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Abstract

Entorhinal cortex lesioning (ECL) causes an extensive deafferentation of the hippocampus that is 

classically followed by a compensatory reinnervation, where apolipoprotein E, the main 

extracellular lipid-carrier in the CNS, has been shown to play a crucial role by shuttling 

cholesterol to reconstructing neurons terminals. Hence, we investigated whether the ATP-binding 

cassette (ABC) transporters -A1 and -G1, known to regulate cellular cholesterol efflux and 

lipidation of the apolipoprotein E-containing lipoprotein complex are actively involved in this 

context of brain's plastic response to neurodegeneration and deafferentation. We assessed ABCA1 

and ABCG1 mRNA and protein levels throughout the degenerative phase and the reinnervation 

process and evaluated the associated cholinergic sprouting following ECL in the adult mouse 

brain. We subsequently tested the effect of the pharmacological activation of the nuclear receptor 

LXR, prior to versus after ECL, on hippocampal ABCA1 and G1 expression and on reinnervation. 

ECL induced a time-dependent up-regulation of ABCA1, but not G1, that coincided with a 

significant increase in acetylcholine esterase (AChE) activity in the ipsilateral hippocampus. Pre-

ECL, but not post-ECL i.p. treatment with the LXR agonist TO901317 also led to a significant 

increase solely in hippocampal ABCA1 expression, paralleled by increases in both AchE and 

synaptophysin protein levels in the deafferented hippocampus. Thus, ABCA1 and -G1
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1. Introduction

The brain is the most cholesterol-rich organ of the body as it contains ~25% of total 

cholesterol in 2% body weight (Dietschy and Turley, 2001). Regulation of cholesterol 

homeostasis in the central nervous system is maintained independently from the periphery 

and relies heavily on de novo cholesterol synthesis and efficient lipid transport and recycling 

mechanisms (Dietschy, 2009; Poirier et al., 1993). Glia and neurons provide the sterol 

necessary for brain development and once achieved, it is postulated that mature neurons 

reduce their cholesterol production in favor of lipids synthesized by astrocytes and 

transported by lipoproteins (Mauch et al., 2001). This derivation of glial cholesterol and 

other lipids to neurons is particularly necessary to support the high lipid demands imposed 

by synthesis of new membranes during reactive sprouting of terminals and synaptic 

remodeling following brain damage and neurodegenerative disease (Fig. 1) (De Chaves et 

al., 1997; Mauch et al., 2001; Poirier, 1994; Posse De Chaves et al., 2000). Transport of 

cholesterol and lipids between cells of the CNS is facilitated primarily through the formation 

of lipoparticles of similar size and constitution as peripheral high-density lipoproteins 

(HDL) (Illingworth and Glover, 1971; LaDu et al., 2001). Predominantly synthesized by 

astrocytes, apolipoprotein E (apoE) functions as the primary protein moiety of HDL within 

the CNS and has been shown to mediate the binding and internalization of glial-derived 

HDL by low-density lipoprotein receptor family members on regenerating nerve terminals 

(Pfrieger, 2003; Poirier et al., 1993). Although there is evidence to suggest that glia-derived 

apoE-containing lipoparticles are essential for brain development and reinnervation 

following injury, the mechanisms through which the assembly of HDL in the CNS is 

regulated are not clearly understood.

Work in the periphery and in vitro using different cell types initially identified ATP-binding 

cassette (ABC) transporters family members ABCA1 and G1 as regulators of cholesterol 

and lipoprotein metabolism as they regulate cholesterol efflux. ABCG1 has been associated 

with intracellular cholesterol trafficking and efflux (Abildayeva et al., 2006; Burgess et al., 

2008a, 2008b; Karten et al., 2006; Klucken et al., 2000; Vaughan and Oram, 2005), whereas 

ABCA1 has been linked to secretion and lipidation of apoA1 with cholesterol and HDL 

production in the plasma, CSF and brain (Hirsch-Reinshagen et al., 2004; Koldamova et al., 

2003; Wahrle et al., 2004). Furthermore, in vitro work demonstrated that the coordinated 

action of ABCA1 and G1 is required for optimal removal of cellular cholesterol (Gelissen et 

al., 2006; Vaughan and Oram, 2006). In vivo work by Kennedy et al. (2005) showed that 

ABCG1 deficiency in mice compromises cholesterol efflux to surface-bound HDLs whereas 

ABCA1 deficiency markedly impairs cholesterol efflux to apoA1 particles.

A newly revised model for cholesterol efflux and formation of mature HDL has been 

proposed to explain the synergistic regulation of ABCA1 and ABCG1 during cholesterol 

mobilization. Briefly, ABCA1 is believed to catalyze the initial cholesterol loading of lipid-

free apolipoproteins after which, ABCG1 moves in and completes lipidation and mediates 

cholesterol, phospholipid and sphingosine-1 phosphate export ((Vaughan and Oram, 2006), 

see also review (Hirsch-Reinshagen and Wellington, 2007)). Two independent teams 

(Hirsch-Reinshagen et al., 2004; Wahrle et al., 2004) demonstrated that very similar 

mechanism is regulating cholesterol and lipid mobilization in the brain. Glial ABCA1 was 
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shown to facilitate cholesterol efflux onto apoE while lack of ABCA1 in ABCA1-deficient 

mice decreased cholesterol efflux and apoE levels in the hippocampus and striatum by 75–

80% (Hirsch-Reinshagen et al., 2004). ABCA1 deficient mice also presented decreased 

cerebrospinal fluid cholesterol levels and smaller apoE lipoparticles (Wahrle et al., 2004). 

Finally, structural and functional deficits in neurons are also observed in mice lacking 

ABCA1 in the CNS (Karasinska et al., 2009). In situ hybridization studies performed in the 

embryo and adult showed that both ABCA1 and G1 are expressed throughout development 

and maturity in the brain and that they are both enriched in white and gray matters 

(Tachikawa et al., 2005). Notably, it was shown that ABCA1 was highly expressed in the 

adult hippocampus and cholinergic basal forebrain among other subcortical midbrain 

structures (Koldamova et al., 2005).

ABCA1, ABCG1, apoE and the LDLRs are all target genes regulated by the Liver X 

receptors (LXRs: schematized in Fig. 1) (Ishimoto et al., 2006; Kennedy et al., 2001; 

Nelissen et al., 2012; Sparrow et al., 2002; Vanmierlo et al., 2011; Wójcicka et al., 2007). 

LXRs are nuclear transcription factors found in glial cells and neurons in the brain (Gabbi et 

al., 2009; Riddell et al., 2007; Wójcicka et al., 2007). Most genes targeted by the LXR 

activation are involved in cholesterol transport and homeostasis in the brain. Natural agonists 

of LXRs are derivatives of cholesterol and when activated, LXRs promote reverse 

cholesterol transport, a pathway that exports cholesterol from the CNS to the liver for 

excretion (Koldamova et al., 2010; Wójcicka et al., 2007). As such, LXRs are considered 

cholesterol sensors (for review (Wójcicka et al., 2007)) and viewed as another key regulator 

of brain cholesterol homeostasis.

Therefore, we tested the hypothesis that ABCA1 and G1 transporters are actively recruited 

during the reinnervation phase that follows brain injury and neurodegeneration, in an attempt 

to facilitate the dynamic regulation of cholesterol recycling which is required during 

terminal proliferation and synaptic remodeling. Secondly, we postulated that the 

pharmacological activation of the nuclear receptor LXR by specific agonists could govern 

the ABC's local gene expression so that it enhances compensatory reinnervation. We used 

the well-established entorhinal cortex lesion (ECL) paradigm in adult mice and examined (a) 

the endogenous hippocampal expression of ABCA1 and ABCG1 time course during reactive 

sprouting and compensatory synaptogenesis following ECL and (b) the quantitative effects 

of the experimental administration of a potent LXR agonist on hippocampal ABCA1 and G1 

expression and on the reinnervation process extent.

Here, we show that as could be expected ABCA1 is involved during the early phase of 

reinnervation, a period characterized by the intense mobilization of lipids such as cholesterol 

and phospholipids and their transport via apoE-HDL toward neurons undergoing active 

remodeling but also that ABCA1 and G1 are differentially regulated following ECL and in 

response to LXR agonist treatment.
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2. Results

2.1. Time course of cholinergic sprouting

The well-described unilateral entorhinal cortex lesion (ECL) model is characterized by a 

marked deafferentation of the outer molecular layer of the dentate gyrus followed by 

intensive terminal sprouting and synaptic replacement. In response to entorhinal cortex 

injury, nearly 60% of the synaptic inputs to the granule cell layer of the DG degenerate. This 

synaptic loss is transient. Within few weeks, more than 80% of entorhinal synapses are 

replaced by fiber connections that originate from cholinergic septal neurons, glutamatergic 

commissural–associational cells of the CA3/hilar areas and to a lesser extent (~5%), from 

the contralateral entorhinal cortex (Matthews et al., 1976; Phinney et al., 2004; Poirier et al., 

1993; Steward et al., 1988).

Fig. 2A illustrates the pattern of AChE-staining observed in the ipsilateral and contralateral 

hippocampus of animals following ECL and shows that AChE-staining density increased 

over time in the ipsilateral side (see arrows). Analysis of the relative AChE optical density 

(OD) of the staining, which correlates with the number of newly formed cholinergic 

synapses, reveals a significant increase at 14 DPL and a peak at 21 DPL (both p<0.05; Fig. 

2B).

2.2. ABCA1 and ABCG1 mRNA expressions following ECL

Analysis of the relative ipsilateral:contralateral gene expression ratio of each ABC 

transporter in the HPC and FCx yielded a marked, significant 3-fold increase in ABCA1 

mRNA ratio in the hippocampus of lesioned mice compared to sham-operated mice ratio at 

14 DPL (p<0.001), with transcript levels returning to control levels by 21 DPL (Fig. 3A). 

ABCA1 up-regulation is specific to the deafferented hippocampus as no differences of 

mRNA ratios were detected in the frontal cortex of lesioned mice which serves as negative 

control in this study (Fig. 3B). In contrast, ABCG1 mRNA prevalence remains relatively 

unchanged in the deafferented hippocampus (Fig. 4A) as well as in the frontal cortex (Fig. 

4B) of the ECL-mice.

2.3. Hippocampal ABCA1 protein levels following ECL

ABCA1 protein levels were analyzed by ELISA in the ipsilateral and contralateral HPC and 

normalization of the data relative to the contralateral side reveals a marked ~2.8 fold 

increase at 14 DPL in the hippocampus of lesioned mice when compared to SHAM-operated 

animals (p<0.05, Fig. 5). Specificity of the signal was confirmed by Western blotting 

analyses where a similar pattern of expression was observed for the protein at the expected 

~220 kD band (data not shown). As for the ABCA1 mRNA ratio in this region, the protein 

levels ratio of this transporter was transiently elevated and was back to control levels by 40 

DPL (Fig. 5).

2.4. Effect of LXR agonist treatment on ABCA1 and ABCG1 mRNA expression in ECL-mice

The LXR agonist treatment (TO901317) induces an increase of relative ABCA1 expression 

in the hippocampus during the remodeling phase at 25 DPL when given 7 days prior to the 

lesion (pre-ECL, Fig. 6A); post-hoc analyses revealed that the up-regulation (1.7 fold) was 
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significant in the contralateral side as compared to the corresponding vehicle group (p = 

0.02). In contrast, administration of the LXR agonist 7 days after the lesion (post-ECL) 

tends to decrease the gene expression of ABCA1 in the deafferented hippocampus (Fig. 6A). 

The relative mRNA levels were significantly lower in the ipsilateral and contralateral sides 

of post-ECL treated mice (p = 0.04 /p = 0.001) when compared to the respective pre-ECL 

treated groups.

As for the untreated lesioned mice, the relative ABCG1 expression was not altered by the 

LXR agonist treatment, when given prior to or, subsequent to lesioning (Fig. 6B).

2.5. Effect of LXR agonist treatment on synaptic density following an ECL

Analysis of the synaptic density following an LXR agonist treatment in ECL-mice using 

synaptophysin levels in the hippocampus reveals significant changes at 25 DPL. 

Synaptophysin protein levels ratios are increased by 30% at 25 DPL in the pre-ECL 

treatment group whereas they are relatively unchanged in the post-ECL group when 

compared to vehicle-treated ECL-mice (Fig. 6C: solid bars). Similarly, in situ AChE activity 

measured in the outer molecular layer of the dentate was shown to be significantly (p = 0.01) 

increased in the pre-ECL treated group at 25 DPL as opposed to the post-ECL treatment 

group which is not different for the vehicle-treated cohort.

3. Discussion

The present studies were designed to investigate whether ABCA1 and G1 transporters which 

are known to mediate cholesterol efflux are actively recruited following brain lesion to 

participate in the intense lipids trafficking that ensues. Using the well-established entorhinal 

cortex lesion paradigm, we demonstrated that ABCA1, but not ABCG1, expression is 

significantly (but transiently) up-regulated in the deafferented hippocampus during the early 

phase of the reinnervation process and the ongoing synaptic replacement. ABCA1 protein 

levels are also increased in the deafferented hippocampus following a similar time course 

profile. Both, mRNA and protein levels, were found to return to control values between 3 

and 6 weeks following injury.

Several studies have demonstrated that upon experimental injury, CNS apoE protein levels 

as well as the neuronal binding capacity for apoE-containing lipoparticles increase sharply 

during the early phase of the reinnervation process (first two weeks post-injury) (Blain et al., 

2004; Ignatius et al., 1987; Poirier, 1994; Poirier et al., 1991). The apoE induction time 

frame (Blain et al., 2004; Petit-Turcotte et al., 2005) is certainly consistent with ABCA1 

expression time course observed in the present study (with a peak at 14 days post-lesion, 

Fig. 3) and, supports previous works showing a functional biological interaction between 

glial ABCA1 and apoE secretion during lipoprotein lipidation (Hirsch-Reinshagen et al., 

2004; Wahrle et al., 2008, 2004). These findings are also consistent with the work of 

Fukumoto et al. (2002) who reported an induction of ABCA1, as measured by ABCA1 

mRNA in situ hybridization at day 3 and 7 post-lesion, in response to excitotoxic lesions of 

the hippocampus.
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We also examined the compensatory reinnervation taking place in the hippocampus after the 

lesion and showed increased cholinergic sprouting in the ipsilateral dentate gyrus consistent 

with the previous reports in the deafferented mice (Champagne et al., 2005; Veinbergs et al., 

1999). The time course of the apoE and ABCA1 inductions was found to match perfectly the 

extent of the cholinergic remodeling process in the hippocampal areas (Figs. 2, 3, and 5). 

Together, these results support an active role for ABCA1 in the biochemical cascade 

regulating cholesterol mobilization and recycling from astrocytes to neurons undergoing 

synaptic remodeling and terminal sprouting in response to injury or neurodegenerative 

conditions (Fig. 1) (Poirier et al., 2008) by serving as a catalyst of apoE lipidation and 

cholesterol efflux from glial cell during the early phase of reinnervation. Mice lacking 

ABCA1 in the CNS were shown to present lower apoE levels accompanied with behavioral 

impairment and synaptic loss (Karasinska et al., 2009). APP23/ABCA1+/− transgenic mice 

exhibit reduced brain apoE levels and display marked memory deficits with age (Lefterov et 

al., 2009). The negative impact of ABCA1 deficiency on behavior and synaptic plasticity 

and integrity is certainly consistent with independent results obtained from apoE- and 

LDLR-deficient mice models (Cao et al., 2006; Champagne et al., 2005, 2002; Krugers et 

al., 1997; Masliah et al., 1995; Mulder et al., 2007, 2004; Oitzl et al., 1997). In all these 

models, authors attributed the pathophysiological deficits to the dysregulation of cholesterol 

trafficking and, the poor uptake of lipoprotein by brain cells, most notably neurons, during 

the synaptogenesis process.

Hence, to further investigate whether ABCA1 and G1 are involved in the compensatory 

response to brain lesion and whether they could serve as potential targets to promote 

reinnervation, we used a LXR agonist previously shown to induce ABCA1 and G1 

expression in vivo in the CNS, i.e. TO901317. The LXR agonist administration was used in 

a prevention design, i.e. daily injection 7 days prior to the lesion and, in a rescue design, 

where daily injection of the agonist were administered 7 days after the lesion. Interestingly, 

only hippocampal ABCA1 expression (and not ABCG1) was found to be up-regulated in 

response to TO901317 treatment, and exclusively in the prevention design group (Fig. 6).

Furthermore, ABCA1 up-regulation was found to be maximal in the contralateral side of the 

hippocampal area. This could be explained, at least in part, by the fact that the agonist agent 

was injected intraperitoneally and acted on the whole brain structure. Although ipsilateral 

ABCA1 is normally increased as a consequence of the deafferentation process (previously 

shown in Figs. 3 and 6), the LXR agonist did not significantly potentiate this induction, 

whereas the LXR agonist effect on ABCA1 expression on the contralateral side was more 

exacerbated and quite significant. It is conceivable that the deafferented ipsilateral side is 

already at its peak physiological induction and cannot be further potentiated by 

pharmacological manipulations. Unexpectedly, the LXR agonist tended to decrease ABCA1 

mRNA levels on both sides of the hippocampus when administered 7 days after the lesion 

(recovery design).

ABCA1 has been repetitively found to be increased after (6–7 days) in vivo injection of the 

TO901317 agonist in wild-type mice (Burns et al., 2006) and APP mice (Koldamova et al., 

2005; Riddell et al., 2007). Repa et al. (2007) treated Niemann–Pick disease model mice 

with oral TO901317 to a regimen corresponding to 50 mg/kg for 4 weeks and still found 
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significant increases in ABCA1 and G1 mRNA levels. Loane et al. (2011) treated mice in a 

pre-/post-traumatic brain injury paradigm (controlled cortical impact in a traumatic brain 

injury model in mice) with a single oral 25 mg/kg of TO901317 dose and found an increase 

in ABCA1 expression which remained elevated at least 7 days after treatment. Interestingly, 

results from post-injury treatments were clearly less beneficial than the ones observed from 

pre-injury treatments for some of the measures. Both Repa et al. study in Niemann–Pick 

disease model mice and the Riddell et al. study in a transgenic model of amyloidosis show 

an induction of one or more ABC transporters in specific brain regions under TO901317 

treatment in different pathological conditions linked to cholesterol regulations in vivo. 

Furthermore, both teams reported a marked improvement of behavioral parameters and 

pathological markers with LXR agonist treatments. The results presented here on increased 

hippocampal AChE and synaptophysin protein levels in the pre-lesion TO901317-treated 

mice are certainly consistent with these observations. They are also supported by the work of 

Chen et al. (2010) showing that TO901317 administration stimulates synaptic remodeling 

and axonal regeneration in an experimental model of stroke in the mouse.

In contrast to ABCA1, ABCG1 was neither increased endogenously following the ECL nor 

after pharmacological TO901317 treatments. This result is counterintuitive in view of the 

common acceptation that LXR agonists induce ABCA1 and G1 expressions, and intriguing 

considering that ABCA1 is indeed upregulated and that ABCA1 and G1 were proposed to 

act synergistically to regulate intracellular cholesterol trafficking. However, in vivo 
TO901317-agonist studies classically show an increase in ABCA1 protein levels and do not 

report on ABCG1 alterations. In studies that examine in vivo ABCG1 expression after 

TO901317 treatment, it appears that ABCG1 is much less a reliable marker of the LXR 

agonist effectiveness than ABCA1. Comparable to our study and result, Burns et al. (2006) 

treated mice with i.p. doses of 25 and 50 mg/kg (same as here) for 7 days and also found an 

marked increase in ABCA1 protein levels in whole brain homogenates, whereas ABCG1 

levels were found unchanged. Further, Repa et al. (2007), cited above, specifically examined 

the cerebellum of Niemann–Pick disease model mice fed with a diet containing TO901317 

for 4 weeks and reported modest increase in ABCG1 mRNA levels but marked alteration in 

ABCA1 mRNA prevalence. In another mouse model of cholesterol homeostasis dysfunction, 

Vanmierlo et al. (2011) yielded results consistent with Repa et al. and findings presented 

here. While ABCA1 as well as ABCG1 mRNA levels were up-regulated in all brain 

structures considered in TO901317-mixed diet fed wild-type mice, the mutant mice 

displayed differential regulation of ABCA1 and G1 transcripts. ABCA1 mRNA levels were 

found to be increased after TO901317 treatment in cerebellum and hippocampus but not in 

cortical areas. In contrast, ABCG1 expression was slightly induced in cerebellum, but not in 

other brain structures. Finally, considering the fact that we had a limited numbers of time 

points post-lesion in our study, it is conceivable, although unlikely, that the expected 

increase in ABCG1 expression might have occur between two time points, either during the 

deafferentation phase or later.

Also, ABCG1's function in the regulation of CNS cholesterol homeostasis still remains quite 

controversial. While some studies failed to detect any effect of ABCG1 overexpression or 

deficiency on cholesterol efflux and brain lipid levels in apoE deficient (Burgess et al., 

2008a) and PDAPP transgenic mice (Burgess et al., 2008b), others report positive 
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correlations between ABCG1 expression and peripheral lipid tissue levels (Kennedy et al., 

2005). ABCA1 has repeatedly been reported to act in concert with ABCG1, and both were 

shown to act sequentially in promoting phospholipids and cholesterol efflux from peripheral 

cell and to facilitate apoE-HDL lipidation (Gelissen et al., 2006; Karten et al., 2006; 

Kennedy et al., 2005; Vaughan and Oram, 2006). Cholesterol loading in vitro enhances 

ABCG1, but not ABCA1, expression and correlates best with cholesterol efflux from 

astrocytes (Karten et al., 2006). While difficult to reconcile, the in vivo and in vitro 
discrepancies still point to some common features: ABCG1 over-expression does not 

influence cognition, learning and memory, nor hippocampal synaptic plasticity (Parkinson et 

al., 2009), nor ABCA1 or apoE levels (Burgess et al., 2008a, 2008b) in transgenic mice; 

suggesting a rather modest contribution of ABCG1, if any, in lipid mobilization and in the 

maintenance of synaptic integrity or plasticity in the adult brain.

Alternatively, it is conceivable that neuronal cell death, as opposed to the simple 

deafferentation, may be required to functionally up-regulate ABCG1 in the injured CNS. 

Hence, ABCG1 mRNA levels might be altered at the lesion site and not in the deafferented 

hippocampus. Results obtained on cholinergic sprouting in the granular layer of the dentate 

gyrus in association with increase in ABCA1 mRNA and protein levels are in turn consistent 

with an active role of this ABC transporter in the maintenance of lipids and cholesterol 

homeostasis following injury: specifically in the regulation of glial cholesterol efflux and 

redistribution in response to hippocampal deafferentation from the entorhinal cortex. 

However, this does not exclude the possibility that the observed induction of ABCA1 in the 

hippocampus is the result of a retrograde process originating in the lesioned entorhinal 

cortex area.

Finally, considering the suggested coordinated actions of ABCA1 and G1 in the formation 

of mature fully lipidated apoE-HDL, the fact that ABCG1 expression is not altered by the 

LXR agonist treatments could explain the modest impact of the drug on local reinnervation 

as measured by synaptophysin and AChE levels (Fig. 6). It is of interest to note that 

members of the ABCG family were shown to dimerize to form functional heterogeneous 

transporters such as ABCG5 and 8 (Graf et al., 2003), or are functional as homotetramers 

like ABCG2 (Xu, 2004). In the brain, multiple evidence point at ABCG4 as a potential 

dimer partner to ABCG1 since they are both expressed in the brain (Oldfield et al., 2002; 

Savary et al., 1996), induced by LXR (Engel et al., 2001; Venkateswaran et al., 2000) and 

Wang et al. (2008) recently demonstrated an in vivo role for brain ABCG4 in cholesterol 

efflux. The latter study describes a complex interaction between ABCG1 and ABCG4 

involvement in cholesterol biosynthetic pathway, LXR activation and as a consequence 

ABCA1 expression and apoE secretion. Therefore, the examination of other members of the 

ABCG family and the cholesterol biosynthetic pathway intermediates during 

neurodegeneration and reinnervation could certainly lead to a much more comprehensive 

understanding of the complex interactions regulating the intra-and extracellular transport of 

lipids in the adult brain.

In conclusion, results of this study show that the ABC transporter ABCA1 (but not ABCG1) 

plays a role in the early remodeling process that ensues brain injury. The present in vivo 
study adds to the growing evidence for a role of brain ABCA1 in the lipidation of apoE and 
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supports the proposed molecular cascade that regulates glial cholesterol efflux via ABCA1 

and apoE. However, these results also point at the need to decipher the role of ABCG1 and 

its interaction with other ABC transporters before the use of pharmacological tools like LXR 

synthetic agonist to enhance brain plasticity. Peripheral administration of an LXR agonist 

while appearing sufficient to stimulate these mechanisms in vivo and to modulate the extent 

of synaptic recovery, does so only when used prior to neuronal injury. It was found to 

completely fail when administered after the injury; suggesting little or no recovery potential.

4. Experimental procedures

4.1. Animals

A total of sixty-five male C57BL/6J mice aged 12 weeks were purchased from Jackson 

Laboratories (Bar Harbor, ME, USA). All animals were housed individually in an enriched 

environment and fed with a diet of standard laboratory chow ad libitum. A 12-h light-dark 

cycle was maintained with light onset at 07:00 and offset at 19:00, local time. All protocols 

were carried out in accordance with the Canadian Guidelines for Use and Care of 

Laboratory Animals, and were approved by the McGill University Animal Care Committee.

4.2. Unilateral entorhinal cortex lesions (ECL)

Unilateral electrolytic lesions to the entorhinal cortex were conducted according to the 

technique adapted for mice described by Blain et al. (2004). A total of forty-five fifteen-

week-old anaesthetized mice (intramuscular injection of a ketamine–xylazine/acepromazine 

mix, 1 μL/g of body weight) were placed into a stereotaxic apparatus in a flat skull position. 

Four lesion coordinates were determined from Lambda: (1) [AP: 0 mm], [L: −3.0 mm], and 

[DV: −3.0 mm, − 4.0 mm]; (2) [AP: 0 mm], [L: −3.5 mm], and [DV: −3.0 mm, − 4.0 mm]; 

(3) [AP: +0.5 mm], [L: −4.0 mm], and [DV: −3.0 mm, −4.0 mm]; (4) [AP: +1.0 mm], [L: 

−4.0 mm], and [DV: −3.0 mm, −4.0 mm], where a 1 mA current was applied for 10 s (sec) at 

each coordinate. SHAM-operated animals (n = 5) were treated similarly except that the 

electrode was lowered only 1 mm and no current was passed. Following surgery, mice were 

given a subcutaneous bolster of physiological saline to prevent dehydration and nursed 

throughout their recovery.

4.3. LXR agonist administration

The LXR agonist selected was TO901317 (Cayman Chemicals, Ann Arbor, MI, USA) 

because it is a full agonist which induces binding of co-activators and disassociation of co-

repressors (Wójcicka et al., 2007). Following acclimatization, a subgroup of mice were 

randomly assigned to receive daily intra-peritoneal injections of 30 mg/kg/day of TO901317 

in 0.125% (wt/vol) carboxymethycellulose (CMC) at one of two different starting time 

points and continued until sacrifice in order to assess the therapeutic potential of the 

treatment as prevention (7 days before lesion (ECL); n = 5) or rescue (7 days after lesion 

(ECL); n = 5). The choice of the 30 mg/kg/day dose was guided by previous studies which 

reported beneficial outcomes of TO901317 in the CNS (Chen et al., 2010; Morales et al., 

2008; Riddell et al., 2007). Furthermore, a prior pilot study was conducted in our laboratory 

using a small set of animals. The reported effect on brain ABCA1 expression levels was 

replicated at the chosen dose (data not shown). Control animals (n = 5) were treated daily 
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with vehicle (0.125% (wt/vol) CMC) in the same conditions, starting 7 days prior to the 

ECL and continued until sacrifice.

4.4. Experimental endpoints

Mice were sacrificed at different key time points following ECL to establish a time course 

that covers (i) the degenerative phase (0–14 DPL) and (ii), the reactive sprouting and 

synaptic remodeling phases (14–30 DPL) until completion of the reinnervation process and 

late recovery (40–60 DPL). Thus, at 2, 14, 21, 40 and 60 days post-lesion (DPL), 14 DPL 

for the SHAM-operated mice and 25 DPL for the LXR-treated mice and their vehicle-treated 

controls, a subgroup of mice (n = 5/group) were decapitated and their brain quickly removed 

and dissected out on dry ice for hippocampus (HPC) and frontal cortex (FCx). Ipsilateral and 

contralateral side of each brain structure were stored separately at −80 °C until use.

Other subgroups of ECL-mice were allocated for histochemistry and were then administered 

a lethal dose of anesthetic and perfused transcardially with 30 mL of ice-cold 0.01 M 

phosphate buffered saline (PBS) solution at 2, 6, 14 and 21 DPL (n = 5/group). Following 

perfusion, whole brains were removed, flash-frozen at −40 °C in isopentane and stored at 

−80 °C until use.

4.5. Acetylcholinesterase (AChE) histochemistry for assessment of cholinergic sprouting

Coronal brain section of 20 μm through the region of the dorsal hippocampal formation were 

mounted on poly-L-lysine-coated glass slides, desiccated overnight at 4 °C, and stored at 

−80 °C until use. In situ AChE activity was evaluated by incubating slides at room 

temperature in the substrate solution (0.0072% (wt/vol) ethopropazine, 0.075% (wt/vol) 

glycine, 0.5% (wt/vol) cupric sulfate, 0.12% (wt/vol) acetylthiocholine iodide, 0.68% (wt/

vol) sodium acetate; pH 5.0) for 4 h (h). Following this, the slides were rinsed 3 times for 5 

min in H2O and then placed in the developer solution (0.38% (wt/vol) sodium sulfide; pH 

7.8) for 6 min. After a second series of H2O rinses, silver intensification was performed by 

placing the slides into 1% silver nitrate solution for 2 min in total obscurity. Slides were 

rinsed a third time in H2O and post-fixed in a 4% (wt/vol) paraformaldehyde solution in 0.01 

M PBS (pH 7.4) for 2 h. After a final rinse in 0.01 M PBS (pH 7.4), slides were dehydrated 

in a series of alcohol baths and cleared in xylene (2 min in each bath). Slides were cover-

slipped with DPX mounting medium and stored in total obscurity until analyzed. All 

products used were purchased from Sigma (Sigma-Aldrich, St. Louis, MO).

The time course and extent of cholinergic sprouting in the dentate gyrus (DG) following 

ECL was assessed as the relative optical density (OD) of AChE activity staining defined as 

the ratio between ipsilateral and contralateral OD, thereby providing a within-section control 

for variations in histochemical processing. AChE staining OD was evaluated using the 

MCDI-II image analysis system on digital microphotographs of each brain section captured 

using a Zeiss Axioskop 2 Plus microscope under a 2.5 × /0.075 objective (Plan-Neofluar, 

Zeiss, Germany) and the Northern Eclipse Version 6.0 Image Analysis Software. Per side, 

six different OD measures were made along the dorsal blade of the outer molecular layer 

(OML) of the DG on 5 sections per animal and averaged. Since the lamina-specific 

denervation of the DG following ECL has been shown to result in atrophy localized to the 
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OML that may confound the histochemical estimation of AChE activity (Phinney et al., 

2004; Steward et al., 1973), measures of OML width were also assessed at 6 positions along 

the dorsal blade of the DG and incorporated into the equation according to the model of 

Fagan and Gage (1994):

4.6. Real-time polymerase chain reaction (RT-PCR)

ABCA1 and ABCG1 gene expression was assessed with the SYBR® Green technique, using 

actin as an internal control. Total RNA was extracted from ipsilateral and contralateral 

hippocampus and frontal cortex using the QIAGEN RNeasy Mini Kit (QIAGEN Inc., 

Mississauga, ON) according to the manufacturer's guidelines. Following extraction, 2 μg of 

total RNA from each sample was reverse-transcribed in the Gen-eAmp 5700 sequence 

detection system (PE Applied Biosystems) to generate cDNA in the following reaction 

mixture: 1 × RT buffer; 5.5 mM MgCl2; 500 μM dNTPs; 2.5 μM Oligo DT; 0.4 U/μL RNase 

inhibitor; 1.25 U/μL Multiscribe Reverse Transcriptase, in a final reaction volume of 100 μL. 

The reverse transcriptase program included the following thermal cycle: 10 min at 25 °C, 30 

min at 48 °C, 5 min at 95 °C to stop the reaction. Real-time PCR was conducted in the 

GeneAmp 5700 sequence detection system on each sample of cDNA in triplicate. Primer 

pairs (forward: fwd and reverse: rev) used for PCR amplification were as follows: 

mABCA1-fwd 5′-GACCGTACTCTC-GCAGGG-3′ with mABCA1-rev 5′-

GCGGCCTTGCCGGTAT-3′; mABCG1-fwd 5′CCGATGTGAACCCGTTTCTT-3′ with 

mABCG1-rev 5′-AGGCGGAGTCCTCTTCAGC-3′; and mACTIN-fwd 5′-

TGACCGAGCGTGGCTACA-3′ with mACTIN-rev 5′-TCTCT-

TTGATGTCACGCACGAT-3′. Primer pairs were generated using the Primer Express PE 

Biosystems software. Primer specificity was confirmed through dissociation curve analysis 

which demonstrated single product specific melting temperatures. No primer-dimers were 

observed during the 40 PCR cycles. The master-mix solution for each 35 μL PCR reaction 

was prepared as follows: 17.5 μL of SYBR Green PCR Master Mix, 3.5 μL of 10 μM stocks 

of forward and reverse primers, 7.5 μL RNase-free H2O, 3 μL RT product. All reagents used 

were purchased from PE Biosystems (Perkin-Elmer, Foster City, CA). The program applied 

for real-time PCR cycling consisted of 2 min at 50 °C, 10 min at 95 °C and 40 cycles of 15 s 

at 95 °C and 1 min at 60 °C. Relative gene expression was calculated using the 2−ΔδCt 

method with β-actin as reference gene and results are expressed as ratios between ipsilateral 

and con-tralateral sides to the lesion±SEM.

4.7. ELISA bioassay

ABCA1 protein levels were determined by indirect ELISA in the ipsilateral and contralateral 

hippocampus. Homogenates were prepared by sonication in 0.01 M PBS containing pro-

tease inhibitors (Boehringer Mannheim, Germany) and total protein concentration was 

measured with the BCA protein dosage kit (Pierce, Rockford, IL). Each sample were applied 

in triplicate on Costar 96-well EIA/RIA plates (Fisher Scientific) as well as a rat brain 

homogenate (sonicated in PBS 0.01 M) diluted in bicarbonate/carbonate buffer (100 mM, 
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pH 9.6) to serve as standards (375–2812.5 μg/mL) and incubated overnight at 4 °C. The next 

day, the primary antibody (rabbit polyclonal ABCA1 antibody, ab14146; Abcam, 

Cambridge, USA) diluted in a solution of PBS 0.01 M with 1% (wt/vol) bovine serum 

albumin (BSA) was added for 2 h at room temperature. Following three washes with Tris 

buffered saline-Tween 20 (TBS-T) solution, the biotinylated detection antibody (anti-rabbit 

antibody, ab6720; Abcam, Cambridge, USA) was added for 2 h. After a second series of 

washes, detection of bound secondary antibodies was realized by incubation with an 

alkaline-phosphatase-conjugated strepta-vidin solution (Invitrogen Canada Inc., Burlington, 

ON) for 1 h at room temperature. Finally, plates were washed four times with TBS-T and 

once with H2O and incubated with an alkaline phosphatase fluorescent substrate (AttoPhos, 

Promega, San Luis Obispo, USA) for 30 min at 37 °C. Fluorescence was measured with the 

microplate fluorescent reader (FL600, Bio-Tek Instruments) at a 450 nm/20 nm excitation 

and 560 nm/20 nm emission. Relative protein levels of ABCA1 are expressed as ratios 

between ipsi- and contra-lateral fluorescence unit±SEM.

4.8. Western blot immunodetection

Synaptophysin protein levels were evaluated by Western blot in the ipsilateral and 

contralateral hippocampi. Homogenates were prepared and their total protein concentration 

was measured as described above. Twelve micrograms of pools of five HPC protein 

homogenates were applied in duplicate and separated by SDS-PAGE gel electrophoresis 

under reducing conditions (NuPAGE Novex 4–12% gradient tris-glycine precast gels) and 

transferred to a nitrocellulose membrane with the iBlot Dry Blotting System according to the 

manufacturer's protocol (Invitrogen, Carlsbad, CA). Membranes were blocked in 5% (wt/

vol) non-fat dry milk in TBS-T for 1 h at room temperature, as for all subsequent 

incubations. First, a mouse monoclonal antibody against synaptophysin (5768, Sigma-

Aldrich, MO, USA) diluted 1/1000 in TBS-T, then a secondary horseradish peroxidase 

(HRP)-linked anti-mouse antibody (Amersham, Oakville, Canada) diluted 1/5000 in TBS-T 

after TBS-T washing. On the same membranes, detection of α-tubulin was carried out as 

described above using a mouse monoclonal anti-tubulin antibody (M61409M, BioDesign 

Int., Saco, USA) and a HRP-linked sheep anti-mouse antibody (Amersham) to control for 

the amount of protein loaded onto the gel. Detected proteins were revealed with an Immun-

Star™ WesternC™ Chemiluminescence Kit (Bio-Rad, CA, USA) or protein 

chemiluminescence reagents (ZmTech Scientifique, QC, CA) and visualized by exposition 

on a Kodak Image Station 440CF (Kodak). Each band was analyzed with the Carestream 

Molecular Imaging Software (Carestream). The synaptophysin-result for each pool was 

normalized with the corresponding tubulin-result and expressed as the ratio between ipsi- 

and contra-lateral HPC.

4.9. Statistical analyses

One-way ANOVA analyses were applied from the SPSS version 15.0 software and followed 

by Tukey's HSD post-hoc tests. Results were considered statistically significant when p ≤ 

0.05 (non-significant: n.s.).
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Abbreviations

ABCA1/G1 ATP-binding cassette transporter A1/G1

AChE acetylcholinesterase

apoE apolipoprotein E

BBB Blood–Brain Barrier

CMC carboxymethycellulose

DPL days post-lesion

ECL entorhinal cortex lesion

FC frontal cortex

HDL high-density lipoprotein

HMGCoAR 3-hydroxy-3-methylglutaryl-coenzyme A reductase

HPC hippocampus

HRP horseradish peroxidase

LDLR low-density lipoprotein receptor

LXR liver X receptor

OD optical density

OML outer molecular layer

PBS phosphate buffered saline

TBS-T Tris Bufferd Saline-Tween 20
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Fig. 1. 
Schematic representation of hypothesized cholesterol/phospholipid recycling mechanisms in 

the injured CNS. Degenerating terminals are initially internalized and degraded by 

surrounding astrocytes. Inside astrocytes, free cholesterol (FC) is used for the assembly of 

an apoE/cholesterol/lipoprotein complex via the ABCA1 (1) or converted into cholesterol 

esters (CE) for storage purposes. The newly formed apoE/cholesterol/lipoprotein complexes 

are then directed (a) toward the circulation presumably through the ependymal cells 

surrounding the ventricles and/or (b) to specific brain cells requiring lipids. ApoE complexes 

are apparently internalized by the neuronal LDLR pathway (2) and cholesterol is released 

for dendritic proliferation and/or synaptogenesis (4). Within neurons, this free cholesterol 

can also be stored as CE and serves as a lipid pool for eventual needs or be hydroxylated and 

excreted for elimination (7). As a consequence of the internalization process, cholesterol 

synthesis in neurons (via the HMGCoAR Pathway) becomes progressively repressed (5). 

ABCA1/G1: ATP-binding cassette transporter A1/G1; APOER2: ApoE Receptor 2; BBB: 

Blood–Brain Barrier; E: ApoE; FC: free cholesterol; HDL: high-density lipoprotein; PL: 

Phospholipids; J: ApoJ; LDLR: low-density lipoprotein receptor; LRP: LDLR-related 

protein; and VLDLR: very low-density lipoprotein receptor.
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Fig. 2. 
Pattern of acetylcholinesterase (AChE) activity histochemical staining of hippocampal 

cholinergic terminals in response to entorhinal cortex lesioning. (A) Representative 

photomicrographs of the AChE staining density in the dorsal region of the hippocampal 

formation, ispilateral (IPSI) and contralateral (CONTRA) to the lesion site at 2, 6, 14 and 21 

days post-lesion (DPL). As indicated by the arrows, a significant increase in AChE staining 

in the outer portion of the molecular layer of the dentate gyrus is observed at 14 and 21 

DPL; Coinciding with the replacement of entorhinal cortex projections by septal-

hippocampal ones. The black line represents a scale bar of 20 μm in a 2.5 × magnitude 

photomicrographs. (B) Quantification of AChE staining density corrected for laminar 

shrinkage; Values are expressed as relative optical density (ipsilateral: contralateral OD) 

measures of AChE staining with respect to dentate molecular width. Bars correspond to the 

mean of 5 animals/group±SEM; *p<0.05 as compared to 2 DPL.
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Fig. 3. 
Time course of ABCA1 mRNA expression in the hippocampus and frontal cortex of SHAM-

operated and lesioned mice following entorhinal cortex lesion (ECL). The ABCA1 mRNA 

levels normalized to β-actin mRNA levels, are expressed as ipsilateral:contralateral ratios 

(mean of 5 mice/group±SEM). (A) In the hippocampus, a significant increase in the relative 

ABCA1 mRNA levels is observed at 14 days post-lesion (DPL) when compared to SHAM-

operated mice levels (***p<0.001). (B) In the frontal cortex, relative ABCA1 mRNA 

expression is not observed to significantly deviate at any of the time points studied following 

ECL when compared to SHAM-operated relative expression levels.
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Fig. 4. 
Time course of ABCG1 mRNA expression in the hippocampus and frontal cortex of SHAM-

operated and lesioned mice following entorhinal cortex lesion (ECL). The ABCG1 mRNA 

levels normalized to β-actin mRNA levels, are expressed as ipsilateral:contralateral ratios 

(mean of 5 mice/group±SEM). The relative expression of ABCG1 mRNA in the 

hippocampus (A) and frontal cortex (B) of lesioned mice are not significantly different from 

those observed in SHAM-operated mice at any of the observed time points (DPL: days post-

lesion).
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Fig. 5. 
Time course analysis of ABCA1 protein levels in the hippocampus of SHAM-operated and 

entorhinal cortex lesioned mice. ABCA1 protein levels were determined by ELISA assays in 

the hippocampus ipsilateral and contralateral to the lesion and normalized to the total protein 

amount. Indicated are the mean ipsilateral: contralateral ratios of ABCA1 protein levels of 5 

mice/group (bars)±SEM at different time points following the surgery (DPL: days post-

lesion). The mean ABCA1 protein levels ratios show a significant increase that peaks at 14 

DPL (*p = 0.05) and decrease subsequently compared to SHAM-operated animals.
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Fig. 6. 
Quantification of ABCA1 and ABCG1 gene expressions in the hippocampus of entorhinal 

cortex-lesioned mice following LXR agonist treatments: Prevention versus Rescue. Target 

mRNA expression levels relative to actin were determined by real time-PCR in the 

ipsilateral (ipsi) and contralateral (contra) hippocampus (HPC) of entorhinal cortex-lesioned 

(ECL) mice, treated with an LXR agonist prior to (pre-ECL) or after (post-ECL) the lesion. 

Bars indicate the mean of 5 mice/group±SEM at 25 days post-lesion (DPL). (A) ABCA1 

expression is significantly increased in the contra-lateral (*p = 0.02) HPC of the LXR pre-

lesion treatment group (prevention) compared to the corresponding vehicle group when 

assessed during the active synaptic remodeling process at 25 DPL. In contrast, 

administration of the LXR agonist after the lesion (rescue) decreased ABCA1 expression 

(ipsi: *p = 0.004; contra: ***p = 0.001) compared to the corresponding pre-ECL 

administration group during the remodeling process. (B) ABCG1 expression is not modified 

in the HPC of any group at 25 DPL. (C) Synaptophysin protein levels ratios in the HPC of 

LXR pre-ECL and post-ECL treated mice at 25 DPL. Synaptophysin protein levels were 
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assessed by Western blot in duplicate analysis of pools of 5 hippocampi in the ipsi- and 

contra-lateral HPC and the ratio ipsilateral:contralateral was calculated for both pre- and 

post-ECL groups. This assessment served as an indicator of synaptic plasticity in order to 

determine whether the LXR treatment effects on ABC transporters expression coincide with 

reinnervation following the ECL as measured by AChE staining. An increase in 

synaptophysin protein levels ratio is observed in the pre-ECL but not post-ECL treated mice 

compared to vehicle treated mice while AChE staining in the outer molecular layer of the 

dentate gyrus was found to be significantly increased also in the pre-ECL (prevention) as 

opposed to the post-ECL (rescue) agonist treatment group (*p<0.02).
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