moisturizers (58) and personal care products that contain foaming
agents (N-lauroyl sarcosine). This person eats herbs and spices,
consistent with the detection of 7-hydroxyaustrobailignan (Fig. 5B
and Dataset S1).
Similarly, the medical status of volunteer 21 can be established

upon the detection of antidepressant drug and its metabolite.
Additionally, this person uses skin care products such as facial or
body creams, as a skin-conditioning agent [glycerol tricaprylate
(60)] was detected (Fig. 5C and Dataset S1). A flame retardant
[tris(2-butoxyethyl) phosphate] usually used in plasticizers (61)
and textiles was also detected on individual 21 (Fig. 5C and
Dataset S1). In addition of the antifungal medication (clobetasol
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Fig. 5. Hierarchical cluster heat map to predict lifestyle of individuals based on phone and hand chemical signatures. The heat map (left image) was
generated using Jaccard dissimilarity method, from Dataset S1, which represents the detection/no detection of annotated chemicals on hands and phones.
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propionate) used by person 9 (Fig. S4A), a lipid trihydroxy pal-
mitic acid used to produce soap and cosmetics was also detected
(Fig. 5D and Fig. S4B).
Volunteer 2, in addition to using a hair regrowth treatment

(minoxidil), is a coffee or tea consumer (caffeine) (Fig. S6D) and
is likely female based on the personal care product signatures.
This individual uses a lot of cosmetic products, as we detect
castor oil derivatives (sebacic and suberic acids) used as skin-condi-
tioning and -moisturizing agents (62) and nonoxynols (webdictionary.
personalcarecouncil.org/) often used in hair dyes and as wetting
agents in cosmetics, including hair and skin care products (Fig. 5E
and Dataset S1).
The detection of two pigment dispersants (trehalose fatty acids)

(Fig. S4 C and D) (45) associated with individual 38 together with
the detection of glycans (Dataset S1) that are usually incorporated
in facial creams for their antiaging properties (63), likely indicate
that this person is a female who uses makeup (Fig. 5F).
Each of these unique molecules mentioned above was con-

firmed by the volunteers and is in agreement with the lifestyle of
each individual. According to the volunteers, none of the lifestyle
molecules annotated was discordant with their own personal
knowledge of their lifestyle. Currently, due to the absence of the
correct databases, we do not have another option but to ask
participants to study the effectiveness of the matches and how
they correlate to their lifestyle. One can imagine, however, in the
future to have a statistical approach and a confidence score for
the type of lifestyle when appropriate databases become available
that connect each molecule and associate such signatures with a
lifestyle (e.g., beer drinker, jogger, hunter, diabetic, fruit eater, etc.).

Spatial Distribution of Lifestyle Chemistries on Phones and
Hands of Individuals
To evaluate whether different parts of phones and hands have
similar molecular features, spatial molecular maps (13) were
generated (Fig. 1C), therefore allowing the visualization of the
distribution and the abundance of specific chemicals detected on

phones and hands. Fig. 6 illustrates the spatial distribution of
specific molecules detected on phones and hands of four indi-
viduals. The hair loss treatment minoxidil is highly abundant on
the index and middle fingers of volunteer 2, which correlates
with its high localization on the top back of the phone (Fig. 6A),
probably due to the frequent contact of these two fingers with
that part of the phone.
For individual 32, the citrus-associated molecule annotated as

sinensetin is mainly present on middle and ring fingers with cor-
relation to a high abundance on the back of the phone (Fig. 6B).
The drug citalopram, used by volunteer 21, is mostly present in the
bottom palm of the hand and little finger and more abundant on
hand rather than on the phone (Fig. 6C), whereas the oxidized
metabolite of citalopram is mostly present on the phone (Fig. 6C).
The distribution of α,α′-trehalose 6-palmitate (m/z 603.334,
[M+Na]+) from the trehalose fatty acids molecular family displays
a very similar spatial distribution to that of its analog (m/z 631.336,
[M+Na]+) (Fig. 5D), revealing that these two molecules originate
most likely from the same beauty product (Fig. 6D).
The use of spatial mapping thus allows visual comparison of

molecular distributions on phones and hands, by displaying the
localization and abundance of molecules of interest and corre-
lating that with personal habits. Additionally, like molecular
networking, spatial mapping can also be used to match chemical
features detected on phones to hands of individuals (Fig. S11
and Dataset S2). Moreover, untargeted spatial mapping and
molecular networking are complementary tools as they are
generated based on different fractions of the same dataset: MS1
features (m/z + retention time) and MS/MS data, respectively.
Thus, if molecules that might be found on hand and phone of a
specific individual are not highlighted by molecular networking
because they did not fragment during MS/MS analysis, they can
be picked by spatial mapping. Additionally, the detection of
molecules in corresponding spatial locations on hands and
phones decreases the possibility of chance matches.
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Fig. 6. Spatial mapping of lifestyle chemicals detected on hands and phones of individuals. Two-dimensional spatial maps generated from LC-MS1 data
display the localization and abundance of molecules of interest on hands and phones of four individuals. Figure highlights phone and hand localization of (A)
the hair loss treatment molecule minoxidil (m/z 210.135; RT, 150.8 s) on person 2, (B) sinensetin (m/z 373.125; RT, 230 s) on person 32, (C) antidepressant
citalopram (m/z 325.171; RT, 228) and its metabolite citalopram N-oxide (m/z 341.163; RT 230) on person 21, and (D) trehalose fatty acids (m/z 631.363; RT 391)
and its analog (m/z 603.336; RT 361) on person 38. Color scale is associated to the relative abundance of features, with red corresponding to the highest
relative abundance; this is indicated as a plus (+), and the minus (−) is the lowest abundance.
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Conclusion/Discussion
In this study, we established a methodology to characterize the
chemistry present on mobile phones and to calculate the relation-
ships between chemistries that can be found on objects and the skin.
Our approach shows that many chemicals recovered from phones
originate from the hands of the owners, highlighting therefore the
transfer of our skin molecules on objects that we touch.
Furthermore, we show that molecular signatures recovered

from phones can be used to gain insights into personal habits
based on similarities of skin-to-object chemical signatures. Many
molecular classes, revealed through molecular networking, were
identified on phones. These include beauty and hygiene prod-
ucts, diet, pesticides/insecticides, plasticizers, and medications
such as antifungal, skin inflammation, and oral antidepressant
treatments. Furthermore, we show that even molecules that were
applied more than 6 months before sample collection can still
be detected on phones, such as DEET, active ingredient of
mosquito lotions. Some molecular traces tested 4 months later
persist on phones and match the hands of the same individuals
sampled at the first time point.
In addition to highlighting unique lifestyle chemicals detected

on phones of individuals, molecular networking correctly and
efficiently links the molecular traces recovered from phone to
the hand of the owner. Furthermore, we show that the combi-
nation of many such identifiable chemistries detected on phones
defines chemical signatures that help to predict the lifestyle of an
individual and to construct a composite sketch of personal lifestyle.
Our findings introduce an additional form of trace evidence based

on molecular signatures of human hands. Such a MS-informatics–
based approach has yet to be used to link traces of untargeted
chemical data collected from an item, such as a phone, to the lifestyle
of an individual. Because the computational challenges of such
untargeted metabolomics analysis are intensive, only now can we
begin to perform such calculations at the scale that is needed for
forensic analysis, but only with the use of supercomputers. Therefore,
theMS data collection and analysis, although only about 500 samples
in this study, are still laborious tasks. The main challenge in imple-
menting large-scale untargeted forensics metabolomics is not the
data collection, but the Big Data management and the development
of the appropriate tools to integrate and effortlessly interpret the
large datasets. Although significant challenges remain in annotating
such a large-scale dataset, the implementation of this methodology
provides the key stepping-stone needed to use molecular traces
detected on personal belongings to gain insights into personal
habits and daily and hygiene routine of individuals, and also to
show where they have been or even if they are on medication.
At present, the molecular lifestyle signatures analysis ap-

proach to track and find an individual can complement tradi-
tional physical evidence including DNA, fingerprints, and skin
microbial fingerprints (64, 65) to provide additional information
about a person. Furthermore, if the traditional physical evidence
is not reliable, incomplete, or not available to accurately identify
an individual, the molecular lifestyle signature might be used to
provide information that is otherwise impossible to obtain. The
molecular analysis would help a criminal investigator in nar-
rowing down the owners of the object (e.g., a suspect of a crime
scene or understanding the habits of a terrorist) by identifying
specific lifestyle characteristics from objects they touch.

Perspective
Although it is unusual to write a dedicated section as a perspective
in a research paper, we felt it is important to describe how this work
might move beyond the proof-of-principle presented in this paper.
We envision the development of confidence measures that can be
associated with each lifestyle chemical signature identified on ob-
jects, similar to confidence that can be assigned to fingerprints
matches. Despite the development of tools such as large-scale

molecular networking and the increasing number of publicly ac-
cessible MS/MS reference datasets in the recent years, the current
method described in this paper still requires manual interpretation
of the data and needs further validation to be applied in forensics.
However, we anticipate this proof-of-principle study to complement
the traditional approaches in forensics science, through mass-spectral
analysis of the objects someone touches frequently.
Ultimately, this work suffers from the chicken-and-egg co-

nundrum where the approach is the egg and the database is the
chicken: one of them had to come first. With all of the current
MS/MS mass-spectral reference libraries METLIN (66),
mzCLoud (https://www.mzcloud.org), Massbank (67), National
Institute of Standards and Technology (NIST) (https://www.nist.
gov/index.html), Respect (68), the Human Metabolome Database
(69), and GNPS (gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.
jsp) (40), the scientific community can only, on average, annotate
1.8% of metabolomics data (70) (2.3% in this study, gnps.ucsd.
edu/ProteoSAFe/result.jsp?task=eea01f9ec9ea44bc80d76de30
da67be4&view=view_all_annotations_DB), and yet we can
already reveal specific lifestyle signatures of people with this level
of annotations due to large number of molecules that are detected
with a single metabolomics run. However, as the community
makes more reference spectra available, the construction of a
database of lifestyle/personal habit versus a reference spectra will
lead to solid association of lifestyles to people. Currently, such a
database does not exist and it will take significant community ef-
fort akin to the level of fingerprint databases.
Here, we show that the principle behind the approach works.

We believe that an extensive database with appropriate metadata
of where these molecules are found and their associated lifestyles
can become available. Such a database would not only benefit
forensics (tracking a subject) or a terrorist tracing (useful for the
military) but also be useful for toxicology, as it would be a
noninvasive way to measure environmental exposures, such as
exposure to plasticizers and other pollutants (Fig. S10 B and C).
Finally, we envision the use of this approach in medicine perhaps
to understand patient compliance and patient-specific metabo-
lism, or even monitor individualistic responses to medications,
even without the need to use a needle, but again with the proper
computational and reference infrastructure.

Materials and Methods
Subject Recruitment and Sample Collection. Thirty-nine healthy adults were
recruited to participate in the study. All individuals signed a written informed
consent and approved sample collection from their hands and personal
objects, in accordance with the sampling procedure approved by the Uni-
versity of California, San Diego, Institutional Review Board (Approval
130537X). There was no skin preparation for sampling, and volunteers kept
their same daily routine. The idea was to use chemistries that compose the
traces on objects as a signature, including molecules from external envi-
ronment and/or daily routine. Samples were collected from right hand and
phone of each individual using swabs, following the previously validated
protocol (13). Eight samples were collected from each right hand (three from
the palm and one from each finger) and four samples from each phone (two
from the screen and two from the back) (Fig. 1). Sampling was performed at
5 × 5-cm area for phones spots and 4 × 1-cm area for hands spots, with
premoistened cotton swabs at each site in 50:50 ethanol/water. The
absorbed material was then extracted in 200 μL of 50:50 ethanol/water. Time
2 samples were collected 4 mo later following the same protocol, from 10
individuals recruited in the first time of sampling. After collection, samples
were stored at −80 °C until further analysis. The ethanol/water extracts were
subjected to UPLC-Q-TOF for detection of smaller molecules, including MS/
MS of molecules for molecular network analysis.

UPLC-Q-TOF MS Analysis. Hand and phone swab sample extractions (Dataset
S3) were analyzed using a previously validated UPLC-MS/MS method de-
scribed in detail in ref. 13. We used a UltiMate 3000 UPLC system (Thermo
Scientific), controlled by Chromeleon software (Thermo Scientific). Briefly,
UPLC conditions of analysis were as follows: 1.7-μm C18 (50 × 2.1-mm) UHPLC
Column (Phenomenex); column temperature, 40 °C; flow rate, 0.5 mL/min;
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mobile phase A, 97.95% water/1.95% acetonitrile/0.1% formic acid (vol/vol);
mobile phase B, 97.95% acetonitrile/1.95% water/0.1% formic acid (vol/vol).
A linear gradient was used for the chromatographic separation: 0–2 min,
0–20% B; 2–8 min, 20–99% B; 8–9 min, 99–99% B; 9–10 min, 0% B. The UPLC-
MS analysis was performed on a Maxis Q-TOF mass spectrometer (Bruker
Daltonics), controlled by the Otof Control and Hystar software packages
(Bruker Daltonics) and equipped with electrospray ionization (ESI) source. MS
spectra were acquired in a positive ion mode in the mass range m/z 80–2,000.
Instrument parameters were set as follow: nebulizer gas (nitrogen) pressure,
2 bar; capillary voltage, 4,500 V; ion source temperature, 180 °C; dry gas flow,
9 L/min; spectra rate acquisition, 10 spectra/s. MS/MS fragmentation of the
10 most intense selected ions per spectrum was performed using ramped
collision induced dissociation energy, ranged from 10 to 50 eV to get diverse
fragmentation patterns. MS/MS active exclusion was set after four spectra and
released after 30 s. MS data collected from hands and phones of 39 volunteers
can be found here: ftp://massive.ucsd.edu/MSV000078832 and ftp://massive.
ucsd.edu/MSV000078993. Data collected from 10 individuals 4 months later
are available here: ftp://massive.ucsd.edu/MSV000079825.

LC-MS/MS Data Processing. MS data were processed using an open MS
workflow for features finding, previously validated to process large-scale LC-
MS datasets, collected from human skin (13). The workflow involves the use
of an open MS pipeline, to automatically select features for all LC-MS
datasets collected from 39 hands and phones (time 1 and time 2 datasets;
total, 588 samples) and save the features in featureXML format. The
FeatureFinderCentroided algorithm was used (Dataset S4). Feature detection
filtering parameters were as follows: threshold, 0.95; m/z tolerance, 10 ppm;
and retention time (RT) tolerance, 10 s. Each detected feature represents a set
of m/z and RT regions corresponding to isotopes of a molecule. Then, all
detected features were merged into one list, commonly called “bucket table,”
displaying the relative abundance/intensity of features in each sample. Mo-
lecular features were compared and if two features have a window in-
tersection area above 10%, then only the feature with maximal intensity was
considered. One bucket table with a total number of extracted features of
26,847 for time 1 and time 2 sampling combined was considered.

Bray–Curtis Dissimilarity Analysis. For the calculation of sample-sample dis-
similarity, the Bray–Curtis metric was used. The dissimilarity between a pair
of samples i, j is defined as follows: Di,j =

P
tðjMi,t −Mj,t j=ðM+

i +M+
j ÞÞ, where

Mi,t is the amplitude of metabolite t in sample i, and M+
i denotes the sum of

all metabolites in sample i, M+
i =

P
tMi,t.

For calculation of statistical significance, the difference in the mean of the
within and the between group Bray–Curtis dissimilarity was compared with
the difference in 1,000 random permutation of the sample labels.

Random Forest Models. Supervised random forest classifier was used to
evaluate the discriminant power of molecular signatures collected from
phones and hands of individuals. The classification model was tuned and
evaluated with cross-validation with the bucket table generated from the
samples collected from phones and hands. Then the model was applied to
predict the phone samples to determine whether they can trace back to their
owners withmolecular signatures. Themodel performances of the time 1 and
time 2 are consistent. For each time point, phone samples collected from the
front and the back parts were also predicted separately, to determine which
phone surface (glass, front, and plastic, back) provides the highest recovery of
hands molecular signatures.

Molecular Networking. LC-MS/MS data collected from hands and phones were
converted to the .mzXML open file format in Compass data analysis software
(Bruker Daltonics) and were subjected to the molecular network workflow of
GNPS (40) (gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp). MSCluster was used
to group MS/MS spectra that originated from identical compounds together (71).
These clusters were then represented with a consensus spectra used to construct
the molecular network. Similarity between every pair of MS/MS spectra was de-
termined using a spectral alignment algorithm calculating a cosine score. Cosine
score ranges from 0 to 1, with 1 indicating a perfect match. A cosine threshold of
0.65 was used for the molecular network in this study. Molecular networking

parameters included precursor m/z tolerance of 1 Da and a fragment mass tol-
erance of 0.5, only MS/MS spectral pairs with at least four matched fragments
ions were included, and each MS/MS spectrum was only allowed to connect to its
top 10 scoring matches, resulting in a maximum of 10 connections per node. The
maximum size of connected components allowed in the network was 600 and
the minimum number of spectra required in a cluster was 3. Molecular network
parameters for MS/MS data collected from 39 hands and phones are accessible here:
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=eea01f9ec9ea44bc80d76de30da67be4;
molecular networks generated from MS/MS data collected from hands
time 1 and phones time 2: gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
60b0ae8123284d6980204c6650c400d5; phones time 1 and phones time 2: gnps.
ucsd.edu/ProteoSAFe/status.jsp?task=027732e55c344fa4bd940430c9e144fd.

The resulting molecular network bucket table was exported from GNPS
and then visualized in Cytoscape software (42); nodes represent consensus
MS/MS spectra connected with edges. Network organization was performed
using the FM3 layout plugin (72) (apps.cytoscape.org/apps/fm3). To simplify
the network, MS/MS spectra corresponding to the background (from swabs
and solvents) were removed. MS/MS data were simultaneously searched
against GNPS MS/MS spectral libraries, and putative identifications were
imported into the network and displayed in Cytoscape as attributes.

Frequency Histogram and Heat Map. To build the frequency histogram, the
GNPS precursor ion intensity table (available as “Create Cluster Buckets” in
the advanced option on Molecular Networking Workflow) was used to
count the number of volunteers in which each molecule was present. Heat
maps (https://cran.r-project.org/web/packages/d3heatmap/index.html) were
obtained from a presence absence matrix manually curated from the mo-
lecular network output generated from hands and phones of 39 individuals
(Dataset S1). The rows (samples) and columns (molecules) were ordered by
hierarchical clustering using the Jaccard dissimilarity measure and Ward
grouping method. The R package d3heatmap was used to draw and dy-
namically inspect the heat map.

Two-Dimensional Spatial Molecular Mapping. Spatial mapping was used in this
study to map the number of features detected in each sample and to dis-
play the localization and abundance of features on hands and phones
of individuals.

Spatial mapping for hands and phones was performed in the ili toolbox for
2D and 3D spatial mapping. This open-source toolbox was developed by us
and freely available at https://github.com/ili-toolbox/ili. We used the work-
flow previously developed for molecular and microbial cartography of the
human skin surface (13). Two-dimensional mapping involves assigning for
each sampling spot a spot (x–y pixel coordinates of the center, radius) in the
image or photo of hand and phone that spatially fits the best as judged by
the visual examination. Visualization of such 2D maps was performed in ili
by dragging and dropping the hand or phone model (Fig. S11) and a .CSV
file that combines coordinates information and the bucket table generated
in section 3 (Dataset S2). A .CSV file includes hands/phones filenames, spe-
cific coordinates of each sampling spot, spot radii, and relative intensities of
detected molecular features (Dataset S2). To display MS (UPLC-Q-TOF) data,
spectral intensities are integrated over a given m/z and retention time re-
gions, corresponding to the molecular abundance at each location on the
hand and phone. These data were visualized using pseudocolormap and
overlaid onto images of the hand and the phone, at specific coordinates
based on sampling location. The so-called jet pseudocolormap was used to
display the relative signal intensities at each spot location.
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