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Introduction
Asthma affects over 235 million people worldwide (1) and is the most common chronic disease in child-
hood (2). The etiology of  asthma is complex, with nearly equal contributions from genes and environ-
ment, reflected by heritability estimates of  approximately 50% (3). Moreover, asthma is heterogeneous with 
respect to clinical onset and course, response to therapies, and associated comorbidities, such as allergies 
(4). Not surprisingly, therefore, variants identified in GWAS have small effect sizes and explain little of  
the overall risk for asthma. It is likely, therefore, that additional genetic variants remain to be discovered, 
including those involved in gene-environment interactions that may not reach criteria for significance in 
GWAS (5–7). Many asthma-promoting environmental exposures alter epigenetic profiles in airway cells 
(8–10), suggesting that changes in DNA methylation may be a mechanism through which environmental 
exposures modify asthma risk or contribute to phenotypic heterogeneity. Given the combined importance 
of  environmental exposures and genetic variation on disease risk, a comprehensive understanding of  the 
molecular architecture of  asthma requires approaches that integrate genetic, epigenetic, and transcriptional 
variation with phenotypic measures of  specific asthma endotypes (5). Yet no previous study of  asthma 
has included these multiple sources of  variation. Here, we characterize the epigenetic, transcriptional, and 
genetic landscapes in freshly isolated endobronchial airway epithelial cell (AEC) brushings from asthmatic 
and nonasthmatic subjects (Table 1). All subjects were extensively phenotyped at the University of  Chicago 
Asthma & COPD Center. All asthmatics had a doctor’s diagnosis of  asthma and were currently using asth-
ma medications; the nonasthmatic subjects had a negative history of  asthma and a normal spirometry and 
methacholine challenge test (see the Methods for additional details and inclusion/exclusion criteria). Our 
integrated systems biology approach combining methylation, transcription, and genetic data with pathway 
analysis revealed a central role for DNA methylation in AECs for modulating the effects of  genetic varia-
tion on asthma risk and on specific asthma endotypes.

The epigenome provides a substrate through which environmental exposures can exert their 
effects on gene expression and disease risk, but the relative importance of epigenetic variation 
on human disease onset and progression is poorly characterized. Asthma is a heterogeneous 
disease of the airways, for which both onset and clinical course result from interactions between 
host genotype and environmental exposures, yet little is known about the molecular mechanisms 
for these interactions. We assessed genome-wide DNA methylation using the Infinium Human 
Methylation 450K Bead Chip and characterized the transcriptome by RNA sequencing in primary 
airway epithelial cells from 74 asthmatic and 41 nonasthmatic adults. Asthma status was based on 
doctor’s diagnosis and current medication use. Genotyping was performed using various Illumina 
platforms. Our study revealed a regulatory locus on chromosome 17q12-21 associated with asthma 
risk and epigenetic signatures of specific asthma endotypes and molecular networks. Overall, these 
data support a central role for DNA methylation in lung cells, which promotes distinct molecular 
pathways of asthma pathogenesis and modulates the effects of genetic variation on disease risk 
and clinical heterogeneity.
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Results
DNA methylation profiles differ between asthmatic and nonasthmatic subjects. We obtained methylation data from 
freshly isolated AECs from 115 subjects (74 asthmatics; 41 nonasthmatics) using the Infinium Human 
Methylation 450K Bead Chip; 327,271 (of  >450,000) CpG sites passed quality control checks (see the 
Methods for details) and were included in our studies. We tested for differences in methylation levels at 
each of  these sites between asthmatic and nonasthmatic subjects using a general linear model framework 
(11). Overall, 40,892 CpG sites were differentially methylated between these two groups at a FDR of  5% 
(Figure 1, A and B, and Supplemental Table 1; supplemental material available online with this article; 
doi:10.1172/jci.insight.90151DS1). The median absolute difference in methylation levels among these dif-
ferentially methylated CpGs (DMCs) was 2.2% (range, 0.1%–24.3%). Among the DMCs, 22,216 (54%) 
were more methylated and 18,676 (46%) were less methylated in asthmatics.

To assess the biological relevance of  the DMCs, we asked whether methylation levels at these sites 
were more likely to be correlated with the expression level of  nearby genes compared with non-DMCs and 
if  correlations were stronger among DMCs with larger differences in methylation levels between asthmat-
ics and nonasthmatics (i.e., larger effect sizes). Gene expression profiles, determined by RNA sequencing 
(RNAseq), were available for 81 of  the 115 individuals (55 asthmatic and 26 controls). We calculated 
Spearman correlation P values between methylation levels at each CpG site and expression levels of  the 
nearest gene that was detected (242,887 CpGs and 15,935 genes). As expected, the proportion of  correlated 
CpG-gene pairs increased with increasing DMC effect size: 26% of  non-DMCs (55,281 of  214,215), 34% 
of  all DMCs (9,814 of  28,672), 42% of  DMCs with effect sizes >5% (1,151 of  2,717), and 45% of  DMCs 
with effect sizes >10% (113 of  249) were at least modestly correlated (r > 0.15) with the expression of  the 
nearest gene. Many of  the genes whose expression was correlated with a DMC have been previously impli-
cated in asthma (Figure 1, C and D, and Supplemental Figure 1), suggesting that DMCs in the airways may 
identify additional asthma candidate genes.

Genetic variations correlated with methylation levels are associated with asthma. Because DNA methylation levels 
can be influenced by nearby genetic variation (12, 13), we hypothesized that SNPs correlated with methyl-
ation levels in AECs are enriched both among DMCs and among SNPs associated with asthma in GWAS, 
including those that do not meet stringent thresholds of  genome-wide significance. To explore these possibil-
ities, we first examined the influence of  local genetic variation on methylation profiles in AECs by mapping 
methylation quantitative trait loci (meQTLs) in 111 individuals with genotype data, using a linear model 
framework as implemented in matrixeQTL (Figure 2A and Supplemental Table 2) (14). Among all CpGs 
within 5 kb of  a SNP, 14,325 (9.89%) were associated with at least one meQTL (black bar in Figure 2B), 

Table 1. Clinical characteristics of the subjects at the time of bronchoscopy

Asthma Control
(n = 74) (n = 41) P valueA

Age (mean yr ± SD) 39.09 ± 12.94 37.56 ± 11.35 0.51
Gender (% female) 70 67 0.68
Ethnicity (no. Af Am/no. Eur Am/no. other) 43/28/3 26/13/2 0.79
% SmokerB 4 21 0.052
ICS use (%) 75 – –
OCS use (%) 41 – –
Mean FEV1% predicted (± SD) 75.72 ± 20.24 94.93 ± 11.44 2.25 × 10–7

Median exhaled NO (ppb) (upper quartile, lower quartile)C 21.00 (45.00, 12.00)  14.00 (18.00, 11.00) 0.0042
Atopy (%)D 89 63 1.10 × 10–4

Median total serum IgE (upper quartile, lower quartile) 109.50 (343.80, 22.25) 41 (160, 18) 0.02
Mean blood eosinophil count (± SD) 237 ± 312 118 ± 74 P < 2.2 × 10–16

Mean BAL eosinophil count (± SD) 15.96 ± 19.84 0.92 ± 1.23 P < 2.2 × 10–16

Mean BMI (± SD) 34.84 ± 9.94 29.33 ± 5.68 0.0032

P values correspond to comparisons between asthmatic and control subjects. Af Am, African American; Eur Am, European American; ICS, inhaled 
corticosteroid; OCS, oral corticosteroid; FEV1, forced expiratory volume at 1 second, BAL, bronchoalveolar lavage. AContinuous variables evaluated with a 
Wilcoxon rank-sum test and categorical variables evaluated with a Fisher’s exact test. BCurrent smoker at the time of bronchoscopy. C71 asthmatics and 41 
controls had FeNO measurements. D≥1 positive skin tests.
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whereas 2,200 (11.96%) DMCs were associated with at least one meQTL (red bar), revealing significantly 
more meQTLs among DMCs compared with CpG sites with methylation levels that did not differ between 
asthmatics and controls (i.e., non-DMCs). A parallel study of  gene expression detected 16,358 cis expression 
(e)QTLs (925 unique genes, 14,944 unique SNPs) at an FDR 5% (Figure 2C and Supplemental Table 3) (see 
the Methods). However, in contrast to meQTLs, cis eQTLs were not enriched among genes that were differen-
tially expressed between asthmatics and controls (Supplemental Table 4), including those with larger expres-
sion differences; 5.6% of all genes, 4.4% of differentially expressed genes, and 6.6% of differentially expressed 
genes with larger differences were associated with an eQTL (Figure 2D).

We next asked whether SNPs that are meQTLs or eQTLs in AECs are also associated with asthma in 
published GWAS. For this analysis, we classified the most significant SNP (meQTL or eQTL) associated 
with each CpG site or gene as the QTL for that CpG site or gene (15). We then extracted association P 
values for SNPs included in two of  the largest asthma GWAS to date, the EVE (16) and GABRIEL (17) 
consortia, and retained the overlapping SNPs between our study and each GWAS. We stratified each set 
of  SNPs by their GWAS P values (< 0.01 vs. ≥0.01) and by those with and without QTLs (meQTLs and 
eQTLs separately, FDR ≤ 5% vs. > 5%), and tested for nonrandom distributions using a Fisher’s exact test. 
Indeed, SNPs that were meQTLs or eQTLs in AECs were more likely to be associated with asthma than 
SNPs that were not QTLs (meta-analysis of  EVE + GABRIEL: PmeQTL = 0.0017, PeQTL = 0.0015; Supple-
mental Table 5). Previous studies of  many complex diseases have shown that disease-associated SNPs in 
GWAS are enriched for eQTLs (18–21) and meQTLs (13, 22). Our data show that meQTLs (in airway 
cells) are also enriched for asthma-associated SNPs.

An integrated omics approach identifies an asthma locus. The combined analysis of  gene expression, methyla-
tion, and genetic variation can both facilitate the identification of  novel disease loci that did not reach statisti-
cal significance in GWAS and provide an understanding of  regulatory mechanisms underlying associations. 
To explore this further, we considered the 35 SNPs that were both meQTLs and eQTLs in AECs and associat-
ed with asthma in either the EVE (16) or GABRIEL (17) studies at a P value of  less than 0.01. These 35 SNPs 
were meQTLs for 25 CpG sites and eQTLs for 13 genes, including potentially novel asthma loci (Supplemen-
tal Table 6). Many of  the overlapping SNPs were correlated with the expression of  genes on chromosome 
17q12-21, the most significant and most replicated asthma locus (discussed in ref. 5). Asthma-associated 

Figure 1. Differential methylation in airway 
epithelial cells from asthmatic and control 
subjects. (A) Volcano plot showing methyla-
tion differences between asthmatic (n = 74) 
and nonasthmatic (n = 41) individuals. Mean 
differences in β values are shown on the x axis. 
Dark gray indicates CpGs that differ between 
asthmatics and nonasthmatics at q ≤ 0.05; 
light gray indicates CpGs with a fold change of 
>5%; The black dots indicate non-significant 
sites at a q > 0.05. (B) Manhattan plot of 
327,271 CpGs in our analysis of asthma-asso-
ciated differentially methylated CpG sites. P 
values (y axis) correspond to the differences in 
methylation between asthmatic and control 
subjects. The red line corresponds to the q val-
ue threshold (FDR 5%). (C) Box plot showing 
methylation levels at a CpG site (cg11303839) 
upstream of the transcription start site of 
CCL26 (encoding eotaxin 3), a chemokine 
elevated in the airways of asthmatic subjects. 
Box plot displays the median, first and third 
quartiles, and 95% confidence intervals. (D) 
Scatter plot showing the correlation between 
CCL26 transcript abundance and cg11303839 
methylation levels for 81 individuals with both 
gene expression and methylation data. In C 
and D, black points are nonasthmatics and red 
are asthmatics.
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SNPs at this locus span an approximate-
ly 200-kb block of  linkage disequilibrium 
(LD) and are eQTLs for two coregulated 
genes, ORMDL3 and GSDMB, in blood 
cells (19, 23, 24) and whole lung tissue 
(19, 25). As a result of  the extensive LD 
in this region and the coregulatory effects 
of  associated SNPs on the expression of  
these two genes, it has been difficult to 
localize the causal SNP(s) and disentangle 
the relative roles of  ORMDL3 and GSDMB 
in asthma risk.

In our study, the most significant 
eQTL for ORMDL3 in AECs is located 
~240 kb upstream of  its transcription 
start site at a 17q locus outside of  the 
LD block at the established 17q locus: 
LD r2 between rs2517955 at the locus 
and rs12936321 at the established locus 
was 0.27 (Figure 3A). To confirm that 
the effect of  genotype at rs2517955 on 
ORMDL3 expression was independent 
of  SNPs at the established locus, we 
repeated the eQTL analysis, including 
genotype at rs1293631 as a covariate. In 
this conditional analysis, the eQTL P val-
ue for rs2517955 and ORMDL3 changed 
from 2.56 × 10–5 to 8.81 × 10–4, indicat-
ing that the two loci are indeed indepen-
dent. Moreover, unlike the eQTLs at the 
established locus, this SNP is not associ-
ated with expression of  GSDMB in AECs 
in our study (Figure 3B), consistent 
with results in whole lung tissue in the 
Gene-Tissue Expression (GTEx) consor-
tium studies (19). Although SNPs at this 
locus reached genome-wide significance 

in the GABRIEL study (P = 1.2 × 10–9) and were nearly genome-wide significant in the EVE study (P = 2.2 
× 10–7), they were considered to be part of  the association at the established 17q locus and not recognized as 
an independent asthma locus in either report. The allele that is associated with asthma in GWAS is associ-
ated with increased expression of  ORMDL3 in airway epithelial cells in our study, suggesting that elevated 
ORMDL3 in the airways is associated with asthma risk.

The SNP that is the eQTL for ORMDL3, rs2517955, is also among the most significant meQTLs for a 
nearby CpG site (cg05616858, Figure 3C and Figure 4A), and methylation levels at this site were correlated 
with expression of  ORMDL3 (Figure 3D) but not with expression of  GSDMB (Figure 3E). To elucidate the 
causal relationship among genotype, methylation level, and gene expression, we performed Mendelian ran-
domization (26). We tested for an effect of  methylation at cg05616858 on ORMDL3 transcript abundance, 
using rs2517955 as the instrumental variable. The randomization P value was 0.001, signifying that methyl-
ation at cg05616858 contributes to ORMDL3 gene expression independent of  genotype at rs2517955. Thus, 
methylation at this locus is likely the underlying molecular mechanism for the observed eQTL. Overall, 
these data show that rs2517955 at an asthma locus is associated with the expression of  ORMDL3, but not 
GSDMB, in AECs through its effect on methylation at cg056168858.

We next examined the regulatory architecture around rs2517955 using the ENCODE (27) data on 
histone marks of  enhancers. The associated SNPs at this locus are within a strong H3K27ac histone mark 

Figure 2. QTL mapping of methylation (meQTL) and expression (eQTL) levels. (A) Manhattan plot showing 
the association P value between each SNP and methylation levels at nearby CpGs. The solid line shows the 
Bonferroni significance threshold; the dashed line shows the threshold at a FDR of 5%. (B) The proportion of 
meQTLs present in subsets of CpGs. Only the most significant meQTL per CpG is included. The black bar indi-
cates all CpG sites on the array with a nearby SNP; the red bar indicates differentially methylated CpGs (DMCs) 
with a nearby SNP; the blue bar indicates DMCs with effect size >5% and with a nearby SNP; the yellow bar 
indicates DMCs with effect size >5%, a nearby SNP, and in a WGCNA comethylation module; and the gray 
bar indicates DMCs with effect size >5%, a nearby SNP, and not in a WGCNA comethylation module. *P < 2.2 
× 10–16 compared with black bar. (C) Manhattan plot showing the association P value between each SNP and 
expression levels at nearby genes. The solid line shows the Bonferroni significance threshold; the dashed line 
shows the threshold at a FDR of 5%. (D) The proportion of eQTLs present in subsets of genes. Only the most 
significant eQTL per gene is shown. The black bar indicates all genes sites on the array with a nearby SNP; the 
red bar indicates differentially expressed (DE) genes with a nearby SNP; the blue bar indicates DEs with a >1.2-
fold difference and with a nearby SNP.
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(Figure 4B). H3K27ac is a mark of  poised or active enhancers in mammalian cells (28, 29). Moreover, 
capture Hi-C studies in lymphoblastoid cell lines showed looping and physical interaction between the 17q 
locus and the promoter of  ORMDL3, 240 kb away at the established 17q locus (Figure 4C). Thus, integra-
tion over multiple omic platforms revealed further complexity at the 17q asthma locus and identified SNPs 
at a regulatory locus that are associated with asthma and correlated specifically with the expression of  
ORMDL3 in AECs.

Epigenetic variations define asthma endotypes and molecular pathways of  pathogenesis. Both the epigenetic and 
genetic signatures in AECs described above provide rich sources of  variation that may influence asthma 
endotypes. To examine this more closely, we focused on the subset of  high confidence DMCs that were 
differentially methylated between asthmatics and nonasthmatics with an effect size of  at least 5% (n = 
3,767), and used a systems biology approach, as implemented in weighted gene coexpression network 
analysis (WGCNA) (30), to examine the correlation structure of  these DMCs. WGCNA grouped 68% of  
the DMCs into four comethylation modules (Table 2). To evaluate the clinical relevance of  these modules, 
we tested for correlations between each of  the modules and asthma-relevant phenotypes. For this analysis, 
we calculated the trajectory of  average methylation change for each module (eigengene) using WGCNA 
and correlated the module eigengenes with phenotypes in the 74 asthmatic subjects. The modules were cor-
related with three distinct phenotypic signatures or endotypes. Modules 1 and 4 were both associated with 
a classifier of  asthma severity (STEP classification) and inhaled corticosteroid (ICS) usage, an indicator of  
severity. Module 2 was associated with eosinophilia in bronchial alveolar lavage (BAL) fluid, and module 3 
was associated with fractional exhaled NO. Both BAL eosinophilia and exhaled NO are markers of  airway 
inflammation. Module 3 was also enriched for CpGs that were IL-13 responsive in an AEC culture model 
(31). Because 75% of  the asthmatics in this study used ICS and long-acting β agonists (LABA) to control 
their symptoms (Table 1), and ICS usage is associated with WGCNA modules 1 and 4, we examined the 
effects of  this commonly used combination therapy on methylation changes in cultured primary AECs. 

Figure 3. SNPs at a novel locus are eQTLs for ORMDL3. Box plots showing the association of genotype at rs2517955 with expression levels of ORDML3 
(A) and GSDMB (B) and methylation levels at cg05616858 (C). Numbers in parentheses represent the number of individuals with the specified genotype. 
Scatter plots showing the correlation of methylation levels at cg05616858 with expression levels of ORMDL3 (D) and GSDMB (E) for the 81 individuals with 
gene expression, methylation data, and genotypes. Box plots display the median, first and third quartiles, and 95% confidence intervals.
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To test the effects of  these pharmacologics on methylation patterns, we treated AEC cultures established 
from primary cells with vehicle or with a combination of  10–5 M dexamethasone and 10–7 M fluticasone for 
6, 24, and 48 hours. None of  the 2,560 CpGs included in the four comethylation modules changed after 
exposure to ICS/LABA at any of  the time points assessed (FDR > 5%). These studies revealed that the 

Figure 4. A 17q locus is within a putative enhancer. (A) Locus zoom plot of meQTL results for the 17q12-21 region. Only SNPs included in the meQTL study 
(those within 5 kb pairs of a CpG) are shown. The meQTL P values are shown on the left y axis for each CpG-SNP pair; only the smallest meQTL P value is 
shown when there is more than one SNP within 5 kb of a CpG site. LD (r2) is shown between the most significant meQTL (rs2517955) and all other SNPs. 
Note that rs2517955 shows little LD (r2 = 0.27 based on 1,000 genomes CEU) with rs12936231, a SNP at the established 17q21 locus, which spans from 
ZPBP2 to ORMDL3. (B) ENCODE H3K27ac histone marks align to the region flanking rs2517955. The vertical red line shows the position of rs2517955. (C) 
Results of in situ Hi-C studies. Interaction between the putative distal enhancer locus (red bar) and a region including the ORMDL3 promoter (blue bar) is 
shown by an arrow. Gray bars show additional sites of interaction with the enhancer locus. The vertical red line shows the position of rs2517955.



7insight.jci.org   doi:10.1172/jci.insight.90151

R E S E A R C H  A R T I C L E

correlated DMCs within the modules do not change in response to this therapy in cell culture and suggest 
that the methylation differences between asthmatic and nonasthmatic individuals in our study are not due 
to inhaled therapy use in the asthmatics.

To further evaluate the potential biological relevance of  the modules, we used ingenuity pathway 
analysis (IPA) to identify protein-protein interaction networks and upstream regulators of  proteins 
whose genes were associated with each module. For this analysis, we included the closest gene to each 
DMC if  methylation and expression levels of  the CpG-gene pair were at least modestly correlated (r > 
0.15). Each module was significantly enriched for at least one network (IPA network score ≥ 25) (Table   
2, Figure 5, and Supplemental Figures 4–7). Genes correlated with CpG methylation levels in modules 
1 and 4, both of  which were associated with asthma severity, are enriched in many networks with pro-
tein hubs implicated in a broad number of  remodeling, cell growth, and inflammatory pathways, such 
as ERK1/2, NF-κB, and Ras/Raf  kinase. However, despite having similar hubs and similar phenotype 
associations, the CpGs within these modules are largely correlated with different genes (only 9 genes 
overlap between modules, 2% of  module 1 and 4% of  module 4). The overlapping network hubs, there-
fore, likely represent different signaling pathways that act through the same intermediate molecules 
(Figure 5). Consistent with this is that modules 1 and 4 are also enriched for different upstream regula-
tor molecules. Module 1 was enriched for the upstream regulator TNF (P = 4.81 × 10–4), while module 
4 was enriched for the upstream regulator TGFB1 (P = 7.74 × 10–9) (Supplemental Figure 6). These 
analyses suggest that the genes in modules 1 and 4 alter different pathways that influence asthma sever-
ity in the airways. Module 2, which was specifically associated with BAL eosinophil count, is enriched 
for a single network, with hubs that include VEGF, SELE, and SMAD2/TGFB1, all genes involved in 
processes related to eosinophilia (32) or eosinophil migration across epithelium (33, 34) (Supplemen-
tal Figure 3). Module 3 was associated with exhaled NO levels, and the one network associated with 
this module is centered on induced NO synthetase (NOS2) (35) as well as additional components of  
induced NO response (Supplemental Figure 6). Collectively, these data suggest that each module com-
prises methylation changes associated with central yet distinct components of  asthma pathogenesis: 

Figure 5. IPA networks of genes correlated with CpGs in modules 1 and 4 are both centered on NF-κB but have few overlapping genes. (A) Module 1 net-
work (score 42). (B) Module 4 network (score 29). The expression of the genes included in these networks was correlated with methylation levels at nearby 
differentially methylated CpGs (DMCs) (r > 0.15). Genes that were associated with a DMC are shown in gray. Description of molecule shapes can be found at 
http://ingenuity.force.com/ipa/articles/Feature_Description/Legend.  
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airway remodeling (modules 1 and 4), leukocyte attraction (module 2), and NO response (module 3). 
Notably, parallel studies on gene expression did not yield coexpression modules

meQTLs are enriched among uncorrelated DMCs with large effect sizes. Finally, we explored the relation-
ship between meQTLs and the WGCNA modules to ask whether genetic variation contributes to specific 
asthma endotypes. Although meQTLs were enriched among DMCs with large effect sizes, they were not 
equally distributed among the large effect DMCs assigned to comethylation modules and those that were 
not: 11.3% of  the comethylated DMCs were associated with a meQTL compared with 39.3% of  DMCs 
that were not comethylated (yellow and gray bars, respectively, in Figure 2B). The latter group of  non-com-
ethylated DMCs also showed stronger associations overall (i.e., smaller meQTL P values) compared with 
comethylated DMCs in the modules (Supplemental Figure 7). These observations of  both more meQTLs 
and more significant meQTL P values among the uncorrelated large effect DMCs suggest that the correlat-
ed methylation profiles of  DMCs within modules may be more influenced by nongenetic factors, such as 
environmental exposures or downstream effects of  the disease process itself.

Discussion
Our findings indicate that DNA methylation in the airway plays a central role in mediating the effects of  
genetic variation on asthma risk and clinical course. Using a systems biology approach that integrated 
genome-wide genetic, epigenetic, and transcriptomic data in freshly isolated airway epithelial cells with 
publicly available genomic and GWAS data led to the discovery and mechanistic understanding of  a regu-
latory locus for asthma and the identification of  epigenetic signatures of  distinct endotypes and molecular 
pathways. These observations would not have been revealed if  we had focused on individual CpG sites or 
on a single omics readout, such as gene expression. In fact, it was unexpected, and notable, that epigenetic 
profiling in the asthmatic airways revealed insights into asthma pathogenesis that were not observable in 
the gene expression data. Differentially expressed genes between asthmatics and nonasthmatic subjects did 
not cluster into coexpression modules or show enrichment for eQTLs, as was observed for DMCs. These 
findings suggest that asthma-associated epigenetic changes in the airways may be a more stable marker of  
disease and therefore a more relevant focus for biomedical discovery.

Our study also revealed a relative depletion of  meQTLs for large effect DMCs within correlation 
modules that are associated with specific endotypes and molecular pathways compared with uncorrelated 
large effect DMCs. We suggest that large coordinated shifts in DNA methylation levels at CpGs within the 

Table 2. Correlation of P values of WGCNA modules with demographic variables, clinical phenotypes, and pathway enrichments

WGCNA modules (3,767 DMCs)
1 (P values) 2 (P values) 3 (P values) 4 (P values)

No. CpGs (unique genes) 752 (673) 93 (91) 146 (122) 1,569 (1,315)
Demographics and phenotypes
Ethnicity 0.96 0.93 0.70 0.73
Gender 0.59 0.80 0.81 0.43
STEP classification 0.0027 0.11 0.58 0.0029
Steroid resistance 0.0074 0.24 0.92 0.034
ICS use 0.0024 0.40 0.17 0.00053
OCS use 0.016 0.039 0.70 0.15
FEV1% predicted 0.019 0.45 0.37 0.17
NO 0.63 0.89 0.00084 0.56
Total serum IgE 0.058 0.24 0.024 0.013
Atopy (≥1 +SPT) 0.034 0.069 0.084 0.0065
Blood eosinophil count 0.011 0.018 0.34 0.099
BAL eosinophil count 0.010 0.0011 0.75 0.24
BMI 0.011 0.18 0.79 0.039
Network processes TNF-mediated 

remodeling
Leukocyte attraction NO response TGF-β–mediated 

remodeling
IL-13–responsive CpG enrichments 0.75 0.62 8 × 10–4 0.99

Bolded P values are significant after Bonferroni correction for multiple testing. Associated networks are shown in Supplemental Figures 2–6.
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modules reflect functional connectivity, possibly in response to environmental exposures or even down-
stream effects of  the disease process. The paucity of  meQTLs for these sites may be due to biological con-
straints on these interconnected pathways. In contrast, uncorrelated CpGs in the asthmatic airways may 
be under less constraint and therefore may be more likely to be influenced by nearby genetic variation. 
Overall, this systems level analysis revealed a partitioning between correlated and uncorrelated DMCs 
with large effect sizes, potentially reflecting environmental and genetic influences on asthma endotypes 
and susceptibility, respectively.

Finally, our study identified an asthma locus outside of  the LD block at the previously character-
ized 17q12-21 locus. Unlike previous studies of  this locus, we show that methylation levels at a CpG site 
(cg056168858) within a putative enhancer locus are associated with the expression of  ORMDL3 but not 
GSDMB in freshly isolated AECs and that a SNP (rs2517955) at the enhancer locus is associated with 
ORMDL3 expression via its primary effects on methylation at cg056168858. These results indicate that 
the regulation of  expression of  ORMDL3 differs between airway and blood cells and further highlights 
the importance of  focusing omic studies on specific cell populations from disease-relevant tissues (19, 
36). Using a chromatin configuration assay, we demonstrated physical interaction between the putative 
enhancer and the promoter of  ORMDL3, supporting a direct effect of  this locus on ORMDL3 expression. 
Integration with published GWAS data supports an association between rs2517955 and asthma and sug-
gests that expression of  ORMDL3 is increased in the airways of  asthmatic individuals.

We note several limitations of  this study. First, it was performed in cells from asthmatics with estab-
lished disease and nonasthmatic controls. Thus, although we identified global epigenetic signatures of  
distinct endotypes among the asthmatics, the design of  our study does not allow us to imply causality. 
Whether the observed profiles are a result of  the disease process itself  or whether they reflect responses to 
the environment that preceded disease cannot be distinguished within the context of  this study. In contrast, 
genetic variants that are meQTLs and associated with asthma in GWAS are more likely to be causally 
related to the observed differences in methylation levels and potentially to asthma inception or progression, 
as we show for the 17q SNP. Second, due to the relatively small size of  our sample, we could not formally 
test for interactions among genotype, methylation levels, and asthma, which may identify potential sites 
of  gene-environment interactions. Nonetheless, enrichments of  meQTLs for CpG sites with methylation 
levels that differ between asthmatics and controls (DMCs) suggest that such interactions exist and could 
potentially be identified in larger studies. Finally, studies of  airway cells in asthmatics with established 
disease are always potentially confounded by medication usage. Indeed, 75% of  the asthmatics were using 
a standard combination therapy of  ICSs and LABAs at the time of  our studies. It is possible therefore that 
some of  the DNA methylation and gene expression differences observed between asthmatic and nonas-
thmatic individuals was due to exposure to these therapies. We addressed this by measuring DNA meth-
ylation and gene expression responses to these compounds in an airway epithelial cell model. Although 
the results of  those studies suggest that the correlated DMCs within the comethylation modules are not 
responsive to the effects of  this treatment in vitro, it is possible that some proportion of  the observed DMCs 
are responsive to treatment in vivo.

The integrated approach described in this paper represents a step toward unraveling the genetic and 
environmental components of  asthma, as well as the underlying molecular structure of  asthma endotypes, 
and should be applicable to complex diseases in general. Expanding these studies to include other relevant 
cell types, additional epigenetic marks, and further modeling of  disease-promoting or -protective exposures 
in cell culture models will continue the process of  fleshing out the underlying regulatory architecture of  
asthma. Elucidating how both genetic and epigenetic variation, individually and as interactions, contribute 
to this architecture and ultimately to disease onset and progression are important steps toward the ultimate 
goal of  personalized therapeutics and prevention strategies for asthma.

Methods
Studies in freshly isolated cells. One hundred twenty-three adult subjects (76 with asthma, 47 without asthma) 
underwent bronchoscopy between March 2010 and March 2014 at the University of  Chicago. Endobron-
chial brushings were obtained during bronchoscopy, as previously described (37). The asthmatic subjects 
had a current doctor’s diagnosis of  asthma, no conflicting pulmonary diagnoses, and were using asthma 
medications. Controls were subjects that had no current or previous diagnosis of  asthma and had normal 
spirometry and methacholine challenge tests. In 5 subjects (1 asthmatic, 4 nonasthmatics), we were unable 
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to obtain sufficient quantity or quality of  DNA from the brushings for methylation studies, and methyl-
ation data from 3 additional subjects (1 asthmatic, 2 nonasthmatics) failed quality control checks. The 
remaining 115 subjects (74 asthmatics, 41 nonasthmatics) were included in the methylation studies (Table 
1). For studies of  differential expression, we obtained RNAseq read depths of  >10 million mapped reads in 
85 individuals who were used in studies of  differential expression (58 asthmatics, 27 nonasthmatics); 81 of  
the 85 also had methylation data. We obtained genome-wide genotypes for 116 individuals. One hundred 
and eleven individuals also had methylation data available and were used for meQTL studies, and 79 had 
expression data and were used for eQTL studies.

DNA and RNA were isolated from epithelial cell brushings using the QIAzol lysis reagent (QIAgen). 
DNA was concentrated using the Millipore Amicon Ultra centrifugal filters, 0.5 ml 30K membrane (Milli-
pore), according to the manufacturer’s instructions.

Cell culture studies. To assess the effects of  asthma medications on methylation levels in AECs, we cul-
tured primary AECs from 7 human donor lungs that were not suitable for transplantation and obtained 
through the Gift of  Hope. Primary AEC cultures were established from these lungs at the University of  
Chicago Lung Biospecimen Core; all donors were European American, 4 were female, and the median age 
was 44 years (range 37–48 years). Cells were cultured as previously described (38) and then treated with a 
combination of  10–5 M dexamethasone and 10–7 M fluticasone or with vehicle for 6, 24, and 48 hours. DNA 
for methylation was extracted from vehicle and treated samples using the QIAgen AllPrep kit. Samples 
with sufficient amounts of  DNA after extraction were analyzed for methylation as described below. After 
6 hours, 7 treated and untreated samples provided sufficient amounts of  DNA for methylation studies; 
after 24 hours, 6 treated and 5 untreated samples provided sufficient amounts of  DNA; and after 48 hours, 
3 treated and 4 untreated samples provided sufficient amounts of  DNA. RNA for expression studies and 
DNA for methylation studies were extracted from treated and untreated cultures using the QIAgen AllPrep 
kit as described previously (38).

Methylation studies. Methylation was assessed in freshly isolated and cultured AEC samples using the 
Infinium Human Methylation 450K Bead Chip (39). Probes located on the sex chromosomes and those 
that had a detection P value of  greater than 0.01 in 75% of  samples were removed. We also excluded probes 
that mapped to more than one location in a bisulfite-converted genome or overlapped with the location of  
known SNPs (13), leaving 327,271 CpGs. Methylation data were processed using the minfi package (40); 
Infinium type I and type II probe bias was corrected for using the SWAN algorithm (41). We corrected raw 
probe values for color imbalance and background by controls normalization. At each CpG site, the meth-
ylation level was reported as a β value, which is the fraction of  signal obtained from the methylated beads 
over the sum of  methylated and unmethylated bead signals.

Principal component analysis was used to determine the effects of  known confounding variables on 
global methylation profiles. In the freshly isolated cells, chip, gender, ethnicity, age, and BMI were sig-
nificantly correlated with principal components. The effects of  chip were regressed out using COMBAT. 
Residual methylation β values after regression were used for all analyses in which gender, ethnicity, and 
age were included as covariates in the model to identify DMCs. Because BMI was strongly correlated with 
age and no longer significant after age was included in the model, BMI was not included as a covariate. 
Smoking status was not significantly associated with principal components, but we included it in the model 
due to its known effect on methylation profiles (42). Methylation array data were deposited into Gene 
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession GSE85568. In the cell 
culture model, to assess the effects of  inhaled combination therapy on methylation, DNA concentration, 
age of  individual, and gender were associated with methylation levels. In analyses of  those data, DNA con-
centration was regressed out and age of  individual and gender were retained as covariates in linear models.

To assess associations of  asthma on methylation levels at each CpG site in the freshly isolated cells, we 
used the R package limma, with gender, age, smoking status, and ethnicity included as covariates. Anal-
ysis of  methylation changes in the cell culture model was performed using a paired mixed-effects linear 
regression analysis of  treated versus untreated conditions with individual ID coded as a random effect for 
6-hour samples. Due to sample loss in the 24- and 48-hour samples, we did not have enough paired samples 
in those treatments and performed analyses of  24- and 48-hour samples using standard linear regression.

Gene expression studies. cDNA libraries were constructed using the TruSeq RNA Sample Preparation 
v2 according to the manufacturer’s instructions (Illumina) and run on the Illumina HiSeq 2000 platform. 
RNAseq data were mapped to the transcriptome using BWA (43). Sequences that overlapped with pro-
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tein-coding regions were determined using BEDTools (44). The median number of  mapped reads was 
19,210,000 mapped reads per individual, with a range of  10,100,000–51,150,000 mapped reads. The 
gene counts were adjusted for gene length and variation in sample read depth. Expression estimates were 
obtained for 18,931 autosomal ENSEMBL genes and estimates were filtered to genes that had at least 5 
reads in 2 individuals and were annotated in biomart reducing the number of  genes to 16,535. RNAseq 
counts were processed using RUVSeq (45). We estimated the factors of  unwanted variation using RUVSeq 
by selecting 10% of  the least variable genes in our sample (1,653 genes). These genes were subsequently 
excluded from analyses of  differential expression but were retained for eQTL analyses. Two unwanted 
sources of  variation (RUVs) were identified and included in the negative binomial generalized linear mod-
el, as implemented in RUVSeq. To better understand the variables associated with these RUVs, we correlat-
ed the RUVs to clinical phenotypes of  interest. One RUV was significantly correlated with RIN score (P = 
1.1 × 10–6), and one was significantly correlated with ethnicity (P = 8.1 × 10–8), average base pair read length 
(P = 1.4 × 10–7), and flow cell (P = 1.6 × 10–12). After regressing out these two RUVs, principal component 
analysis was performed on log-transformed residuals of  counts per million. No additional correlations with 
sources of  variation were detected. RNAseq data have been deposited into GEO (https://www.ncbi.nlm.
nih.gov/geo/) under accession GSE85568.

Genotyping and imputation. Whole blood–derived DNA was genotyped on the Illumina Omni2.5-8v1A 
(n = 35), Omni1MDuo (n = 37), or Human Core (n = 44) arrays. SNPs on each array were oriented to 
the plus strand; SNPs were excluded if  they had call rates <99% within each platform, and individuals 
were excluded if  they were missing genotypes at >90% of  SNPs. Genotypes within each platform and 
each ethnicity (European American, African American) were phased using MACH (46) and imputed with 
minimac3 (47) using the 1,000 genomes phase 3 reference panel. SNPs with an imputation efficiency >0.7 
within each ethnicity/platform analysis were retained, resulting in a set of  1,046,454 common SNPs across 
all platforms. Biallelic SNPs with a MAF >10% in both the African American and European American 
samples were used in all subsequent studies (n = 988,004).

Correlation of  methylation levels with the nearest gene. We calculated the Spearman correlation coefficient 
for 81 individuals with both gene expression (of  85 individuals with RNAseq data) and methylation (of  115 
subjects with methylation data) data using R. Each CpG site (locations annotated by Illumina) was mapped 
to the closest gene transcription start site (according to ENSEMBL). Spearman correlation r and P values 
were recorded for each CpG-gene pair in which the nearest gene was detected as expressed in our study (n 
= 242,877 CpG-gene pairs and 15,935 genes).

WGCNA comethylation analyses. Methylation levels for the 3,767 DMCs with effect sizes >5% were 
clustered into comethylation modules using WGCNA (48). The soft thresholding power was determined 
to be 12; all other settings were kept at the default values. Genes that were differentially expressed between 
asthmatics and controls were also clustered using WGCNA. The soft thresholding power for the gene 
expression studies was 5. Eigengenes for each comethylation module were derived through WGCNA and 
correlated with clinical phenotypes among the asthmatic subjects.

IPA networks. Network analyses were performed separately for the set of  genes correlated with CpGs 
within each of  the WGCNA comethylation modules. For these analyses, we used the gene nearest to each 
CpG that was correlated with the expression of  the nearest gene (correlation r > 0.15). Network scores are 
based on the network hypergeometric distribution and are calculated with the right-tailed Fisher’s exact 
test to identify enrichment of  those genes that were associated with WGCNA modules in the network 
relative to the IPA database. Networks with a score ≥25, corresponding to a Fisher exact P value of  10–25, 
were considered significantly enriched for the input genes. Ingenuity Upstream Regulator analysis was 
performed using the same module-associated gene lists. Upstream Regulator analysis identifies genes in 
each list that are enriched for common upstream regulators, i.e., molecules known to influence the expres-
sion of  those genes.

QTL analyses. meQTL and eQTL mapping were performed using matrix eQTL (14). We used win-
dows of  500 kb pairs from each transcription start site (1-Mb window) and 5 kb from each CpG (10-kb 
window) for eQTL and meQTL mapping, respectively. In the meQTL studies, the significant covari-
ates identified by principal component analysis and included as covariates were gender, smoking, age, 
and ethnicity. Ethnicity was estimated using the first 5 principal components of  a principal component 
analysis for ancestry. Ancestry informative markers and the procedure used to estimate ancestry were 
described previously (49). No covariates were included in the eQTL analyses, because they were per-
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formed on the log-transformed counts per million RUV-adjusted count data, which was already adjusted 
for known covariates and RUVS.

GWAS enrichment analyses. Publicly available lists of  P values for each SNP were obtained for two asthma 
GWAS, EVE (16) and GABRIEL (17). GWAS SNPs from each study were subset to those that were present 
in both the eQTL and meQTL studies, (i.e., we excluded nonoverlapping SNPs). To reduce LD from multiple 
SNP associations with the same gene or CpG site, overlapping SNPs were further subset to include only the 
most significant eQTL or meQTL per gene or CpG, respectively. A Fisher’s exact test was used to assess if  
distributions were different between GWAS SNPs with low P values (P < 0.01) and meQTLs or eQTLs (FDR 
< 5%). A meta-analysis of  the asthma GWAS (EVE and GABRIEL) was performed by combining the odds 
ratios and standard errors derived from the count data in the R package meta (50).

Promoter capture in situ Hi-C. In situ Hi-C was performed as described previously (51). Human lym-
phoblast cells (LCL; GEO accession GM19141; https://www.ncbi.nlm.nih.gov/geo/) were cultured 
according to Battle et al. (52). Five million LCLs were treated with formaldehyde 1% to cross-link inter-
acting DNA loci. Cross-linked chromatin was treated with lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM 
NaCl, 0.2% Igepal CA630 [Sigma-Aldrich, I8896], 1X protease inhibitor cocktail [cOmplete, Roche, 
11697498001]) and digested with MboI endonuclease (New England Biolabs, R0147). Subsequently, the 
restriction fragment overhangs were filled in and the DNA ends were marked with biotin-14-dATP (Life 
Technologies, 19524-016). The biotinylated DNA was ligated, cross-link reversed, and sheared to a size 
of  300–500 bp, using a Covaris S2 instrument (duty cycle, 5; intensity, 5; cycles/burst, 200; time, 60 
seconds for 2 cycles). The biotin-labeled DNA was pulled down using Dynabeads MyOne Stretavidin 
T1 beads (Life Technologies, 65602) and prepared for Illumina paired-end sequencing. The in situ Hi-C 
library was amplified directly off  of  the T1 beads with 9 cycles of  PCR, using Illumina primers and pro-
tocol (Illumina, 2007). Promoter capture was performed as described previously (53) with the following 
changes: the in situ Hi-C library was hybridyzed to 81,735 biotinylated 120-bp custom RNA oligomers 
(Custom Array, Supplemental Table 7) targeting promoter regions. Oligomers were selected by Agilent’s 
SureDesign software with default parameters to target regions at the ends of  MboI restriction fragments 
longer than 200 bp (hg19) (54). The 4 nearest targets, 2 on the left and 3 on the right of  RefSeq transcrip-
tion start sites (> 1,000 kb apart), were submitted to SureDesign. Postcapture PCR (12 amplification 
cycles) was performed on the DNA bound to the beads via biotinylated RNA.

Promoter capture in situ Hi-C data analysis. Alignment of  100-bp paired-end reads to hg19 was performed 
independently for each mate using bowtie2-2.2.3 with the --local option. Reads with mapping quality lower 
than 10 were discarded. Mates were paired by name with a custom script. HOMER v4.7.2 (55) was used 
to call interactions with P < 1 × 10–5 using -res 2000 and -superRes 10000 to bin reads. Interactions were 
mapped to RefSeq (56) mRNA transcription start sites based on alignment to hg19 provided by the UCSC 
genome browser. Reads were deposited at NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/)under acces-
sion GSE79718.

Data and materials availability. The methylation and gene expression data for freshly isolated airway 
epithelial cells have been deposited in the GEO (https://www.ncbi.nlm.nih.gov/geo/) under accession 
GSE85568.

Statistics. Data were analyzed with R software (version 3.1.2). CpG-gene pair correlations were deter-
mined using Spearman correlations between β values and the log-transformed RUV-adjusted residual 
counts per million. The Kolmogorov-Smirnov test was used to compare the distributions of  Spearman 
correlation P values. A P value less than 0.05 was considered significant. meQTL enrichments among CpG 
subsets were performed by filtering all CpG sites in our study to those that are within 5 kb of  a SNP and 
subset further to the most significant meQTL per CpG. Subsequent distributions were compared using a χ2 
test in which the “all CpG” group included the set of  CpGs complementary to each comparison group. A P 
value less than 0.05 was considered significant. Mendelian randomization was performed using the ivreg2 
function for R (http://www.r-bloggers.com/an-ivreg2-function-for-r/), using genotype as the instrumental 
variable. An instrumental variable is a variable that is associated with variation in an intermediate factor 
(methylation in this case) but not associated with other factors that are known to influence the causal effect 
of  methylation on gene expression (i.e., confounding variables that may affect both gene expression and 
methylation). A P value less than 0.05 was considered significant. We used the associations between geno-
type (at rs2517955) and both methylation (cg05616858) and gene expression (ORMDL3) to assess the causal 
effect of  methylation on ORMDL3 expression.
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