Skip to main content
. 2016 Dec 6;14:65. doi: 10.1186/s12969-016-0125-1

Table 5.

Prediction models for participation in PEC, school attendance, and sports frequency

School attendancea Full participation PECb Sports frequencyc
B p SE B p SE B p 95%CI
Gender −1.83 .15 1.26
Age -.35 .11 .22 −1.29 .04 .64
Dis act -.06 .87 .37 −1.53 .06 .81
Medication -.20.4 1.0 8.6x103 −3.31 .04 1.62 -.43 .21 −1.13; .25
Disab. c -.13 .88 .85 −4.90 .02 2.06
Painc -.32 .02 .14 -.69 .02 .29
FatigueRc -.09 .75 .03 .14 .04 .07 -.03 .01 -.05; −.01
ECc .02 .03 .01
SESYMpTOMc .03 .25 1.34
SEACTIVITYc .12 .15 2.05
Est 21.0 .99 8.6x103 4.34 .01 1.58 1.96 <.01 1.37;2.56

aR2 Nagelkerke .46 (logistic regression); bR2Nagelkerke .82 (logistic regression); cR2 = .10 Multilevel regression analysis. Participation: 1 = total participation; School attendance, 1 = full attendance during the previous 3 months; gender: 1 = male; medication: 1 = yes; dis act = disease activity; diasb. disability, fatigue R reversed fatigue scale, EC exercise capacity. SE self-efficacy, est estimate, c centered values