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Abstract

Epistatic interactions play a fundamental role in molecular evolution, but little is known about the 

spatial distribution of these interactions within genes. To systematically survey a model landscape 

of intragenic epistasis, we quantified the fitness of ~60,000 Saccharomyces cerevisiae strains 

expressing randomly mutated variants of the 333-nt long U3 snoRNA. The fitness effects of 

individual mutations were correlated with evolutionary conservation and structural stability. Many 

mutations had small individual effects, but large effects in the context of additional mutations, 

indicating negative epistasis. Clusters of negative interactions were explained by local 

thermodynamic threshold effects, whereas positive interactions were enriched among large-effect 

sites and between base-paired nucleotides. We conclude that high-throughput mapping of 

intragenic epistasis can identify key structural and functional features of macromolecules.

The effect of a mutation on phenotype may depend on the presence of additional mutations. 

This phenomenon, known as epistasis, explains synthetic lethal interactions, where a 

combination of two individually viable mutations causes death, and compensatory 

interactions, where the fitness cost of a mutation is reduced by a second mutation (1, 2). 

Epistasis plays a major role in evolution; it determines the accessibility of mutational 

pathways (3), thereby influencing the rate of adaptation and the diversity and robustness of 

genetic variants (4, 5). Although genome-wide studies have revealed a network of intergenic 

epistasis (6), it has been suggested that interactions within genes may be even more common 

(7–11). However, previous studies focused on relatively small networks of interactions, and 

the comprehensive pattern of epistasis has not yet been determined for any gene.

We used “doped” oligonucleotides to synthesize ~130,000 randomly mutated variants of the 

333-nucleotide Saccharomyces cerevisiae gene SNR17A, which encodes the U3 small 

nucleolar RNA (snoRNA). U3 basepairs to the primary rRNA transcript (pre-rRNA) and this 

interaction is required for pre-rRNA cleavage and 18S rRNA biogenesis. Our mutagenesis 

approach ensures uniform coverage of mutations among positions 7-333, encompassing 98% 
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of the gene, and prevents bias towards specific types of mutations (Figs. 1A, S1). We 

generated two independent mutant libraries, which contained on average 3 and 10 single 

nucleotide polymorphisms (SNPs) per allele, respectively. In addition to the SNPs, 43.6% of 

variants also contained short deletions (median length 1 nt) or insertions (median length 1 

nt). All 981 (3*327) possible point mutations were represented in the library, and 99.4% of 

the 53,301 (327*326/2) possible pairs of sites were jointly mutated, most of them in alleles 

that contained additional mutations. To facilitate unambiguous identification of variants by 

high-throughput sequencing, we tagged each variant with a unique 20-nt barcode (Fig. 1A) 

placed in a non-transcribed region downstream of the U3 gene to minimize interference with 

function.

To measure fitness, we used the D343 yeast strain, which contains a single copy of the wild-

type U3 gene under control of a galactose-inducible promoter (12). D343 cells can grow in 

galactose-containing medium, but shifting to glucose results in downregulation of U3 and 

growth arrest. Transformation of wild-type U3 on a plasmid allows the cells to survive on 

glucose, but non-functional U3 mutants do not support growth (Fig. S2). We transformed 

D343 cells with centromeric plasmids carrying the U3 mutant libraries, and measured the 

frequency of each mutant during competitive growth on glucose (Fig. 1B). As expected, 

non-functional variants decreased in frequency during the competition, whereas the wild-

type gene increased (Fig. 1C). Growth patterns were reproducible between four replicate 

experiments and across replicate U3 variants within an experiment (Figs. 1D, S3).

We measured the logarithm of relative fitness (log fitness) of ~60,000 variants that passed 

quality filters, by fitting exponential decay curves to the barcode count data (13). Log fitness 

of wild-type U3 was set to 0. We first focused on the effects of single mutations in an 

otherwise wild-type gene (13). In most positions, mutations were tolerated with minimal 

effect on fitness (Fig. 2A). The exceptions were the conserved protein binding sites known 

as Box B, C, C’ and D, mutations in which are lethal or highly deleterious. In addition, a 

moderate fitness decrease was observed for mutations within stems I, II, III and VI, 

particularly in G-C base pairs located at the base of stems, suggesting a role in structural 

stability. Folding predictions confirmed that destabilizing mutations in individual stems 

reduced fitness (Fig. S4). The 5nt 3’-terminal stem of U3 confers protection from 

degradation by 3’-5’ exonucleases (12). Mutations in this stem reduced fitness 

proportionally to their predicted effect on RNA folding strength (Figs. S4, S5). U->C 

mutations in positions 178 and 191 were highly deleterious (Fig. S5), possibly because they 

created consensus binding motifs (UCUUG) for the RNA degradation factor Nab3 (14). The 

fitness effects of mutations were slightly larger at 37C compared to 30C, consistent with the 

destabilizing effect of temperature on U3 structure (Fig. S6). We found no mutations that 

consistently increased fitness, suggesting that wild-type U3 is optimally adapted for 

function. In conditions where the genomic copy of U3 was coexpressed with the mutant 

library, the mutations had no effect, indicating lack of dominant negative or gain of function 

effects (Fig. 1D). Overall, these results show the expected pattern of single-site fitness 

effects and support the reliability of the measurements.

We then calculated pi, the aggregate log fitness effect of position i across all genetic 

backgrounds represented in the library (13). In contrast to the single mutants (Fig. 2A), most 
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positions showed substantial effects on fitness in combination with other mutations (Fig. 

2B). The variation in pi across the gene was reproducible between replicate experiments, 

was observed in both mutant libraries, was robust to the exclusion of outlier variants, and did 

not reflect the co-occurrence of mutations with large-effect mutations in other sites (Figs. 

S6,7). Most positions with very negative pi map to the conserved core of the U3 gene (stems 

I-III, 5’ hinge, 3’ hinge, Fig. 2B). In contrast, sites with near-zero pi were located in the 

fungal- or yeast-specific regions of the molecule (stems IV-VI, Fig. 2B). The pi values were 

correlated with fitness effects in wild-type background (Fig. 2C, Spearman rho=0.57, 

pval<2*10-16). However, the relationship was markedly non-linear, indicating that many 

mutations had small effects in an otherwise wild-type U3 but large effects in the context of 

additional mutations.

This pattern suggests a high prevalence of negative epistatic interactions within U3. To 

confirm this, we analyzed the distribution of fitness effects as a function of the number of 

mutations in each allele (Fig. 2D). As expected, the average fitness of variants decreased 

with increasing numbers of mutations. Notably, measured fitness was consistently lower 

than expected under an additive model (Fig. 2E). This indicates overall enrichment of 

negative epistatic interactions relative to positive interactions.

We estimated the strength of all pairwise interactions from measurements of single, double 

and multiple mutants (13) with a regression model (15–17) that explained approximately 

86% of variance in measured fitness and produced similar patterns of interactions when 

applied to our replicate experiments (Fig. S9). We obtained a consensus set of epistatic 

interactions by averaging the interaction estimates from all four glucose competition 

experiments. Plotting these interactions resulted in a characteristic tartan pattern (Fig. 3A), 

in which several positions in the gene showed strong positive interactions with most other 

sites. These hubs of positive epistasis correspond to the C’, C and D boxes, which are highly 

conserved in evolution and show the largest individual effects on fitness. This observation 

indicates a saturation effect, whereby large-effect mutations inactivate the gene to such an 

extent that additional mutations become irrelevant, resulting in positive epistasis. 

Consistently, sites with large individual effects showed a strong bias towards positive 

epistasis (Wilcoxon test, p<2*10-16; Fig. 3B,C), and the fitness of C’, C and D box mutants 

did not depend strongly on the presence of additional mutations in the gene. The saturation 

effect is the within-gene equivalent of positive epistasis between pairs of mutations that 

independently inactivate the same metabolic pathway (18, 19).

We also expected positive interactions between base-paired positions, due to the presence of 

compensatory mutations, which are common in RNA evolution (5). Indeed, base-paired 

positions showed an enrichment of positive epistasis relative to all pairs of positions 

(Wilcoxon test, p=2*10-7; Fig. 3D). In particular, all positions within the essential terminal 

stem formed strong positive interactions with their corresponding base-paired residues (Fig. 

3E). To test whether positive epistasis can be used to predict RNA folding, we intersected 

the set of positive interactions with a list of all potentially interacting triplets of nucleotides 

(13). In this analysis, 5 of 6 of the strongest positive interactions corresponded to known 

basepairs. When we used these interactions as constraints in RNA folding prediction, the 

accuracy of predicted secondary structure was improved (Fig. S10).
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Despite the enrichment of positive interactions among large-effect or base-paired sites, 

negative interactions were more common overall (Fig. 3A,B). Whereas the strongest positive 

interactions typically involved at least one large-effect position (Fig. 4A), negative 

interactions were common among low- and intermediate-effect sites, and were distributed 

throughout the molecule, with enrichment in the conserved core (Fig. 4B). The strength of 

negative epistasis was inversely correlated with the distance along the primary sequence: 8 

out of 10 strongest negative interactions were between pairs of adjacent nucleotides, and the 

median distance between the 100 most strongly interacting pairs was 18 nt. We thus focused 

on a hotspot of interactions encompassing the 3' hinge (Fig. S11A) that mediates base-

pairing between U3 and the pre-ribosomal RNA (pre-rRNA), and is necessary for the pre-

rRNA cleavage step of ribosome biogenesis (20). Our results suggest that the 3’ hinge can 

tolerate a single SNP, but that multiple mutations within this region reduce fitness, probably 

because they disrupt U3-rRNA binding. A similar, but less pronounced pattern was found in 

the 5’ hinge area. Our analysis shows that the thermodynamic threshold model, wherein 

fitness decreases abruptly when molecule stability falls below a certain level (9), also 

operates at the level of interactions between distinct molecules (Figure S11B).

In genome-wide studies, epistatic interactions between genes correlate with physical 

contacts, coevolution, and co-occurrence within biochemical pathways (6). Mapping genetic 

interaction networks therefore provides information about cellular organization. We 

postulate that intragenic interaction maps will similarly illuminate patterns of molecular 

organization. This and other studies (8, 17, 21, 22) suggest that within-gene epistatic 

interactions are enriched among residues in physical proximity. Were this correlation 

sufficiently strong, intra-gene epistasis would identify secondary and tertiary structures of 

macromolecules. Notably, recent studies have successfully predicted the 3D structures of 

proteins and complexes by measuring coevolution between residues within protein 

alignments, a phenomenon intimately linked to epistasis (23, 24). Improved methods to 

extract structurally relevant interactions from the dense network of intramolecular epistasis 

should allow macromolecular structures to be derived from maps of within-gene epistasis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

A high-throughput fitness assay identifies the complete network of epistatic interactions 

within a yeast RNA, and reveals mechanisms of epistasis.
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Figure 1. Experimental mapping of the U3 fitness landscape.
A. To perform saturation mutagenesis of U3 we used PCR to assemble overlapping 

“97:1:1:1-doped” and non-doped oligonucleotides covering the whole length of the gene 

(13) and attached a unique 20-nt barcode to each variant. B. We cloned the U3 mutant 

library into centromeric plasmids and transformed the plasmids into the D343 yeast strain. 

C. Normalized read-counts from barcode sequencing for 7 randomly chosen wild type U3 

variants (red) and 7 variants carrying a single mutation in box D (blue), in control 

(galactose) and competitive (glucose) conditions. Fitness was approximated by fitting 
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exponential decay curves to the barcode count data. D. Rows indicate positions along U3 

and columns indicate substitution to one of 4 bases: A, C, G and T. Log fitness effects are 

shown in blue for deleterious effects, red for positive effects and white for no effect on 

galactose in 30C (Gal), and glucose (Glu) in 30C and 37C. Genetic variants with one or two 

mutations were included in the analysis (13). Positions for which no data were obtained are 

shown in grey.
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Figure 2. Distribution of fitness effects mapped to secondary structure.
A. The log fitness of single mutants at each position of U3 (fi) is represented according to 

the colour scale, from blue for no effect, to red for effects -1 and stronger; non-mutagenized 

positions are white. B. The population-average log fitness effect for each position in the 

background of multiple mutations (pi) (13). Evolutionarily conserved motifs are indicated on 

the secondary structure. C. Non-linear relationship between the fitness effects of single 

mutations in wild-type background (fi) and in mutated backgrounds (pi). D. Cumulative 

distributions of log fitness for mutants grouped by number of mutations per variant. E. Mean 

measured log fitness (white boxes) is always lower than expected in the absence of epistasis 

(grey boxes). Inclusion of epistasis improves the fit between the model and the data (dark 

grey boxes). The boxes show the median and inter-quartile ranges.
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Figure 3. Localization of negative and positive epistasis.
A. Estimated pairwise epistatic interactions (wij) between positions in U3 (13), averaged 

between all experiments in glucose media. Negative interactions are green and positive are 

red; evolutionarily conserved motifs are indicated on the right and positions in U3 on the 

bottom. Data for the first 6 positions are skipped due to lower coverage of mutations (see 

Fig. S1). B-D. Distribution of wij showing negative epistasis (green bars) and positive 

epistasis (red bars) for all interactions (B), for sites with large individual effects (effect size 

<-1 for at least one site in pair, C), and among pairs of base-paired positions (D). E. 
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Distributions of wij for individual positions in the terminal stem (75-78, 330-333). Red 

asterisks indicate interactions between known basepairs.

Puchta et al. Page 12

Science. Author manuscript; available in PMC 2016 December 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Network of epistatic interactions.
Circos plots showing patterns of 200 strongest positive (A) and negative (B) interactions 

within U3. Evolutionarily conserved motifs are indicated.
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