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Abstract

S-Adenosyl-L-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology 

with an expanding range of biocatalytic and therapeutic applications. In recent years, technologies 

enabling the synthesis and utilization of novel functional AdoMet surrogates have rapidly 

advanced. Developments highlighted within this brief review include improved syntheses of 

AdoMet analogs, unique S-adenosyl-L-methionine isosteres with enhanced stability, and 

corresponding applications in epigenetics, proteomics and natural product/small molecule 

diversification (‘alkylrandomization‘).
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Introduction

Methyltransferase (MT)-catalyzed S-adenosyl-L-methionine (AdoMet, SAM, or SAMe)-

dependent methylation is a key enzymatic reaction that enables the functional modulation of 

a vast array of biomolecules ranging from small metabolites to macromolecules (Fig. 1a; 

Fig. 2a) [1–5]. Consistent with this, alterations in methylation are associated with a wide 

range of human pathologies and variability in drug response [2–4]. Despite great advances in 

methylation-dependent bioinformatics and disease-associated biomarkers, the study of 

intracellular MT spatial/temporal resolution, specificity and/or function remains a challenge 

[3,4]. Within this context, the early proof of concept studies revealing synthetic non-native 
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AdoMet analogs to function as efficient cosubstrates for DNA [6] or natural product (NP) 

[7] MTs inspired a range of subsequent conceptually similar strategies to study NP [8–11], 

protein [12–18], and nucleic acid [19–23] methylation. Subsequent development of 

permissive enzyme-based strategies for the synthesis of differentially S-alkylated AdoMet 

analogs has further simplified access to these unique cosubstrates [11,14,19,24] and also 

facilitated emerging cell-based applications [14]. Within this context, this brief review 

attempts to highlight recent advances in the generation and application of differentially S/Se-

alkylated AdoMet analogs and what are perceived to be key remaining challenges in further 

advancing the impact of these unique reagents. While a wide array of AdoMet adenosyl 

and/or L-methionine (L-Met) chain modified analogs have been pursued within the context of 

inhibitor design, it is important to note that these fall outside the scope of this review [25–

27].

Chemical synthesis of AdoMet analogs

Differentially S/Se-alkylated AdoMet surrogates have been constructed via both chemical 

and enzyme-catalyzed synthesis, the former of which is briefly summarized within this 

section with an emphasis on analogs demonstrated as functional cosubstrates for 

downstream AdoMet-utilizing enzymes. Alkylation of S-adenosyl-L-homocysteine 

(AdoHcy) with alkyl halides in HCOOH/AcOH in the presence or absence of Lewis acid 

(AgClO4 or AgOTf) as the predominate synthetic strategy of choice, has enabled the 

synthesis of >20 chemically diverse S/Se-alkylated AdoMets (Fig. 2b). Table 1 highlights 

functionally active analogs synthesized to date, where subtle variations from the 

conventional synthetic strategy are noted. While synthetic strategies opened the door to the 

interrogation of methyltransferases [6,7,21,28,29], typical synthetic yields range from 3% to 

90% of (S/R)-sulfonium diastereomeric mixtures where residual starting materials (AdoHcy, 

a potent product inhibitor of AdoMet-utilizing enzymes) are commonly detrimental to the 

target enzymes to be studied [30,31]. Thus, purification via reverse-phase chromatography 

[32–34] or cation-exchange HPLC [35] is typically required, the nature of which often 

restricts practical scale. AdoMet chemical lability can also be disadvantageous to lengthy 

synthetic manipulations and/or purification schemes where intramolecular cyclization, 

depurination and sulfonium epimerization contribute to AdoMet t1/2 (Fig. 1b) [19,20,35,36].

Chemoenzymatic synthesis of AdoMet analogs

The complement to conventional AdoMet cosubstrate synthesis is enzyme-catalyzed 

production. Two distinct enzymes have been employed (methionine adenosyltransferases 

and halogenases, Table 1), a main advantage of which is the potential to directly couple 

AdoMet analog production to downstream utilization reactions and thereby circumvent the 

fundamental AdoMet stability issues and/or the need for tedious purification procedures 

noted in previous section.

Methionine adenosyltransferases (MATs, EC 2.5.1.6)

MATs (also known as S-adenosylmethionine synthetase/synthase, SAMS) catalyze the 

formation of AdoMet from adenosine triphosphate (ATP) and (L-Met) as a predominate 

strategy for AdoMet production in nature (Fig. 2c). Within this context, Singh et al. surveyed 
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the capabilities of a representative set of wild-type bacterial, archaeal and mammalian MATs 

with 44 structurally diverse differentially S/Se-alkylated L-Met analogs. This cumulative 

effort highlighted human MAT II catalytic alpha subunit (hMAT2A) and the archael 

thermophilic Methanocaldococcus jannaschii MAT (mMAT) as notably permissive [11]. 

Using the same suite of putative substrates, Wang and Singh et al. reported similar 

promiscuity for the archael Sulfolobus solfataricus MAT (sMAT) and, notably, the 

corresponding first structural elucidation for a thermostable MAT (sMAT, PDB ID 4HPV) 

and corresponding non-native ligand-bound complex (S-adenosylethionine, AdoEth; PDB 

ID 4L2Z) [24]. The Luo group also reported the successful hMAT2A-catalyzed synthesis of 

two differentially S-alkylated AdoMet analogs carrying bulky chemoselective handles and 

the design of key hMAT2A mutants to improve activity toward targeted non-native L-Met 

analogs [14]. In a similar fashion, a wild-type MAT from Bacillus subtilis was recently 

reported to accept four of 11 differentially S-alkylated methionine analogs tested along with 

key mutants that displayed improved proficiency, permissivity and an apparent reduction in 

product (AdoMet) inhibition [37]. In addition to L-Met analogs bearing alternative S-alkyl 

groups, six different carboxyl- and/or amino-modified L-Met analogs were also recently 

assessed for their viability as alternative cosubstrates of pathogenic bacterial MATs [38]. 

Cumulatively, well over 50 L-Met analogs have been assessed as putative substrates for a 

wide array of wild-type and mutant MATs within the last 5 years toward enabling non-native 

AdoMet production and, in many cases, subsequent utilization in coupled systems 

[8,11,14,24,37–39]. In addition, tetrazole-based surrogates AdotMet and 7dzAdotMet (Fig. 

2d) recently generated via hMAT2A-catalyzed synthesis were demonstrated to serve as 

functional cosubstrates for the prototypical class I MT DnrK involved in daunorubicin 

biosynthesis [40]. This latter study notably highlighted a dramatic improvement in the 

corresponding 7dzAdotMet isostere stability where structure elucidation of DnrK ligand-

bound structures also revealed AdotMet to occupy the AdoMet site with a slight shift toward 

the DnrK-bound acceptor coinciding with a slight improvement in kcat.

Halogenases (SalL, EC 2.5.1.94; FDAS, EC 2.5.1.63)

The innovative application of two wild-type microbial halogenases (5′-chloro-5′-
deoxyadenosine synthase or adenosyl-chloride synthase, SalL; 5′-fluoro-5′-deoxyadenosine 

synthase or adenosyl-fluoride synthase, FDAS) have recently been reported for differentially 

S-alkylated AdoMet production. SalL and FDAS catalyze the reversible formation of L-Met 

and 5′-chloro or 5’-fluoro-5′-deoxyadenosine (ClDA or FDA, respectively) from AdoMet 

and chloride or fluoride, respectively, where the equilibrium typically favors the reactants 

(Fig. 2e) [41–45]. In this pioneering work [19], SalL and FDAS were found to catalyze the 

production of six differentially S-alkylated AdoMet analogs from their respective L-Met 

analogs and commercially available ClDA or FDA. Structure-based rational design of SalL 

(PDB ID 2Q6I and 2Q6L) and FDAS (PDB ID 1RQR) mutants also led to catalytic 

improvements with targeted non-native substrates [19]. In addition, SalL-catalyzed AdoMet 

analog production has been successfully coupled to the model MTs arginine 

methyltransferase 1 (PRMT1), DNA MT HhaI and the natural product MT MtfA [19,46]. 

Reminiscent of the 7dzAdotMet isosteres described in the prior section, SalL-catalyzed 

synthesis of the thieno[3,4-d]pyrimidine-based thAdoMet was also recently reported [47]. 

While thAdoMet stability was not assessed, thAdoMet served as a functional cosubstrate for 
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the model DNA MT M.TaqI. Like MATs, halogenases importantly enable coupling to 

downstream AdoMet-utilizing processes in vitro. Whether ClDA/FDA uptake (compared to 

readily available cellular ATP for MAT) impacts cell-based applications remains to be 

determined.

AdoMet analog applications

The pioneering applications of non-native AdoMet cosubstrates in MT-catalyzed reactions to 

afford non-native alkylation of DNA [6] and the indolocarbazole rebeccamycin [7] reported 

in 2006 by Weinhold group and the Rajski/Thorson collaborative team, respectively, served 

as the key proof of concept for an array of subsequent innovative advances and applications 

(Table 1). This section briefly summarizes recent representative examples in the context of 

modifying nucleic acids, proteins and complex natural products.

Nucleic acids

DNA/RNA methylation plays a key role in epigenetic regulation of gene expression where 

the vast temporal and spatial complexity presents a notable technological challenge to 

molecular and mechanistic study, further complicated by the high structural conservation 

among nucleic acid MTs (NAMTs) [48,49]. While cytosine methylation is a highly 

conserved modification across many species and among the best understood nucleic acid 

modifications, many other nucleic acid methylation events also contribute to epigenetic 

regulation [49]. AdoMet analogs present a valuable new tool to study these essential 

processes via MT-catalyzed installation of isotopic or chemoselective handles as a 

framework for epigenetic mapping [6,20–23,50–52]. This concept has been further extended 

to track RNA modification [53–55]

Proteins

Protein methylation is a key post-translational protein function modulator as exemplified by 

the role of histone and transcription factor methylation in cellular differentiation and 

proliferation [56–58]. Here again, the structural conservation among protein MTs (PMTs), 

vast array of protein targets, and corresponding temporal and spatial occurrence present 

significant experimental barriers [3]. As with the nucleic acid strategies highlighted in the 

previous section, AdoMet analogs also enable selective installation of novel chemoselective 

handles to track and identify methylation events catalyzed by PMTs [12–18,57–66], the 

proof of concept of which was first demonstrated by Weinhold and coworkers using the 

wild-type PMT Dim-5 and AdoMet analog 18 (Table 1) [60]. Interestingly, while 18 is also a 

validated substrate of other wild-type PMTs and NAMTs [50,53], Luo and collaborators 

more recently reported the need for engineered PMTs to accommodate this AdoMet analog 

in the pursuit of putative bioorthogonal reagents to study PMT-catalyzed methylation events 

in vitro and living cells [14,17,18,59,63,65,67]. Isotopic tags have also been installed using 

corresponding PMTs and suitably-labeled AdoMet analogs (Table 1, entries 1 – 3) [68–73].

Natural products

Natural product (NP) methylation is a highly prevalent biosynthetic reaction where natural 

product methyltransferase (NPMT)-catalyzed regio/stereospecific O-, N-, S- and/or C-
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methylation of the fundamental NP core can contribute to bioactivity modulation [5,74]. 

Within this context, AdoMet analogs in conjunction with both NPMT domains of large 

multi-functional modular enzyme complexes and standalone late-stage tailoring NPMTs 

have enabled NP ‘alkylrandomization’ (i.e., differential alkylation, the terminology 

reminiscent of NP ‘glycorandomization’ [75,76]) to afford novel coumarins [9], fungal 

polyketides [10], indolocarbazoles [7,11], macrolides [8], nonribosomal peptides [46] and 

related small molecules [9,40,77]. Importantly, these technologies present a clear 

complement to conventional synthesis to extend NP structure-activity relationships (SAR) 

via selective NPMT-catalyzed installation of non-native alkyl groups, protecting groups 

and/or uniquely functionalized handles for subsequent downstream chemoselective 

diversification where C-MTs also offer new avenues to potentially access synthetically 

difficult C-C bond-forming operations [9].

Conclusions

As exemplified by the platform development and innovative applications summarized within 

this brief review, S-alkylated AdoMet analogs serve as useful chemical biology tools, where 

practical access has paved the way for a rapidly expanding array of opportunities in 

fundamental discovery and targeted synthesis. A perceived area for considerable growth in 

this regard are cell-based applications, the key for which will be the development of 

universal bioorthogonal AdoMet surrogate/catalyst pairings with high catalytic turnover and 

exquisite selectivity. ‘Bump-and-hole’ technologies [78], such as those pioneered by Shokat 

and colleagues [79], serve as the basis for similar AdoMet adenine-modified strategies to 

achieve MT bioorthogonality as exemplified by the early work of Schultz and Gray [80] and 

a more recent example by the Zhou group [81]. Alternatively, Luo and collaborators have 

pursued putative bioorthogonality via targeting specific AdoMet S-alkyl modifications 

[17,67]. This growing precedent suggests a vibrant future for cell-based, and possibly even 

whole animal, applications where the fundamental key to achieving true bioorthogonality 

will depend on the development of AdoMet surrogate/catalyst pairings that display suitable 

selectivity for the targeted process/reaction over native biochemical processes/enzymes [82].
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Highlights

• AdoMet is one of the most essential cosubstrates in nature.

• Practical access to AdoMet analogs enables new tools, technologies, 

leads and discoveries.

• Both synthetic and chemoenzymatic strategies for AdoMet production 

have been advanced.

• Chemoenzymatic strategies set the stage for cell-based or whole animal 

applications.

• Bioorthogonal catalyst/AdoMet pairings are anticipated to have a 

dramatic impact.
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Figure 1. Representative AdoMet utilization and degradation pathways
(a) AdoMet serves as a critical alkyl donor in most MT-catalyzed reactions within the 

context of modifying nucleic acids, proteins and small molecule-based metabolites (blue 

sphere signifies methyl in native systems). (b) AdoMet chemically degrades via 

intramolecular cyclization (pathway i) and depurination (pathway ii).
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Figure 2. Key reactions and reagents
(a) General MT-catalyzed reaction scheme (AdoHcy, S-adenosyl-L-homocysteine; also 

known as SAH). MTs can catalyze C-, O-, N- or S-methylation. (b) Typical synthetic 

strategy for AdoMet analog chemical synthesis where common leaving groups include 

halides, triflates, mesylates and tosylates. (c) General methionine adenosyl transferase 

(MAT; also known as S-adenosylmethionine synthetase/synthase, SAMS)-catalyzed reaction 

scheme. (d) Stabilized functional AdoMet surrogates afforded via MAT-catalyzed turnover 

of (S)-3-(methylthio)-1-(1H-tetrazol-5-yl)propan-1-amine (tetrazole-L-methionine, L-tMet) 
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and ATP or L-tMet and 7-deaza-ATP (7dzATP) to give AdotMet and 7dzAdotMet, 

respectively. (e) General halogenase-catalyzed reaction scheme (HAL: adenosyl-chloride 

synthase, SalL, or adenosyl-fluoride synthase, FDAS).
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