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Abstract

Mycobacterium tuberculosis (M.tb) imposes a large global health burden as the airborne agent of 

tuberculosis. M.tb has been flourishing in human populations for millennia and is therefore highly 

adapted to the lung environment. Alveolar macrophages (AMs), a major host cell niche for M.tb, 

not only phagocytose inhaled microbes and particulate matter but are also crucial in catabolizing 

lung surfactant, a lipid-protein complex that lines the alveolar spaces. Since macrophage host 

defense properties can be regulated by surfactant and M.tb can use host lipids as a carbon source 

during infection, we sought to determine the receptor(s) involved in surfactant lipid uptake by 

human macrophages and whether the presence of those lipids within macrophages prior to 

infection with M.tb enhances bacterial growth. We show that preformed scavenger receptor CD36 

is redistributed to the cell membrane following exposure to surfactant lipids and surfactant protein 

A (SP-A). Subsequently, surfactant lipids and/or SP-A enhance CD36 transcript and protein levels. 

We show that CD36 participates in surfactant lipid uptake by human macrophages, as CD36 

knockdown reduces uptake of dipalmitoylphosphatidylcholine (DPPC), the most prevalent 

surfactant lipid species. Finally, exposing human macrophages to surfactant lipids prior to 

infection augments M.tb growth in a CD36-dependent manner. Thus, we provide evidence that 

CD36 mediates surfactant lipid uptake by human macrophages and that M.tb exploits this function 

for growth.

Introduction

Mycobacterium tuberculosis (M.tb), the bacterium responsible for tuberculosis (TB), is a 

prominent global health threat: TB causes a human death every twenty seconds (1). In 

conjunction with this alarming death rate, M.tb’s escalating ability to resist antibiotic 

treatment necessitates increasing our understanding of the host response during TB. M.tb 
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resides latently within a third of the world’s population and circulates among humans by 

airborne transmission. Thus, characterizing endogenous lung processes which are 

encountered by M.tb upon inhalation into the alveolar spaces is crucial, because homeostatic 

mechanisms of the healthy lung are likely exploited by M.tb to enhance its success early 

during infection.

Alveolar macrophages (AMs), the initial host cell niche for M.tb (2), exhibit a tissue-specific 

immunoregulatory phenotype (3–5) which is shaped in part by their exposure to lung 

surfactant, a lipid-protein complex which is necessary for normal pulmonary function (6–

21). Surfactant lines the alveolar spaces and lowers surface tension across the tissue, thereby 

reducing the energy required for inhalation and preventing alveolar collapse during 

expiration (22). Surfactant is a phospholipid monolayer predominantly composed of 

phosphocholine-based lipids, primarily dipalmitoylphosphatidylcholine (DPPC), with 

smaller amounts of other phospholipids and cholesterol. The four surfactant proteins (SP-A 

– D) comprise roughly ten percent of the total composition of surfactant. SP-B and SP-C are 

small hydrophobic proteins and contribute to proper spreading of the phospholipid 

monolayer (23). SP-A and SP-D are larger hydrophilic proteins with important functions in 

pulmonary innate immune responses (22).

AM phenotype and behavior are influenced by surfactant exposure, which has major 

implications for AM-mediated immune responses in pulmonary tissue. For example, SP-A 

inhibits signaling through toll-like receptor 2 (TLR2), a pattern recognition receptor which is 

important in the host response to M.tb infection (11). Surfactant lipids inhibit NF-κβ 
activation and increase macrophage production of the anti-inflammatory cytokine IL-10 

following LPS exposure (10). In addition to AM immunoregulation by surfactant 

components, AMs are active in surfactant lipid catabolism (24, 25) and are indispensable for 

surfactant homeostasis (26, 27). Due to the prominent role of surfactant in shaping the AM 

immune response repertoire and the contributions of AMs to pulmonary homeostasis, it is 

crucial to incorporate aspects of the lung environment, such as surfactant, into experiments 

addressing macrophage responses to M.tb, a predominantly pulmonary pathogen. 

Furthermore, characterizing AM-surfactant interactions in the absence of infection will 

enable us to understand the environment into which M.tb is inhaled and successfully 

establishes a pulmonary infection. An important gap in our knowledge regarding the 

endogenous lung environment is the mechanism(s) of surfactant lipid uptake by AMs. 

Although surfactant lipid uptake by AMs is receptor-mediated (28), the receptor(s) involved 

have yet to be identified. We therefore sought to identify which receptor(s) may contribute to 

surfactant lipid uptake by human macrophages.

Scavenger receptor CD36 mediates uptake of palmitate by type II pneumocytes (29), the 

cells which synthesize surfactant. CD36 imports fatty acids into a variety of tissues, such as 

cardiac and skeletal muscle (30), and is the major receptor for the uptake of oxidized low 

density lipoprotein (oxLDL), thereby contributing to the development of foamy 

macrophages (FMs) during atherosclerosis (31). CD36 also interacts with various TLRs to 

mediate their location and cellular signaling responses during both infection and sterile 

inflammation (32–35).
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CD36 is expressed on AMs (36–38) and has been implicated in the establishment and 

progression of TB in several animal models (39, 40), although data indicating that CD36 is 

dispensable for long-term control of TB in the murine model have been reported as well 

(41). In contrast to potentially enabling pulmonary colonization by M.tb, CD36 seems to 

provide a host-protective function during infections with other pathogens (42–45). This 

discrepancy between the roles of CD36 during TB relative to other infectious diseases led us 

to hypothesize that CD36 performs a homeostatic function in the lung, such as constitutive 

surfactant lipid uptake by macrophages, which M.tb capitalizes on early during airborne 

infection.

M.tb uses host lipids as a carbon source (46–48), which may contribute to the bacterium’s 

successful persister strategy (49, 50). TB results in disrupted host lipid metabolism during 

later stages of disease (51) and post-primary reactivation TB has historically been described 

as lipid pneumonia (52). During in vitro infection, M.tb induces macrophages to acquire a 

lipid-laden “foamy” phenotype (48). However, we speculate that the surfactant lipid-rich 

lung environment constitutes an endogenously favorable setting for M.tb, thereby 

necessitating less manipulation of the host by the bacteria during early infection. Due to 

their role in surfactant catabolism, AMs are an endogenously lipid-filled cell, a tissue-

specific phenotype which was described decades ago (53, 54). We therefore hypothesized 

that CD36 functions as an uptake receptor for surfactant lipids and that constitutively present 

surfactant lipids and metabolites enable enhanced M.tb growth in macrophages during early 

infection.

Herein we show that surfactant lipids and SP-A increase CD36 surface expression by 

inducing translocation of preformed CD36 to the cell membrane. Subsequently, these 

surfactant components increase CD36 transcript and protein levels over days in culture. We 

further show that CD36 knockdown macrophages have a significantly diminished ability to 

acquire DPPC. Finally, we show that exposure of macrophages to surfactant lipids prior to 

M.tb infection enhances bacterial growth, but only if CD36 is present. Thus, CD36 location 

and expression are regulated by surfactant and the presence of CD36 and surfactant lipids 

enhances M.tb growth in human macrophages.

Materials and Methods

Reagents and antibodies

RPMI 1640 +L-Glutamine was purchased (Life Technologies, Carlsbad, CA, USA) and 

supplemented with donor autologous serum for cell culture or with 20mM HEPES buffer 

(Sigma Chemical Co, St. Louis, MO, USA), pH 7.2 and 1 mg/mL human serum albumin 

(HSA) (Calbiochem Corp., La Jolla, CA, USA) during M.tb infection. For confocal 

microscopy, anti-CD36 (sc-7309, Santa Cruz) and anti-SR-A (AB5486, EMD Millipore) 

Abs were used, followed by AlexaFluor (AF) 488- or 647-conjugated goat-anti-mouse IgM 

or AF568-conjugated goat-anti-rabbit IgG (Invitrogen, Waltham, MA, USA). Isotype 

controls were mouse IgM and rabbit IgG (Ancell Corporation, Stillwater, MN, USA). 

Survanta (bovine-derived surfactant lipids lacking SP-A and SP-D) was from Abbott 

pharmaceuticals (Abbott Park, IL, USA). SP-A was purified from the bronchoalveolar 

lavage of alveolar proteinoisis patients as described (55). DiI oxLDL was from Alta Aesar 
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(Haverhill, MA, USA), DiI acLDL from ThermoFisher Scientific (Waltham, MA, USA) and 

1-palmitoyl-2-{12-[(7-nitro-2-1,3-benzoxadiazole-4-yl)amino] dodecanoyl}-sn-glycero-3-

phosphocholine (hereafter referred to as NBD-DPPC) and 1-palmitoyl-2-{12-[(7-

nitro-2-1,3-benzoxadiazole-4-yl)amino] dodecanoyl}-sn-glycero-3-[phospho-rac-(1-

glycerol)] (hereafter referred to as NBD-PG) from Avanti Polar Lipids (Alabaster, AL, 

USA). Pam3Cys was purchased from Calbiochem (EMD Biosciences, La Jolla, CA, USA). 

Human anti-TNFα and anti-IL-6 DuoSet ELISA development kits were purchased from 

R&D Systems (Minneapolis, MN, USA).

Human monocyte-derived macrophage and alveolar macrophage isolation and cultivation

Human peripheral blood mononuclear cells (PBMCs) were isolated from the heparinized 

blood of healthy donors on a Ficoll-Hypaque (Amersham, Pittsburgh, PA, USA) cushion as 

described (56). PBMCs were then cultured in Teflon wells in RPMI 1640 + 20% donor 

autologous serum for 5 days at 37°C, 5% CO2 (56). During this time, monocytes 

differentiate into monocyte-derived-macrophages (MDMs). Experiments were conducted in 

duplicate or triplicate wells using MDM monolayers in tissue culture plates. Human alveolar 

macrophages (HAMs) were isolated from the BAL of healthy human donors (8). PBMC and 

HAM protocols were approved by The Ohio State University (OSU) IRB.

Confocal Microscopy

MDMs (1.5 x 105) adhered to glass coverslips in 24-well tissue culture plates were exposed 

to SP-A (10 μg/mL), Survanta (100 μg/mL) or both for various times. Monolayers were 

fixed with 4% PFA for 10 min in the dark at room temperature, washed and left intact or 

permeabilized by a one minute methanol exposure (6). Coverslips were blocked overnight at 

4° (PBS + 5% BSA + 10% FBS) and labeled with anti-CD36 (1:200 for 1h at room 

temperature) or SR-A (1:50 for 1h at room temperature) primary Abs and AF secondary Abs 

(1:500 for 1h at room temperature). HAMs (1 x 105) were adhered to coverslips for 2h, 

washed, fixed with 4% PFA, blocked overnight at 4° and immunolabeled for CD36. 

Coverslips were mounted on glass slides using ProLong Gold AntiFade Mounting media 

plus DAPI (Invitrogen Life Technologies) and viewed using a FluoView 1000 Laser 

Scanning Confocal microscope (Olympus). For MDM experiments, the mean fluorescence 

intensity (MFI) of random confocal images was quantified using pixel intensity 

measurement (NIH Image J program). The MFI was calculated for approximately 150 

MDMs per coverslip, from duplicate slides for each experiment. To evaluate intracellular 

lipid content, HAMs and MDMs on coverslips were labeled with 2.5 μg/mL Bodipy (Life 

Technologies) for 30 min in the dark at room temperature and imaged by confocal 

microscopy.

CD36 knockdown in human macrophages and exposure to surfactant lipids

Day 6 MDMs were incubated with 25 nM of CD36, SR-A or scramble control siRNA 

(SMARTPool, Dharmacon, Lafayette, LA, USA) in Mirus TransitX2 transfection solution 

(Mirus Bio LLC, Madison, WI, USA) per the manufacturer’s protocol for 72h. Knockdown 

efficacy was determined by confocal microscopy and Western blotting (WB). MDMs were 

washed once with warm RPMI and exposed to 10 μg/mL DiI oxLDL or DiI acLDL, or 20 
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μg/mL NDB-DPPC or NBD-PG in RPMI + 2% donor autologous serum for 30 min, 

followed by fixation and labeling for confocal microscopy.

Quantitative real time PCR

Macrophage RNA was isolated using TRIzol reagent (Invitrogen Life Technologies) (57). 

RNA purity and quality were determined using a NanoDrop 1000 spectrophotometer 

(ThermoFisher Scientific). Total RNA was reverse transcribed to cDNA using SuperScriptIII 

reverse transcriptase (Invitrogen Life Technologies) (57). Quantitative real-time PCR (qRT-

PCR) was conducted using human CD36 TaqMan gene expression systems (Applied 

Biosystems). Negative controls consisted of no-reverse transcriptase and no-template 

reactions. All samples were run in triplicate using a cfx96 real-time system (Bio-Rad) and 

analyzed using the threshold cycle (2−ΔΔct) method (58). Gene expression was normalized 

against β–actin.

M.tb strains and macrophage infection

M.tb H37Rv (ATCC #25618) and a luciferase expressing reporter strain (M.tb-Lux) 

containing the plasmid pMV306hsp+Lux (59) were used (56). Day 6 MDMs (4 x 105/ml) 

were seeded in a 24 well tissue culture plate and either exposed to Survanta (100 μg/ml) for 

48h prior to infection or transfected with scramble or CD36 siRNA for 48h and then exposed 

to Survanta for 24h. MDMs were infected with M.tb H37Rv or M.tb-Lux (MOI 1:1) at 37°C 

with 5% CO2 on a platform shaker for 30 min, followed by 90 min incubation without 

shaking. Monolayers were washed, repleted with RPMI containing 2% autologous serum 

and incubated up to 72h. Bacterial growth was measured by luciferase activity (59) or 

supernatants were collected for ELISAs.

ELISAs

Day 6 MDMs were exposed to Survanta (100 μg/mL) or left resting for 48h prior to 

infection with M.tb H37Rv at an MOI of 1:1 as described above. Cell free supernatants were 

collected 24, 48 and 72h after infection. Alternatively, day 6 MDMs were transfected with 

SC or anti-CD36 siRNA via the MirusX2 transfection system for 72h. Monolayers were 

washed and exposed to Pam3Cys (100 ng/mL) and cell free supernatants were collected 

after 1 or 24h. ELISAs were conducted to evaluate TNFα and IL-6 release per the 

manufacturer’s protocol (R&D Systems) using triplicate supernatants from a minimum of 

three independent experiments.

Statistical Analysis

Experiments were conducted in duplicate (confocal, infections) or triplicate (gene 

expression, ELISAs) using MDMs from a minimum of three different donors. Results were 

converted to fold or percent change relative to internal controls for each experiment, due to 

the variability in absolute levels among donors. Prism-5 software (Version 5.04; GraphPad) 

was used to determine the statistical significance of differences in the means of experimental 

groups using an unpaired, one-tailed Student t-test. p values < 0.05 were considered 

significant.
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Results

Surfactant exposure induces translocation of preformed CD36 from an intracellular pool to 
the cell membrane of human macrophages

Previous publications using rat skeletal muscle and cardiac myocytes demonstrated that 

preformed CD36 is redistributed to the cell surface from an intracellular pool following 

exposure to various stimuli (60, 61) and MDMs have been shown to contain preformed 

CD36 (36). We therefore initially investigated whether surfactant alters the cellular 

distribution of preformed CD36 in MDMs by evaluating CD36 levels and location in 

permeabilized and non-permeabilized macrophages which had been exposed to surfactant 

components. MDMs were cultured in SP-A (10 μg/mL), Survanta (100 μg/mL), both or left 

untreated as a control for 6 or 24h and surface localization of CD36 in non-permeabilized 

MDMs was determined by confocal microscopy. Although untreated MDMs demonstrate 

low level CD36 surface expression, surface localization is increased by 3–4 fold 24h after 

surfactant exposure (figure 1A, B). Regardless of exposure to surfactant, MDMs in tissue 

culture for 24h contain preformed intracellular CD36 as determined by quantifying CD36 

abundance in permeabilized MDMs (figure 1C, D). Cyclohexamide treatment (9) does not 

impair redistribution of CD36 to the cell surface after Survanta exposure (figure 1E) 

indicating that protein synthesis is not needed prior to surfactant-induced redistribution. 

Therefore, we conclude that surfactant induces trafficking of preformed CD36 to the plasma 

membrane of human macrophages.

Surfactant exposure increases CD36 transcript and protein levels over days in culture

The phenotype of AMs is influenced by surfactant components (9, 11) and HAMs express 

CD36 protein (36, 37; figure 2A). Due to the cost and accessibility of HAMs and the 

ephemeral nature of their phenotype following isolation from the lungs, we used surfactant-

cultured MDMs for the majority of the experiments in the present work. Experimental 

evidence indicates that surfactant-treated MDMs are a tractable model for studying AM 

phenotype and functions (7–11, 14, 16). Additionally, as opposed to HAMs which are 

chronically exposed to total surfactant, the use of MDMs enabled us to investigate 

distinctions between the effects of surfactant proteins versus lipids, as well as the effects of 

initial exposure to individual surfactant lipids. In order to determine whether CD36 

expression could be an aspect of the AM phenotype which is regulated by surfactant, we 

cultured MDMs in surfactant (Survanta and/or SP-A) over several days. CD36 transcript 

levels increase up to four-fold relative to untreated controls at 72h (figure 2B). This increase 

is specific to CD36; other scavenger receptors (MARCO, SR-B1 and SR-A) did not change 

over this time period (data not shown and figure 2C). Consistent with the increase in CD36 

transcript levels, MDMs cultured in surfactant for 96h contain five times more CD36 protein 

than untreated controls (figure 2D, F) and express twice as much CD36 at their cell 

membranes (figure 2E, F). No increase in CD36 protein levels was observed prior to 72h in 

culture with surfactant (data not shown). Since CD36 expression is regulated by surfactant 

components, we speculated that CD36 could be involved in surfactant lipid uptake by 

macrophages.
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CD36 knockdown impairs human macrophage acquisition of surfactant lipid DPPC

Although surfactant uptake by AMs is receptor-mediated (28), no receptor(s) have been 

identified to date. CD36 transports palmitate into type II alveolar epithelial cells (29) and 

has a well characterized role in the uptake of fatty acids by a variety of tissues (30, 31). We 

therefore investigated whether CD36 contributes to surfactant lipid uptake by human 

macrophages using CD36 knockdown, which is 80% effective relative to scramble control 

(SC) treated MDMs (figure 3A, B) and significantly inhibits DiI-oxLDL uptake (figure 3C, 

D). We investigated the acquisition of DPPC, which comprises ~40% of the total surfactant 

lipids (22). siCD36 or SC MDMs were exposed to NBD-DPPC for 30 min and uptake was 

determined by confocal microscopy. As shown in figure 3E and F, CD36 knockdown MDMs 

acquire five-fold less NBD-DPPC relative to scramble control exposed cells. To determine 

whether this phenomenon is specific to DPPC uptake, we evaluated the uptake of NBD-PG, 

the second most abundant lipid in surfactant (22). CD36 knockdown and scramble control 

MDMs acquire comparable levels of NBD-PG (figure 3G, H), indicating that CD36 

specifically imports DPPC into macrophages.

To confirm that DPPC uptake by human macrophages is mediated by CD36 and not 

scavenger receptors in general we next knocked down scavenger receptor A (SR-A) (figure 

4A, B), which is also expressed by AMs (44) and mediates uptake of acetylated (ac)-LDL 

(62, 63). As a positive control, we verified that SR-A knockdown significantly reduces 

macrophage acquisition of acLDL (figure 4C, D). In contrast to the results following CD36 

knockdown, DPPC acquisition is increased following SR-A knockdown (figure 4E, F). 

CD36 and SR-A are known to have compensatory expression profiles (64) and we observed 

a 40% increase in CD36 expression following SR-A knockdown (supplemental figure 1A–

C) which may account for the observed increase in DPPC acquisition.

Exposure to surfactant lipids prior to M.tb infection enhances bacterial growth in a CD36- 
dependent manner

AMs constitutively consume surfactant lipids (53, 54) and display tissue-specific lipid 

bodies which are absent from resting MDMs (supplemental figure 1D, E). M.tb thrives 

inside of AMs (2) and has been shown to use host lipids as a carbon source in other contexts 

(46–48). We therefore hypothesized that the presence of surfactant lipids within MDMs 

prior to infection with M.tb would enhance bacterial growth. In fact, M.tb growth is 

increased significantly when MDMs are cultured in surfactant lipids for 48h prior to 

infection (figure 5A). As measured by relative light units (RLUs), this growth advantage 

equates to 60% more bacteria in surfactant-cultured macrophages 48 and 72h after infection. 

In the absence of CD36 (by knockdown) this growth advantage is abolished (figure 5B), 

although M.tb uptake is not affected (data not shown). The difference in growth is predicated 

on the presence of surfactant lipids, as SC and siCD36 MDMs contain comparable bacterial 

burdens in the absence of Survanta (figure 5C). Thus, CD36-mediated uptake of surfactant 

lipids is beneficial for the bacteria during the early stages of human macrophage infection by 

M.tb.
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TNFα release is inhibited by surfactant lipid exposure but is not affected by CD36 
knockdown

We hypothesize that surfactant lipids not only provide a carbon source for M.tb but also 

inhibit macrophage microbicidal responses. In order to investigate the possibility that the 

observed surfactant-mediated growth advantage is in part due to immunosuppression, we 

evaluated the release of the pro-inflammatory cytokines TNFα and IL-6 which are both 

induced by M.tb infection (65, 66). Based on previous publications (67–69), we 

hypothesized that Survanta would inhibit the release of both cytokines. As shown in figure 

5D and E, culturing MDMs in Survanta prior to infection significantly inhibits release of 

M.tb-induced TNFα, but not IL-6. TNFα blocking therapeutics can lead to both TB 

reactivation and increased susceptibility to mycobacterial infection (70). In contrast, M.tb-

induced IL-6 has been shown to be beneficial for the bacteria (66). Therefore, surfactant-

mediated inhibition of TNFα potentially contributes to the enhanced bacterial growth that 

we observed.

TNFα can be induced through TLR2 (32, 34, 35), M.tb has TLR2 ligands (71) and CD36 

has been shown to contribute to host responses in conjunction with TLR2 (32, 34, 35). We 

therefore investigated whether the absence of CD36 affects the TLR2-dependent release of 

TNFα. MDMs were transfected with SC or anti-CD36 siRNA as described above and were 

then exposed to the TLR2 ligand Pam3Cys (100 ng/mL). SC and siCD36 MDMs release 

comparable levels of TNFα following Pam3Cys exposure (supplemental figure 2A and B), 

suggesting that the absence of CD36 does not affect TLR2-dependent cytokine production in 

M.tb-infected MDMs. Therefore, although surfactant lipids appear to specifically inhibit 

TNFα production in response to M.tb infection, CD36 does not appear to contribute to this 

phenomenon.

Discussion

Understanding aspects of host cell physiology which render AMs endogenously susceptible 

to infection by M.tb will amplify our ability to develop novel therapeutics effective in the 

pulmonary environment. In the absence of infection, AMs indispensably contribute to 

surfactant catabolism to maintain lung homeostasis. We contend that this function of AMs 

creates a host cell which is naturally susceptible to M.tb infection due to both the 

immunosuppressive properties of surfactant and the presence of surfactant lipid metabolites 

as a readily available carbon source for this host-adapted pathogen. Therefore, minimal 

manipulation of host cell metabolism may be required for the bacteria to thrive in the 

endogenously lipid-rich environment of the AM.

As mentioned above, the increased bacterial growth that we observed may be attributable to 

the immunosuppressive properties of surfactant. Exposure to surfactant proteins and lipids 

prior to LPS increases expression of negative regulators of inflammation, while decreasing 

LPS-mediated release of TNFα and IL-6 (10). SP-A decreases pro-inflammatory TLR 

activity (11) and hampers microbicidal functions by inhibiting NADPH oxidase assembly 

(7). In addition, surfactant proteins A and D are both necessary for maintaining lung 

homeostasis and proper immune function in this tissue (12, 13). The role of tissue factors 

which are unique to the lung environment (e.g., surfactant components) is an aspect of M.tb 
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infection which is often overlooked in experimental studies, yet most likely plays a defining 

role in TB pathogenesis.

We report suppression of M.tb-induced TNFα by surfactant lipids, a host response which 

may augment bacterial growth. This possibility is in keeping with the well-known effects of 

TNFα inhibitors on TB reactivation (70). However, because CD36 knockdown did not alter 

TLR2-dependent TNFα release, CD36 does not appear to contribute to this phenomenon, a 

finding which is supported by previous publications indicating that CD36 is dispensable for 

Pam3Cys-induced TLR2-dependent TNFα production (32, 34, 35). However, because TLR2 

recognizes an array of established ligands and CD36 has also been reported to sense 

diacylglycerides in conjunction with TLR2 (32), we cannot rule out the possibility that 

CD36 is involved in the TLR2 response to one or more M.tb ligands; pursuing this 

possibility is beyond the scope of the current manuscript.

The exact role(s) of CD36 during TB pathogenesis remain somewhat obscure, as conflicting 

data regarding the importance of CD36 during mycobacterial infection in the mouse model 

have been reported (40, 41). However, temporal discrepancies in the experiments may 

partially explain this dissonance. Court et al found that a double knockout of SR-A and 

CD36 did not impact the control of chronic M.tb infection, while Hawkes et al demonstrated 

that CD36 knockout mice are less susceptible to mycobacterial colonization and distal organ 

dissemination early during infection. The exact role of CD36 during infection remains to be 

revealed, since ex vivo experiments using macrophages from CD36 knockout mice did not 

exhibit differences in phagocytosis or reactive oxygen species production. Furthermore, the 

authors did not attribute the differential growth to the cytokine response during infection 

(40). Although CD36 may not be regulating cytokine production during mycobacterial 

infection, the present study provides evidence for the role of CD36 in the uptake of 

surfactant lipids by human macrophages. We posit that the presence of surfactant lipids 

dampens protective cytokine production and may also provide a ready carbon source for 

M.tb upon entry into an AM. The latter possibility is the focus of ongoing experiments.

During in vitro infection, M.tb up-regulates genes involved in lipid metabolism (6, 49) and 

utilizes host lipids as a carbon source (46–48, 50). However, the source of the host lipids 

used by the bacteria remains less clear. There is evidence that the ability to metabolize 

cholesterol contributes to intracellular growth (47, 72, 73), although this appears to be more 

crucial during persistent stages of infection (74, 75). Cholesterol metabolism by M.tb is not 

required to establish infection in the lung (75) and there is some evidence that cholesterol is 

not a necessary carbon source for survival within a host (76). Therefore, identifying essential 

nutrient sources for the bacteria during early infection remains of great importance. Our 

ongoing experiments are investigating whether M.tb can acquire and utilize surfactant lipid 

metabolites from macrophages.

Herein we show that the location and expression of scavenger receptor CD36 is regulated by 

surfactant lipids and proteins, and that CD36 contributes to surfactant lipid uptake by human 

macrophages, conferring a bacterial growth advantage during the early stages of M.tb 
infection at least in part by surfactant lipid-mediated reduction in the host protective 

cytokine TNFα. These findings enhance our knowledge regarding the contributions of the 
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lung environment during the establishment of M.tb infection and ongoing experiments will 

determine whether this bacterial growth advantage is also due to the presence of surfactant 

lipid-based carbon sources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Surfactant induces redistribution of preformed CD36 to the cell surface
MDMs on coverslips were exposed to SP-A (10 μg/mL), Survanta (100 μg/mL), both or left 

untreated for 6 or 24h. Monolayers were fixed with PFA, labeled with anti-CD36 primary 

Ab followed by AlexaFluor488 secondary Ab and imaged using confocal microscopy. (A) 

Representative image for the 24h time point shows increased CD36 (green) surface 

localization relative to untreated control cells. Scale bar, 50 μm. (B) Surface exposed CD36 

graphed as fold change in mean fluorescence intensity (MFI) relative to untreated cells. (C) 

Representative image of total CD36, determined by permeabilizing monolayers prior to 

labeling with anti-CD36 Ab. Scale bar, 50 μm. (D) Results of permeabilization experiments 

are graphed as fold change in CD36 MFI relative to untreated cells. (E) MDMs were 

exposed to CHX for 60 min prior to Survanta. CD36 surface expression on MDMs is 

graphed as fold change relative to DMSO control. All graphs show cumulative results of 3 

(C–E) or 4 (A, B) independent experiments conducted in duplicate (mean ± SEM).
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FIGURE 2. Freshly isolated HAMs contain preformed CD36 and exposure of MDMs to 
surfactant increases CD36 expression over days in culture
(A) Freshly isolated HAMs were adhered to coverslips, fixed with PFA, left intact or 

permeabilized with methanol and labeled with anti-CD36 Ab followed by AlexaFluor488. 

Scale bar, 50 μm. (B, C) MDMs were left untreated or were exposed to SP-A (10 μg/mL), 

Survanta (100 μg/mL) or both up to 96h. Monolayers were lysed with TriZOL. CD36 

transcript levels (B) or SR-A transcript levels (C) were determined via qRT-PCR. (D, E) 

MDMs on coverslips were left untreated or exposed to Survanta (100 μg/mL) for 96h. 

Monolayers were fixed with PFA and were (D) permeabilized by methanol or (E) left intact 

and labeled with anti-CD36 Ab. Scale bars, 50 μm. (F) Fold change in CD36 MFI in 

Survanta-exposed MDMs relative to untreated cells 96h after Survanta exposure. 

Experiments were conducted in duplicate from 3 (A, C–F) independent donors or in 

triplicate from 4 (B) independent donors (mean ± SEM).
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FIGURE 3. CD36 knockdown inhibits uptake of DPPC
(A) MDMs on coverslips were treated with SC or siCD36 siRNA for 72h using the MirusX2 

transfection system, fixed with 4% PFA and permeabilized with methanol prior to labeling 

with anti-CD36 Abs. (B) CD36 knockdown is 80% effective. (C) SC or siCD36 MDMs 

were exposed to 10 μg/mL oxLDL (red) for 30 min and association was analyzed by 

confocal microscopy. (D) oxLDL MFI in SC or siCD36 exposed MDMs. (E) MDMs were 

treated with SC or CD36 siRNA prior to exposure to 20 μg/mL NBD-DPPC (purple) for 30 

min. (F) DPPC MFI in SC or siCD36 exposed MDMs. (G) SC or siCD36 MDMs were 

exposed to 20 μg/mL NBD-PG (cyan) for 30 min. (H) PG MFI in SC or siCD36 exposed 
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MDMs. Representative images and cumulative results from 7 (A, B), 4 (C, D, E, F) or 3 (G, 
H) different experiments conducted in duplicate (mean ± SEM). Scale bars, 50 μm.
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FIGURE 4. SR-A knockdown increases uptake of DPPC
(A) MDMs were exposed to SC or anti-SR-A siRNA via Mirus X2 for 72h. (B) SR-A 

knockdown is 60% effective. (C) SC or siSR-A MDMs were exposed to 10 μg/mL acLDL 

(cyan) for 30 min and association was analyzed by confocal microscopy. (D) acLDL MFI in 

SC and siSR-A MDMs. (E) SC or siSR-A (red) treated MDMs were exposed to 20 μg/mL 

NBD-DPPC for 30 min. (F) NBD-DPPC MFI in SC or siSR-A exposed MDMs. 

Representative images and cumulative graphs from 3 independent experiments conducted in 

duplicate (mean ± SEM). Scale bars, 50 μm.
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FIGURE 5. Culturing MDMs in surfactant lipids enhances M.tb growth in a CD36-dependent 
manner
(A) MDMs were left untreated or were exposed to Survanta (100 μg/mL) for 48h prior to 

infection with M.tb-lux bacteria (MOI 1:1). Infection proceeded for up to 72h and M.tb 
growth was measured by luminometry (relative light units, RLUs). Graph shows fold change 

in RLUs relative to uninfected MDMs. (B) MDMs were treated with scramble control or 

CD36 siRNA for 48h. Monolayers were then exposed to Survanta (100 μg/mL) for 24h prior 

to infection with M.tb-lux (MOI 1:1). Infection proceeded for up to 72h and M.tb growth 

was measured using luminometry. Graph shows percent increase in RLUs when MDMs 

were exposed to Survanta prior to infection, relative to infection alone. (C) CD36 

knockdown alone does not affect M.tb growth in human macrophages as determined by 

luminometry. (D, E) Survanta inhibits M.tb-induced TNFα but not IL-6. Supernatants from 

resting or Survanta-cultured MDMs were collected 24–72h post-infection (p.i.) and TNFα 
(D) or IL-6 (E) release was determined by ELISA. Experiments conducted in duplicate from 

3 (A) or 4 (B, C) different donors or conducted in triplicate (D, E) from 3 different donors 

(mean ± SEM).
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