
Complexity of virus - vector interactions

Dr. Laura D. Kramer
Wadsworth Center, NYSDOH; and School of Public Health, SUNY Albany, Zoonotic Diseases, 
5668 State Farm Rd, Slingerlands, NY 12159, United States

Introduction

Arboviruses are faced with the unique challenge of having two very disparate hosts in which 

they must replicate in order to perpetuate in the environment, the invertebrate vector and the 

vertebrate host. Together, these two hosts constitute the reservoir of the virus. The 

interrelationships among viruses, vectors and vertebrate hosts are complex and dynamic and 

shaped by biotic (e.g., viral strain, vector genetics, host susceptibility) and abiotic (e.g., 

temperature, rainfall, human land use) factors. Because arthropods are ectothermic, they are 

highly sensitive to increases in global temperatures [1], as are the viruses they transmit. It is 

anticipated that changes in climate, as predicted by the recent 5th Assessment Report of the 

Intergovernmental Panel on Climate Change [2], will result in landscape changes and 

consequent change in spatiotemporal patterns of arbovirus transmission. Understanding how 

arboviruses interact with mosquito vectors in such a dynamically changing environment is 

intrinsically important to estimate risk and design strategies to control arboviral pathogens. 

The intention of this review is to explore the interconnectedness of mosquito and virus 

biology, how that influences arbovirus transmission intensity through an impact on vector 

competence, survivorship, and feeding behavior; and how these aspects of mosquito biology 

affect vectorial capacity.

Vectorial capacity

The concept of vectorial capacity (VC), or R0 of a pathogen, is the measure of a mosquito 

population’s capacity to transmit an infectious agent to a new susceptible population. It 

integrates biotic and abiotic factors, enabling a clearer understanding of the impact of each 

on transmission of mosquito-borne pathogens. One basic formula for VC, a modification of 

[3] is [ma2 (I*T)pn]/−ln(p), where m is the vector density in relation to the host, a is the 

probability that a vector feeds on a host in 1 day. [A host preference index can be calculated 

as number of mosquitoes that blood-fed on the target host (e.g., human) minus the number 

that blood-fed on other vertebrates divided by the total number of mosquitoes that blood-fed 

on either host [4] ].
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The probability that a vector survives 1 day is p; n is the duration of the extrinsic incubation 

period (EIP) in days; I (infection rate) * T (transmission rate) is equal to vector competence 

(b) or the proportion of vectors ingesting an infective meal that are later able to transmit the 

infection, and 1/−ln(p) is the duration of the vector’s life in days after surviving the EIP. 

Vectorial capacity integrates viral factors with the biology of the mosquito vector. Further 

discussion of basic factors affecting vector competence, one aspect of VC, can be found in 

[5–7]. In addition, [8] among other publications, focuses on how VC of Aedes aegypti and 

A. albopictus impact the intensity of transmission of recent Aedes-transmitted viral threats.

Determination of VC is most informative when it takes into account subgroups of vectors 

that may contribute differentially to transmission risk. Therefore, refinements to the basic 

VC formula have been made by adding geographical, ecological, and epidemiological 

complexities to improve accuracy of the estimate, as VC varies spatially and temporally 

across a region. For example, impact of temperature on the EIP was incorporated into a 

dengue model [9]. A review of mathematical models of mosquito-borne pathogen 

transmission is presented by Reiner RC and colleagues [10]. In addition, there are a wide 

variety of behavioral, physiological, and morphological variations among local populations 

of mosquitoes that could potentially impact VC [11].

Vector competence

Vector competence is one aspect of VC. It defines the ability of the mosquito to become 

infected with and transmit virus following an infectious blood meal [12]. Physiologic 

barriers to infection and dissemination [5] and the immune response following infection 

[13,14] have been addressed thoroughly and thus won’t be covered here. The major barrier is 

arguably the midgut infection barrier most likely due to mosquito and virus genetics, viral 

dose, receptor binding, uncoating, translation, or transcription. Research is actively 

addressing identification of cell receptors on the midgut, which was demonstrated by Ciota 

and Kramer to be a major bottleneck to West Nile virus (WNV) diversity [15]. This 

bottleneck and others the mosquito imposes on the virus, such as infection of the salivary 

glands, impact viral fitness and evolution [16]. With at least one alphavirus, Venezuelan 

equine encephalitis (VEE) virus at high doses, midgut escape also can present a bottleneck 

for the virus [16]. A still unresolved question is the means by which arboviruses disseminate 

from the midgut. Mechanisms behind these barriers have been reviewed thoroughly [17]. 

Surface structures of the virus particle itself may be responsible for efficient crossing of 

tissue barriers [18], and/or the barrier may be physically altered during virus replication 

[17].

Virus and vector genetics

Vector competence is affected by both virus and vector genetics. It is well known that 

mosquito species differ in their ability to become infected and transmit virus, but in addition, 

population differences are important within single species. For example, early studies 

demonstrated vector competence of Culex tarsalis for Western equine encephalitis (WEE) 

and St Louis encephalitis (SLE) viruses varied spatially in California. Differences in peroral 

susceptibility were observed among populations collected from different locations within a 
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contiguous geographical area as well as among cohorts of females collected as pupae from 

different breeding habitats sampled at the same location [19]. Similarly, vector competence 

of Culex pipiens for WNV was demonstrated [20] to vary spatially and temporally; as did 

Dengue virus (DENV) in different geographic populations of A aegypti [21].

Viruses also demonstrate inter- and intra- serotype-specific differences in infectiousness. For 

example, the ID50 for DENV-1 and DENV-2 were lower than for DENV-3 and DENV-4 in 

one study in Vietnam [22], and the American genotype of DENV-2 was more poorly 

transmitted by field populations of A. aegypti than the Asian genotype [23]. Even within the 

DENV-2 Asian-American genotype, one clade of virus had an early fitness advantage over 

another in A. aegypti, contributing to a clade replacement event [24] in Nicaragua.

Adaptive mutations in emerging virus strains may affect intensity of transmission by one 

species of mosquito and not another. For example, vector competence of East/Central/South 

African Chikungunya virus (CHIKV) by A. albopictus was facilitated by an amino acid 

change from alanine to valine at position 226 of CHIKV E1 glycoprotein (E1-A226 V), 

causing increased replication, midgut infection, dissemination, and transmission in this 

species, while no significant changes were observed in A. aegypti’s competence [25]. 

Further studies conducted on the importance of genotype x genotype x environment 

interactions with CHIKV examined A. albopictus transmission potential for CHIKV in six 

worldwide vector populations, with two virus strains and two ambient temperatures (20° and 

28°C) [26]. The importance of the interaction between mosquito species, viral genetics, and 

temperature also was demonstrated with WNV where fixation of the E glycoprotein amino 

acid change A159V in WNV was facilitated by high temperatures and decreased extrinsic 

incubation period in C. pipiens and C. tarsalis, but not C. quinquefasciatus [27,28].

WNV and CHIKV adapted to the local mosquito species in naïve locations where they were 

introduced, as described above. Experimental studies have demonstrated that some 

arboviruses, e.g., WNV [29], have the capacity to adapt further in that they can evolve to 

replicate to higher titers and more efficient transmission in their arthropod hosts. Closely 

related viruses, such as SLEV, appear to exist at fitness peaks and do not demonstrate the 

same capacity to evolve [29]. Such adaptation may be associated with costs to the vector 

[30] and therefore experimentally adapted virus strains might not reflect what is found in 

nature. Resistance to infection also was found to be costly and was observed to have an 

equally negative impact on mosquito biology including survivorship and egg laying patterns 

following infection of C. pipiens with mosquito-adapted WNV [31]. This may result from 

cost of RNAi response in the mosquito, which plays a key role in immunity against infecting 

viruses [32]. Therefore, the mosquito is affected by the virus, and equally, the virus by the 

mosquito. Virus diversity is thought to be generated in the mosquito through relaxed 

purifying selection [33,34], although bottlenecks encountered as the virus replicates in the 

different tissues of the mosquito may restrict the presence of minority variants in the mutant 

swarm and thereby constrain evolution [15]. With DENV, more than 90 percent of the single 

nucleotide variants were lost with transmission from infected humans to A. aegypti and from 

mosquito abdomen to salivary glands, but new variants were generated at each stage of 

infection, thereby maintaining genetic diversity [35]. This heterogeneity of the virus 

population is likely important in allowing arboviruses to infect diverse hosts. The genetic 
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conservation generally observed in the consensus sequence of arboviruses may stem as 

much or more from intrahost pressures as interhost, but alternatively may be misleading in 

not reflecting heterogeneity of the intrahost viral swarm.

Survivorship

Two of the most important components of VC are survivorship and feeding frequency. 

Survivorship is important because the mosquito must become infected with virus in the 

initial blood meal and live long enough for virus to reach the salivary glands to be 

transmitted in a subsequent blood meal, thus EIP and survivorship are interconnected. 

Together they vary with the virus, dose, mosquito species, population genetics, and are 

affected by temperature. The interconnection of temperature and EIP was first demonstrated 

for yellow fever virus in Aedes aegypti by Davis [36] and has been demonstrated with many 

other arboviruses [27,37,38]. The importance of diurnal temperature range (DTR) as 

compared with mean temperature was demonstrated with A. aegypti infected with DENV 

[39], where mosquitoes were less susceptible to virus infection and died faster under larger 

DTR around the same mean temperature. But even these more realistic experimental designs 

have shortcomings, as mosquitoes may not be directly exposed to ambient temperatures, but 

rather choose optimal temperatures to rest, as in houses, in the grass, or in the shade.

Mosquito lifespan also has an impact on reproductive output of the mosquito, affecting 

population size and dispersal. It is difficult to measure survivorship in the field, and 

consequently good data are rare. Mark-recapture studies have been conducted to estimate 

lifespan [40], as well as analysis of cuticular hydrocarbons [41]. Most recently, investigators 

have been investigating age-related molecular and biochemical changes in mosquitoes 

including changing transcriptional and protein expression signatures. Age grading is based 

on changing gene transcription profiles measured using quantitative RT- PCR [42], and 2-D-

differential in-gel electrophoresis to measure changes in A aegypti genome expression 

during aging [43].

Feeding frequency integrated with survivorship is critical because the mosquito must 

initially take an infective blood meal, become infectious, as described above, and feed again. 

Thus the oldest females are generally the most efficient vectors as virus is more likely to 

have become established in the salivary glands allowing successful transmission to occur 

when the female feeds. However, apoptosis has been observed in salivary glands infected 

with West Nile virus, increasing with time following infection [44], possibly inhibiting 

transmission. Smaller A. aegypti have been demonstrated to ingest blood more frequently 

than larger females [45], thereby allowing them to transmit virus more often, however 

another study found host-seeking was reduced with smaller A. aegypti [46]. Infected A. 
triseriatus and A. albopictus took smaller blood meals than uninfected siblings, potentially 

enhancing peroral transmission by causing the mosquito to feed more frequently. 

Mosquitoes infected with LACV and other viruses were demonstrated to probe more 

frequently during feeding attempts [47]. This behavior increases virus transmission, as virus 

is ejected each time the mosquito probes. Time required for feeding by DENV-infected 

mosquitoes also was shown to take significantly longer than the time required by uninfected 

mosquitoes. Similarly, the mean time spent probing was significantly longer in infected 
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mosquitoes than in uninfected mosquitoes [48], as was observed with LACV, but host 

seeking increased for LACV-infected A. triseriatus, but not A. albopictus [49]. Temperature 

also has an impact on feeding frequency. A. aegypti experiences reduced mobility and 

struggles to imbibe blood at temperatures below 14–16°C [50].

Impact of the larval environment

Not only is longevity of the adult mosquito affected by ambient temperature, but also the 

immature stages may be affected by temperature as well as other aspects of the environment. 

Nutrition availability and quality, and inter- and intra- specific competition for resources will 

affect survivorship, size and population density of the adult mosquitoes, nutritional storage 

and utilization, immunity, and reproduction [51]. Size and survivorship reflect energy 

reserves, and population density reflects fecundity and developmental success. Trade-offs 

exist between development time and both adult size and fitness, which can have significant 

downstream effects on feeding behavior and fecundity [52,53]. Alterations to these life 

history traits can lead to substantial variations in vectorial capacity of mosquitoes that harbor 

and transmit pathogens [54,55].

Temperature of the larval environment was demonstrated to significantly affect development 

time, immature and adult survival, mosquito size, blood feeding, and fecundity of both field 

and colonized populations of Culex pipiens, the northern house mosquito in the US and its 

sibling species, C. quinquefasciatus, the southern house mosquito, for WNV. However, in 

spite of their distinct geographic ranges, evidence of significant species-specific adaptation 

to temperature ranges was not seen [56]. Similarly, strong and consistent non-linear effects 

were measured in life history traits of distinct populations of C. pipiens across an altitudinal 

and latitudinal gradient in the eastern United States, with lack of support for local thermal 

adaptation [57]. Attempts to further adapt C. pipiens and C. quinquefasciatus to increasing 

temperatures as might occur during climate change, demonstrated adaptation of C pipiens, 

but not C quinquefasciatus using both field and colonized mosquitoes (Kramer and Ciota 

unpub). This result may reflect homogeneity of the C. quinquefasciatus population in the US 

[58] compared with the more heterogeneous C. pipiens [59]. Rearing temperature also had a 

significant effect on C. tarsalis developmental parameters, including shorter time to pupation 

and emergence and smaller female body size as temperature increased [60].

Other studies have shown that larval rearing temperature can affect mosquito competence for 

select arboviruses, including Murray Valley encephalitis (MVE) [61], Japanese encephalitis 

[62], and WEE [63], and DEN [64] viruses. However, infection, dissemination, and 

transmission rates for West Nile Virus (WNV) at 5, 7, and 14 days post infectious feeding 

were not consistently affected by rearing temperature [60]. Similarly, there was no change in 

vector competence of Culex spp for WEE, SLEV, MVE and Rift Valley fever (RVF) viruses, 

when larval rearing temperatures varied. Aedes spp on the other hand were affected 

following rearing at different temperatures when tested for vector comp to RVF, VEE, CHIK 

viruses.

Smaller nutrient-deprived mosquitoes have been noted to be more susceptible to infection 

with some arboviruses than larger mosquitoes, as has been observed with LaCrosse virus in 
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Ae triseriatus [6]. Dodson and colleagues found that nutritional stress increased Culex 
tarsalis larval development time and reduced adult size but as with rearing temperature, there 

was no significant effect on vector competence for WNV [65]. Nasci and colleagues found 

that smaller Ae aegypti acquired a higher concentration of virus per body weight than larger 

individuals [66]. Smaller-sized A. aegypti, females, regardless of rearing conditions, were 

significantly more likely to become infected and to disseminate DENV than larger 

individuals [67], A molecular basis for increased susceptibility of A. aegypti following 

nutritional stress was suggested to be upregulation of several cecropin transcripts in small 

mosquitoes.

Other components of mosquito biology that impact VC

Insect-specific viruses (ie, RNA viruses that replicate only in insects and not in vertebrate 

hosts) are now recognized as being pervasive and may alter vector competence. These 

viruses represent a broad range of families, including Flaviviridae and Togaviridae [68]. The 

microbiome of the mosquito also may affect virus infection of mosquitoes. Complex 

interactions have been reported between infecting microbes and virus infection [69–71]. 

Other factors such as competition, landscape, precipitation also influence VC and must be 

studied as well.

Conclusions

These studies point out the dynamic nature and complexity of virus-vector interactions and 

the inability to generalize from one mosquito or virus species to another, and equally one 

population to another. Temperature both in the larval and adult stages has an impact on 

nearly every aspect of vectorial capacity and must be considered in virus-vector interactions. 

Research is needed to elucidate how climate change and anthropogenic changes to the 

environment are affecting mosquito population biology and virus transmission.
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Highlights

• Virus-vector interactions are complex and dynamic, affected by biotic 

and abiotic factors.

• Vectorial capacity integrates viral factors with the biology of the 

mosquito.

• The two most important components of vectorial capacity are 

survivorship and feeding frequency on susceptible hosts

• Virus and vector genetics affect vectorial capacity and interact in a 

genotype x genotype manner.

• The larval environment has impact on vectorial capacity equal to the 

adult environment; both will be affected by climate change in variable 

manner
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