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Vertebrate Hox genes encode transcription factors operating dur-
ing the development of multiple organs and structures. However,
the evolutionary mechanism underlying this remarkable pleiotropy
remains to be fully understood. Here, we show that Hoxd8 and
Hoxd9, two genes of the HoxD complex, are transcribed during mam-
mary bud (MB) development. However, unlike in other developmen-
tal contexts, their coexpression does not rely on the same regulatory
mechanism. Hoxd8 is regulated by the combined activity of closely
located sequences and the most distant telomeric gene desert. On the
other hand,Hoxd9 is controlled by an enhancer-rich region that is also
located within the telomeric gene desert but has no impact on Hoxd8
transcription, thus constituting an exception to the global regulatory
logic systematically observed at this locus. The latter DNA region is
also involved in Hoxd gene regulation in other contexts and strongly
interacts withHoxd9 in all tissues analyzed thus far, indicating that its
regulatory activity was already operational before the appearance of
mammary glands. Within this DNA region and neighboring a strong
limb enhancer, we identified a short sequence conserved in therian
mammals and capable of enhancer activity in the MBs. We propose
that Hoxd gene regulation in embryonic MBs evolved by hijacking a
preexisting regulatory landscape that was already at work before the
emergence of mammals in structures such as the limbs or the
intestinal tract.
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Animal development is orchestrated by a limited number of
signaling molecules and transcription factors that cooperate

in complex gene regulatory networks (1). The various elements
of these networks are repeatedly used in time and space and
were often coopted in the course of evolution to support the
appearance of anatomical novelties (2–6). Hox genes are a good
example of genes that underwent several rounds of neo-
functionalization to accompany the emergence of morphological
and functional novelties of many kinds, such as tetrapod digits
(7) or pregnancy in mammals (8). They encode transcription
factors with critical roles in the development of various embry-
onic structures, including the main body and appendicular axes,
as well as virtually all major systems (9–11).
In amniotes, 39 Hox genes are generally found located in four

different genomic clusters that arose following two rounds of
whole-genome duplications (12–14). Although this clustered
organization facilitates their coordinated transcriptional activa-
tion during the elongation of the major body axis (10, 15), it also
favors the evolution of global regulations outside the gene
clusters themselves (16). Consequently, specific subgroups of
Hox genes, at least within the HoxA and HoxD clusters, are
controlled by the same series of global enhancers; hence, they
are coregulated in different contexts, which provide the sys-
tem with both quantitative and qualitative modulations. This
regulation has been well documented for the HoxD cluster,
which contains a range of long-acting enhancers of different
specificities within its two large flanking gene deserts (17–20).
The application of chromosome conformation capture ap-

proaches (21, 22) on this locus using in vivo material has revealed

that these two large regulatory landscapes match in their extent
two topologically associating domains (TADs) [i.e., chromosome
domains where specific and constitutive physical interactions are
privileged (23, 24)]. These two TADs are separated by a tight
boundary localized within the HoxD cluster itself, isolating those
genes controlled by the telomeric TAD (T-DOM) from those
genes responding to the centromeric regulation domain (C-DOM)
(17) (see Fig. 5A). Within the T-DOM, series of enhancers are
found, which regulate groups of genes lying in the central part of
the cluster, as if the regulatory sequences would contact a chro-
matin pocket encompassing Hoxd8 to Hoxd11 (18). These large
and apparently constitutive chromosome domains (TADs) may
facilitate the required regulatory switches at important de-
velopmental loci, and were also proposed to have triggered
the evolution of pleiotropy by providing the regulatory context
for evolving novel enhancers (16, 19).
Mammary glands (MGs) are a defining characteristic of mam-

mals. They are highly specialized skin appendages that allow for
extensive postnatal care of the progeny by providing a primary
source of nutrition and immune protection (25, 26). Their early
development depends on complex epithelial–mesenchyme interac-
tions (27, 28), starting with the formation of the mammary lines, a
thickening of the ectoderm on the lateral sides of the embryo
stretching between the forelimbs and hind limbs. At embryonic day
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(E) 11.5, the murine milk lines split into five symmetrical pairs of
mammary placodes (MPs). Each placode is associated with a spe-
cialized underlying mammary mesenchyme, which drives mammary
ectoderm invagination and formation of the duct system. By E12.5,
the placodes invaginate, and around E13.5, they form the mammary
buds (MBs), which will then elongate and sprout to create a duct-
ular structure deeper in the dermal mesenchyme. The mammary
mesenchyme remains associated with the surface ectoderm, driving
the formation of the mammary papilla or nipple, which plays a
critical role in lactation (29). Nipples are found in eutherian
mammals and marsupials but not in monotremes. The molecular
bases of these complex intertissue interactions have recently started
to be investigated in some detail (30).
The function of Hox genes during the development of skin-

derived appendages has been documented in several instances,
including hair follicles and feathers (31–35). Likewise, these
genes have been implicated in MG development (36–38), with
Hoxc8 being one of the first markers of MP specification, where
it contributes to define the number and positions where these
structures will form (37). The expression of Hoxc8 is nevertheless
completely abrogated by E12.5. In contrast, Hox gene members
of the group 9 are transcribed during both embryonic and
postnatal development of the MGs, and their combined loss of
functions resulted in severe MG hypoplasia and the death of
offspring due to milk starvation (36).
We analyzed the transcriptomes of microdissected MBs and

observed that Hoxd8 and Hoxd9 are the only members of the
HoxD cluster expressed during MB development. By using a
panel of mutant alleles, we show that expression of these two
genes in the MB depends on two different and largely inde-
pendent regulatory mechanisms. Although DNA sequences lo-
cated near Hoxd8 are required to drive its expression in the MBs,
Hoxd9 transcription seem to depend mainly on a regulatory input
located 450 kb downstream of the cluster, within the T-DOM.
We further isolated a 200-bp long DNA segment, which dis-
played enhancer activity in the MBs. This DNA sequence is
conserved among therian mammals and is located near a pre-
viously described limb enhancer. Finally, the regulatory potential
of this sequence, when isolated from either the platypus or the
opossum, was tested to address the evolutionary origin of this
element across the mammalian lineage.

Results
Characterization of MB-Enriched Transcripts by RNA-Sequencing. We
complemented previous transcriptome studies of the adult MG
(39–42) by a transcriptional analysis of microdissected E13.5
embryonic MBs. MB pairs 2 and 3 were thus obtained, and their
expression profiles were established by RNA-sequencing (RNA-
seq). To distinguish MB-specific expression from the background
transcription found in the presumptive dermis and epidermis, we
dissected from the same animals an equivalent area of tissue im-
mediately adjacent to the MB (hereafter referred to as “skin”),
including the nonmammary epithelium and its underlying mesen-
chyme (Fig. 1A). We identified 409 genes specifically up-regulated
(SI Materials and Methods) and 204 down-regulated genes in the
MBs compared with control skin (false discovery rate < 10%,
minimum expression fold change = 1.5; Fig. S1 A–C and Datasets
S1 and S2). Up-regulated genes included the mammary epithelium
markers Krt8, Bmp2, Fgf17, Gata3, Pthlh, and Tbx3 (30, 43–47), as
well as the mammary mesenchyme-specific genes Tbx18, Esr1, and
Meox2 (30), thus validating our experimental approach (Fig. 1B and
Datasets S1 and S2). Among the differentially expressed genes, 28
long noncoding RNAs (lncRNAs) were up-regulated and four were
down-regulated in the E13.5 MBs, compared with embryonic skin
(Fig. S1 A and B and Datasets S1 and S2).
To classify the MB-enriched genes functionally, we performed

gene ontology (GO) term enrichment analysis (SI Materials and
Methods) using Gorilla (48) (P < 10−4). Enriched GO terms were

further clustered using Revigo (49) (similarity threshold = 0.7).
Among the 20 most enriched GO term categories, we found
several terms related to epithelial structures and MG develop-
ment, as well as BMP signaling, previously described to be es-
sential for MG development (e.g., refs. 43, 50) (Fig. 1C and
Dataset S3).
To evaluate spatial expression patterns within the MB further,

we analyzed the overlap between our list of MB up-regulated
genes and an existing estimate of both ectoderm- and mesen-
chyme-specific genes derived from a microarray-based analysis of
the posterior MB at E12.5 (30). We found that of our 409
identified MB up-regulated genes, 65 had been reported as ec-
toderm-specific in this previous work, whereas 19 of them were
found to be enriched in mammary mesenchyme (Fig. 1D). How-
ever, the majority of the MB up-regulated genes in our dataset were
expressed at similar levels in the E12.5 mammary mesenchyme and
ectoderm (Fig. S1D). We think that differences in the embryonic
stage and tissue [E12.5 posterior MB analyzed by Wansbury et al.
(30) versus E13.5 anterior MB analyzed here], as well as the in-
creased sensitivity of RNA-seq compared with microarrays (51),
may account for the moderate overlap between the two datasets. In
support of the latter, most of our MB-enriched genes were
expressed at moderate to low levels in E12.5 mammary primordia
(Fig. S1E), and were thus likely not detectable as being differentially
expressed with microarrays. The distribution of these genes was
nevertheless clearly shifted compared with the distribution of genes
classified as down-regulated in our analysis, which tended to be
expressed at lower levels in the E12.5 mammary primordium
(Fig. S1E).

The Embryonic MG Hoxome. Due to their potential role in MG
development (discussed above), we particularly looked at the
Hox gene family (Fig. S2A) and noticed that members of the
HoxB and HoxD clusters were expressed at high levels in the MB
compared with the nearby skin control, whereas HoxA and HoxC
paralogs were either not differentially expressed or even down-
regulated in these structures (Fig. 2A and Fig. S2A). Among
HoxB and HoxD genes, Hoxb3, Hoxb6, Hoxb9, and Hoxd9 were
significantly up-regulated in the MBs compared with the skin
tissue (Fig. 2A and Fig. S2A). Hoxd3 was also up-regulated in the
MBs, although to a lower level than the former genes. Although
the absolute mRNA levels of Hoxd10 were also significantly up-
regulated in the MB, the levels of Hoxd10 remained very low
(Fig. 2A and Fig. S1F). We performed whole-mount in situ hy-
bridization (WISH) at different stages of MB development (Fig.
2B and Fig. S2B) and detected strong Hoxd9 expression in all five
MB pairs at E12.5 and E13.5, whereas neither Hoxd10 nor
Hoxd11 transcripts were scored. Hoxd8 expression was also ob-
served, but only in the first to third pairs of MBs at E12.5. Its
expression was strongly down-regulated to become virtually
nondetectable 1 day later (Fig. 2B).
In support of our RNA-seq data, WISH also revealed ex-

pression of Hoxb6 and Hoxb9 in all MBs, whereas Hoxa9 tran-
scripts were only scored in the fourth and fifth MB pairs (Fig.
S2B). We confirmed that Hoxc9 was not transcribed in the MBs
at any of the developmental times analyzed (36), and we could
not detect any Hoxd3 transcripts by WISH, despite a slight, yet
significant increase, compared with skin (Fig. S2A), likely due to
the different sensitivities of the two approaches. To determine
the precise localization of the Hoxd8 and Hoxd9 transcripts, we
cryostat sectioned WISHed embryos, and both Hoxd8 and Hoxd9
were detected in the mammary mesenchyme below the mam-
mary epithelium (Fig. 2C). Although Hoxd9 was detected at a
high level in all mammary mesenchymal cells, Hoxd8 transcripts
were found in the most lateral portion of this mesenchyme and
were barely detectable in its most central part at E12.5. This
expression pattern likely paralleled the rapid down-regulation of
Hoxd8 transcription occurring in the MB between E12.5 and
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E13.5. This dataset, along with previous contributions (36–38),
indicates that Hox genes are differentially expressed both among
the various pairs of MBs and during the development of these
structures, suggesting that temporal and spatial Hox combina-
tions may contribute to MG development and specification.

Hoxd8 and Hoxd9 Transcription Depends on Distinct Regulations. To
search and identify regulatory elements controlling Hoxd8 and
Hoxd9 expression in MBs, we initially analyzed a BAC transgenic
line containing the entire HoxD cluster (TgBACHoxD; Fig. 3A). To
discriminate transgenic Hox genes from their endogenous coun-
terparts, TgBACHoxD mice were crossed with theHoxDDel(1–13)d11Lac

line [also known as Del(1–13)d11lac] where all Hoxd genes are
deleted (Fig. 3A). Backcrosses generated Del(1–13)d11lac−/−;
TgBACHoxD embryos where only transgenic Hoxd genes were
present. Neither Hoxd8 nor Hoxd9 was expressed in the MB in
these embryos (Fig. 3B), suggesting that DNA elements located
outside the region covered by the BACHoxD were required.
We further analyzed a series of targeted deletions within the

HoxD cluster spanning different intervals around the Hoxd8-to-
Hoxd9 locus (Fig. 3C) and obtained contrasting results. Although
Hoxd9 expression was not affected in any of these deletions (Fig.
3D, Upper), Hoxd8 transcripts were strongly down-regulated in
all homozygous mutant embryos where the Hoxd4-to-Hoxd8
intergenic region was absent [HoxDDel(1–4i) or HoxDDel(i); Fig.
3D, Bottom]. Hoxd8 transcription was scored in other deletions
maintaining this DNA region, however, such as the HoxDDel(1–4)

or HoxDDel(10–13). Although phylogenetic foot-printing analysis
of the Hoxd4-Hoxd8 intergenic region revealed the presence of
sequences conserved in mammals (Fig. S3A), a transgenic con-
struct carrying this region upstream of a LacZ reporter cassette
did not display any β-gal activity in the E12.5 MBs (Fig. S3B),
thus corroborating the results obtained with the BACHoxD

transgenic fetuses. Altogether, these results indicated that al-
though enhancers outside of the HoxD cluster drive Hoxd9 ex-
pression in the MBs, Hoxd8 transcription depends on the combined
activity of regulatory elements located in its immediate 3′ vicinity
and in the flanking gene deserts.
The selective expression of Hoxd8 and Hoxd9 in the MBs was

not due to the incapacity of other Hoxd genes to be transcribed
there, because mutant lines carrying deletions encompassing the
Hoxd8 and/or Hoxd9 locus ectopically transcribed Hoxd10,
Hoxd11, or Hoxd12 (Fig. S4). This ectopic expression was at least
partially driven by regulatory elements located outside the clus-
ter because it was also scored in embryos homozygous for the
HoxDDel(1–10) deletion, which removes the putative local Hoxd8
enhancer(s) [Fig. S4C; Del(1–10)]. In all of these cases of ectopic
expression, the concernedHoxd genes were positioned closer to the
T-DOM as a result of the deletion, suggesting that the T-DOMmay
contain embryonic MB enhancers specifically interacting with this
central part of the gene cluster (Fig. S4E). Ectopic expression of
Hoxd13 was nevertheless never scored in any of the mutant lines
analyzed in this study, suggesting that not all promoters are re-
sponsive to the MB enhancers (Fig. S4).
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Fig. 1. Transcriptome analysis of MG. (A) Schematic view of an E13.5 embryo showing the location of the different MB pairs (MB1–MB5) along the ante-
roposterior axis (Left) and zoomed-in lateral view of a whole-mount DAPI-stained embryo (Right) showing the MB2 and MB3 dissected in this study (red
dashed circles). A portion of the adjacent skin tissue (including nonmammary ectoderm and mesenchyme) was used as a control (white dashed circle)
(Magnification: 30×.). A schematic view of a transversal section of an E13.5 MB is depicted below. ep, epithelium; me, mammary ectoderm; mm, mammary
mesenchyme. (B) Bar graph plot showing the expression levels of mammary ectodermal (Gata3, Tbx3, Pthlh, Bmp2) and mesodermal (Esr1, Lhx9, Tbx18, Ptx2)
markers measured in fragments per kilobase of exon per million mapped reads (FPKM). **P < 0.001, ***P < 0.0001. (C) Bar graph displaying the 20 most
enriched GO term categories and their respective false discovery rate (q) values. GO terms significantly enriched among MG up-regulated genes were
identified using Gorilla (P < 10−4). To reduce the number of redundant GO term categories, we used the Revigo algorithm (similarity threshold = 0.7). (D) Venn
diagram showing the overlap of genes specifically expressed in the E13.5 MBs with mammary ectodermal (ME)-specific or mesenchymal (MM)-specific genes
identified by Wansbury et al. (30). Among the 409 E13.5 MB-specific genes, 19 corresponded to mesenchyme-specific genes, 65 were specifically enriched in
the mammary ectoderm, and 19 were up-regulated in the mammary mesenchyme.
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An MB Enhancer Region Is Located in the T-DOM.To verify that distal
MB enhancer(s) were located in the T-DOM, we tested two large
inversions that separate the HoxD cluster from either one or the
other gene desert (Fig. 4A). In the HoxDInv(Itga6-TgHd11LacNsi) in-
version, a 3-Mb region containing the entire C-DOM was
inverted, repositioning potential enhancers far away from the
gene cluster [Fig. 4A; Inv(Itga6-Nsi)]. On the other hand, the
HoxDInv(Itga6-Attp) inversion disconnected the HoxD cluster from
the T-DOM, still keeping its relative distance with potential
C-DOM enhancers [Fig. 4A; Inv(Itga6-Attp) and SI Materials and
Methods]. Although Hoxd9 expression in the MBs remained
unaffected in homozygous Inv(Itga6-Nsi) embryos, it was fully
abrogated in the MBs of Inv(Attp-Itga6) homozygous mice (Fig.
4B, Upper). To rule out a potential negative effect of the novel
neighboring DNA sequence associated with the HoxD cluster
following the latter inversion, we also analyzed a large deletion
removing almost the entire T-DOM [Fig. S5A; Del(Attp-SB3)].

Embryonic lethality was prevented by balancing this allele with a
deletion of the HoxD cluster [Del(1–13)d11Lac; SI Materials and
Methods], and Hoxd8 and Hoxd9 expression in the mammary
mesenchyme was expectedly lost in Del(Attp-TpSB3)+/−/Del(1–
13)d11Lac+/− embryos, compared with the Del(1–13)d11Lac+/−

control littermates (Fig. S5 B and C).
To locate the MB regulatory region more precisely within the

T-DOM, we used targeted deletions covering this area, including
the HoxDDel(Attp-TpSB2), HoxDDel(TpSB2-TpSB3), HoxDDel(65-TpSB3),
and HoxDDel(TpSB2-65) alleles (Fig. 4A and Fig. S5A), which were
all analyzed over the Del(1–13)d11Lac balancing allele. The
expression of Hoxd8 and Hoxd9 in the MB was not significantly
affected in either Del(Attp-SB2) or Del(CS65-SB3) embryos (Fig.
4B and Fig. S5B). In contrast, expression was no longer scored in
Del(SB2-SB3) or Del(SB2-CS65) embryos (Fig. 4B, Bottom). It is
noteworthy that this region was previously shown to contain
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regulatory elements controlling Hoxd gene expression both in the
proximal limb buds and the intestinal cecum (17, 18). This DNA
segment also contains the transcriptional start sites of Hog and Tog,
two lncRNAs coregulated with selectedHoxd genes in the developing
cecum (18), and whose transcription was also slightly enriched in
E13.5 MBs compared with the surrounding control tissue (Fig. 5B).
This particular DNA region maps at the boundary between

two sub-TADs within the T-DOM (17) (Fig. 5A), and chromo-
some conformation capture approaches have revealed its strong
contacts with the HoxD gene cluster in either transcriptionally
active or inactive cellular contexts (17, 18, 23, 52). Of note, the
interactions observed between this DNA region and Hoxd9 are
usually stronger than with the other Hoxd genes (Fig. 5C and Fig.
S6 A and B). This privileged interaction involving Hoxd9 was not
scored with any other sequence within the T-DOM, except for
the other limb-specific enhancer CS65 (17), ruling out a tech-
nical bias associated with the Hoxd9 probes used for chromo-
some conformation capture (4C) studies. The same preferential
interaction was observed when Hoxd9 and Hoxd11 4C profiles
were compared from either E10.5 brain cells (where Hoxd genes
are not expressed) or anterior and posterior trunk cells (expressing
different combinations of Hoxd genes) (53) (Fig. S6 B and C),

supporting the idea that Hoxd9 specifically contacts this region,
regardless of its transcriptional activity.
A high density of DNA sequences conserved among mammals

were found in the 60-kb surrounding this Hoxd9 interacting re-
gion, with six of them specifically conserved in all eutherian
mammals and marsupials but not in monotremes (Fig. 5D, blue
arrows). A 20-kb-large deletion was engineered, which removed
four of the six eutherian-specific elements, as well as the pre-
viously reported conserved sequences CS38 to CS40 (17). Em-
bryos homozygous for this deletion [HoxDDel(CS38–CS40), also
known as Del(CS38–CS40)] were viable and displayed no major
alteration in Hoxd gene expression in either the proximal limb or
the cecum at E13.5. Likewise, the expression of Hoxd8 in the
E12.5 MBs remained unchanged (Fig. S5D). In contrast, Hoxd9
transcripts were no longer observed in these structures (Fig. 5E),
confirming that expression of Hoxd8 and Hoxd9 in the MBs
depends on different regulatory mechanisms. Despite the loss of
Hoxd9 expression in the MB of Del(CS38–CS40)−/− embryos, no
major alterations were observed either in the milking behavior or
in the survival of the offspring of knockout females, in agreement
with the apparent lack of phenotype observed in the Hoxd9−/−

mice (36).
To assess whether additional regulatory elements controlling

Hoxd8/Hoxd9 in the developing MB were located outside of this
deleted region, we tested two stable transgenic lines carrying
random insertions of BAC clones flanking the CS38–CS40 re-
gion (Fig. 5B; BACT1 and BACT2) carrying an integration of a
LacZ reporter under the control of the β-globin minimal pro-
moter. Neither of the lines displayed any β-gal activity in the MB
at any stage analyzed (Fig. 5E). Therefore, although the CS38–
CS40 region is required for Hoxd9 transcription, the control of
Hoxd8 transcription depends on the combined activities of local
and distal regulatory elements.

A Eutherian-Specific MB Element. This 20-kb-large DNA region
necessary to drive Hoxd9 expression in the developing MB in-
teracts strongly with the HoxD cluster in all tissues analyzed thus
far (17, 18, 53). A close examination of 4C interaction profiles
revealed that the strongest contacts coincide with the CS38 and
CS39 conserved elements (Fig. S6D). The latter had been pre-
viously described as an enhancer driving Hoxd expression in de-
veloping limb buds (17, 52). Immediately 5′ of CS39, we identified a
ca. 200-bp sequence conserved among eutherian mammals. A stable
transgenic line carrying this eutherian-specific element, the CS39
sequence, and a LacZ reporter cassette revealed β-gal activity in the
developing MBs at E12.5 and E13.5, but not in the E11.5 MPs (Fig.
6A), thus matching the expression of endogenous Hoxd9. Instead,
the CS38 region did not display any enhancer activity when tested in
a classical transgenic assay.
Phylogenetic footprinting of the sequence contained in the

TgNCS39 transgenic construct (Fig. 6B) revealed four regions of
high conservation (Peak1–Peak4). Whereas Peak1 is specific to
therian mammals, Peak2–Peak4 matched the vertebrate con-
served CS39 region (17). We generated transgenic constructs
carrying different combinations of these conserved regions (Fig.
6C) to define which sequence displayed the MB enhancer ca-
pacity. All constructs carrying the Peak1 sequence activated
LacZ transcription in the MBs (Fig. 6 D and E), in agreement
with the conservation of Peak1 in therian mammals. In contrast,
the TgPeak3-Peak4/LacZ reporter displayed β-gal staining in the
limb buds but not in the E12.5 MB (Fig. 6 D and E). We next
generated lentiviral reporter constructs carrying either Peak1 or
Peak2 individually, and only the TgPeak1/LacZ construct was
able to drive LacZ reporter expression in the developing MBs, in
addition to a high background activity in the rest of the embryo
(Fig. 6 D and E). Both constructs were consistently active in the
limb bud. However, the TgPeak1/LacZ construct showed sig-
nificantly less expression intensity and robustness than observed
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with the TgPeak1-Peak2/LacZ reporter. In addition, β-gal ac-
tivity was detected in the vibrissae and in the incipient hair fol-
licles, as well as in the presumptive skin dermis, although at low
levels. These results suggest that, albeit Peak1 is the minimal
region required for MB enhancer activity, other sequences might
contribute to drive robust and specific transcription into these
structures.
The Peak1 sequence [hereafter referred to as mammary bud

regulatory element (MBRE)] was not detected in the mono-
treme platypus or in other nonmammalian vertebrates (Fig. 6B).
To evaluate the regulatory potential of this region across eu-
therian and noneutherian mammals, we cloned a DNA segment
orthologous to the murine Peak1-Peak2 sequence from both the
platypus and opossum, and tested it in lentiviral transgenic as-
says. In agreement with its lack of conservation, the platypus
transgene failed to drive LacZ activity in the developing MBs (one
of nine), although it had similar expression in the developing limb
(five of nine) compared with the murine sequence. The opossum
sequence also displayed reproducible LacZ staining in the proximal
limb (five of seven) but showed only sporadic expression in the
developing MB (two of seven). Nevertheless, it could control ex-
pression in the hair follicle placodes, thus partially mimicking the
reporter activity of the murine TgPeak1/LacZ construct.

Discussion
Hox Genes in the MGs. Our comparative transcriptome analysis
identified 409 genes enriched in the E13.5 MBs, among which
were several Hox genes. The mammary mesenchyme is in-
strumental in the development of the MGs and can induce
ectopic expression of mammary ectoderm markers in the non-
mammary skin epithelium of different tetrapod species (54, 55). Also,
the mesenchyme underlying the ectodermal precursor of different
skin appendages determines the type of structure to be formed (56,
57). Therefore, the molecular identities of these different mesen-
chymes must be distinctly identified. In a study by Wansbury et al.
(30), the authors dissected E12.5 posterior MBs and separated the
ectoderm from the underlying mammary mesenchyme, making it
difficult to identify which genes are specifically expressed in this
structure. Indeed, an important number of the genes identified in
that study are also expressed in the adjacent epithelium and mes-
enchyme (30). Our data, thus, represent a substantial complement in
the description of the gene network operating during MB develop-
ment. We confirmed the strong expression of the Hoxa9, Hoxb9, and
Hoxd9 paralogous genes (36) in the MBs and report the detectable
transcription of additional Hox genes, such as Hoxd8, Hoxb3,
and Hoxb6.
Hoxd8 transcription is rapidly down-regulated, however, whereas

other Hox gene mRNAs remain at high steady-state levels. Also,
Hoxa9 and Hoxd8 expression is restricted to a subset of MBs, with
the latter expressed only in MB1 to MB3 and the former in the
posteriorly located MB4 and MB5. These observations, along with
the reported role of Hoxc8 in the early formation of the MPs from
the milk line (36), suggest that spatial and temporal Hox combi-
nations contribute to the patterning and development of the dif-
ferent pairs of MGs (Fig. 7A). Hairs and feathers are other skin-
derived appendages whose early development shares similarities
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with MP induction and invagination (58–61). Of note, they also
express different Hox gene combinations (32–34, 62). Furthermore,
within the same skin structure, a considerable level of interspecies
heterogeneity in the expression of these genes can be observed (31),
suggesting that variousHox codes were differentially coopted during
evolution for the specification of epidermal appendages. In this
context of multiple Hox gene expression, it is not surprising that our
deletion of the entire CS38–CS40 region, including the Hoxd9
MBRE element, did not elicit a strong abnormal phenotype.
Functional redundancy between group 9 HOX proteins in these
and other developing structures was indeed previously reported
(9, 36, 63).

Distinct Regulations in the MB. We show that the telomeric gene
desert is required for the expression of both Hoxd8 and Hoxd9 in
the embryonic MB. These two genes are nevertheless regulated
by different mechanisms. Hoxd9 transcription depends on a 20-kb-
large DNA segment (region CS38–CS40) containing the euthe-
rian conserved element MBRE, whereas sequences inside the
HoxD cluster have little impact upon its regulation. On the
other hand, the MBRE-containing region only weakly, if at all,

contributes to Hoxd8 expression in the MBs, which instead requires
a 13-kb-large region located 3′ of the Hoxd8 locus within the cluster
(Fig. 7B). Surprisingly, although the Del(SB2-CS65) deficiency ab-
rogated Hoxd8 expression in the MBs, none of the BAC clones
covering this region displayed enhancer activity in the MBs. One
explanation is that regulatory elements drivingHoxd8 expression may
be located within the SB2–SB3 region, yet outside of the transgenic
BAC tested in this study. Also, the concomitant activity of various
Hoxd8 enhancers located both in the 3′ vicinity of the gene and in the
telomeric gene desert may be required such that neither one of these
sequences alone would be sufficient. Therefore, although the precise
mechanisms behind these regulations remain to be elucidated, our
results reveal that Hoxd8 and Hoxd9 are differentially controlled in
the developing MBs. This observation is intriguing, because long-
range regulations involving the HoxD flanking gene deserts were
previously reported to involve series of contiguous genes systemati-
cally, thus allowing for a coordinated function.

A Regulatory Hub. The particular topology of chromatin domains at
Hox loci could have triggered the emergence of novel enhancers,
through preexisting structural and regulatory contacts (16).
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Noteworthy, region CS38–CS40 is located at the boundary be-
tween the two sub-TADs of the T-DOM and was reported to
establish robust contacts with the HoxD cluster in all tissues ana-
lyzed thus far, regardless of the transcriptional state of the gene
cluster (17, 53, 64). These constitutive contacts may be associated
with the presence of several CTCF binding sites clustered in this
region. Here, we show that among Hoxd genes, the strongest in-
teraction with this region, and particularly with the CS39 en-
hancer, is established by Hoxd9, suggesting that this locus may
help secure a robust constitutive interaction with this region,
which might be used by various regulatory regions located around
the CS3–CS40 region to interact with their sets of target genes in
the vicinity of Hoxd9 (Fig. 7C). In this view, these constitutive
contacts may serve as a regulatory hub by dragging various tissue-
specific enhancers always at the same position within the HoxD
cluster, centered on Hoxd9, as previously observed for the proxi-
mal limbs and the cecum (17, 18) (Fig. 7C). Also, this strong
constitutive interaction with Hoxd9 could have been instrumental
in the emergence of MB enhancers in mammals by providing the
necessary chromatin architecture, and thus optimal conditions, for
a novel regulatory sequence to evolve, a mechanism proposed for
the de novo appearance of enhancers located in the centromeric
gene desert (19).

Evolution of an MB Enhancer. MGs likely originated from an
apocrine gland already present before the divergence of the
sauropsid and synapsid lineages, which further evolved in the
synapsid lineage (the precursors of mammals). It is believed that
the ancestral MG was a unit composed of a hair follicle, a sebaceous
gland, and an apocrine gland, thus termed the apo-pilo-sebaceus
unit (APSU) (65, 66). Monotremes have ∼200 repetitions of
APSUs per MG, which secrete directly to the body surface; hence,
they lack mammary papilla (or nipples). In contrast, marsupial and
eutherian MGs release their secretion into mammary ducts that
converge toward a larger duct opening into nipple-like structures
(65). Therian MGs differ in their number and positions, as well as

in the shape and function of the nipples, which have adapted
according to the nursing behavior and number of the progenies
(29, 67). It is therefore possible that changes in the transcription
profiles of the mammary mesenchyme, which is required for the
development of both structures, accompanied the evolution and
diversification of MG morphology and functions across the
mammalian lineages.
Our investigations on the evolutionary origin of the enhancer

activity driving Hoxd9 expression in the mouse embryonic
mammary mesenchyme identified a sequence (MBRE) capable
of directing reporter gene expression in the mesenchyme of the
developing MBs. The MBRE, however, requires the presence of
sequences located nearby (within Peak2 conserved throughout
vertebrates) to ensure specific activity into the MBs. We were
not able to identify the monotreme MBRE, and the orthologous
sequence from platypus did not display enhancer activity in the
mammary mesenchyme. Of note, the marsupial orthologous se-
quence (from opossum) did trigger LacZ reporter expression in
the mesenchyme underlying the forming hair follicle placodes,
whereas expression in the developing MBs was only sporadic.
The lack of evidence about Hox gene expression in the MBs of

noneutherian mammals makes it difficult to interpret such
changes in the regulatory activity of the MBRE in these lineages.
Also, interspecies divergence within enhancer sequences does
not necessarily mean that their regulatory output would be
fundamentally modified (68), and enhancers associated with
genes under positive selection in mammals were shown to evolve
rapidly (69). As a possible scenario however, this sequence may
have acquired a nonspecific enhancer activity in APSU-associ-
ated mesenchyme in the common ancestor of metatherians and
eutherians, thus preluding the actual murine MB regulatory el-
ement. Alternatively, this sequence exerted its MB activity in the
therian common ancestor and further diversified toward a hair
follicle-specific activity in the marsupial lineage. Our observation
that a transgenic construct carrying only MBRE retains its broad
APSU enhancer activity, thus resembling the opossum sequence,
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nevertheless suggests that this activity was an ancestral property.
In this view, the MB specificity of this sequence evolved through
the acquisition of responsiveness to upstream mammary mes-
enchyme determinants. The nature of these upstream factors is
currently under study.
It was recently shown that transposable elements can acquire a

regulatory potential during evolution, and thus have an impact
on gene expression (e.g., refs. 70–72). On the other hand, ver-
tebrate Hox clusters are largely devoid of transposable elements,
unlike their flanking regulatory regions. Interestingly, the CS38–
CS40 region is also relatively poor in transposable element in-
sertions compared with the surrounding HoxD telomeric gene
desert. This low number of transposons could be due either to
the high density of regulatory elements found within this region
or to the importance of this DNA segment in the establishment
of a regulatory conformation at the HoxD locus.

Materials and Methods
Mouse Strains. Mice were handled according to the Swiss law on animal
protection (LPA), with the requested authorization (GE/81/14 to D.D.). Mice
were raised and killed according to good laboratory practice standards.
Genetically modified mice were maintained and crossed in heterozygosis.
The mouse mutant lines used in this work and the primers used to genotype
them are described in Table S1. The description of the Inv(Attp-Itga6) and
Del(CS38–CS40) alleles can be found in SI Materials and Methods.

RNA Extraction and RNA-Seq. Pairs of embryonic MBs 2 and 3 from E13.5
embryos were dissected in cold PBS and immediately processed for RNA
extraction. To evaluate MB-specific gene expression, we dissected an
equivalent portion of ectoderm and its underlying mesoderm tissue imme-
diately adjacent to theMB. RNA extractionwas performed using the RNAeasy
Micro Kit (Qiagen) following the manufacturer’s instructions. The RNA-seq
libraries were prepared from 100 ng of pure total RNA using the TruSeq
Stranded mRNA protocol from Illumina with polyA selection. Libraries were
sequenced on a HiSeq 2500 machine as single-end, 100-bp reads. The RNA-
seq datasets produced in this study are publically available in the Gene Ex-
pression Omnibus (GEO) database (accession no. GSE84943).

Cloning. The probe sequences of Hoxa9, Hoxb6, Hoxb9, and Hoxc9 were
amplified using Toptaq (Qiagen) and specific primers (Table S2), and cloned
into pGEMT-easy vector following the manufacturer’s instructions. For the
cloning of lentiviral constructs, the target DNA was amplified by PCR using

the Expand High Fidelity PCR system (Sigma) and specific primers (Table S3),
and ligated in the PCR8/GW/TOPO (Thermo Fisher Scientific). Evolutionary
conserved sequences were identified using the Vista alignment algorithm
(see SI Materials and Methods). Coordinates used for the alignments are
listed in Table S4. The opossum and platypus Peak1 and Peak2 regions were
identified based on sequence conservation corresponding to the mouse
orthologous CS39 Peak2. The cloned sequences correspond to the coordi-
nates chr4:188,167,036–188,167,486 (monDom5) and Ultra514:15,095,67–
15,096,077 (ornAna1) of the opossum and platypus genomes, respectively.
These sequences were synthesized in vitro and inserted into the pENTR vector
(GeneArt; Thermo Fisher Scientific). All of the PCR8/GW/TOPO or pENTR clones
were verified by standard Sanger sequencing using the T7 primer located in the
vector backbone, and the clones carrying the correct insert were recombined
into the pRRLbLacGW (18) by LR reaction (Thermo Fisher Scientific). The final
recombined constructs were verified by Sanger sequencing.

Lentiviral Transgenesis and β-Gal Staining. Lentiviral transgenesis was per-
formed as in the study by Friedli et al. (73), and E12.5 embryos were dissected
and stained for β-gal activity following a standard protocol.

WISH. Probes used in WISH were synthesized using T3, T7, or SP6 RNA po-
lymerase (Table S2). They were subsequently purified using the RNA Easy
Mini Kit (Qiagen). The WISH protocol was the protocol used by Woltering
et al. (74).

Chromosome Conformation Capture (4C) Sequencing Dataset Analysis. The 4C-
sequencing data from E11.5 whole embryo (75) were downloaded from the GEO
database (accession no. GSE79048), whereas the 4C-sequencing data from E10.5
brain and anterior and posterior trunk were obtained from Noordermeer et al.
(53). The pipeline used to analyze the 4C-seq data is described in SI Materials
and Methods.
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