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Abstract

Background: Disruption of rhythms in activity and rest occur in many diseases,
and provide an important indicator of healthy physiology and behaviour.
However, outside the field of sleep and circadian rhythm research, these
rhythmic processes are rarely measured due to the requirement for specialised
resources and expertise. Until recently, the primary approach to measuring
activity in laboratory rodents has been based on voluntary running wheel
activity. By contrast, measuring sleep requires the use of
electroencephalography (EEG), which involves invasive surgical procedures
and time-consuming data analysis.

Methods: Here we describe a simple, non-invasive system to measure home
cage activity in mice based upon passive infrared (PIR) motion sensors. Careful
calibration of this system will allow users to simultaneously assess sleep status
in mice. The use of open-source tools and simple sensors keeps the cost and
the size of data-files down, in order to increase ease of use and uptake.
Results: In addition to providing accurate data on circadian activity
parameters, here we show that extended immobility of >40 seconds provides a
reliable indicator of sleep, correlating well with EEG-defined sleep (Pearson’s r
>0.95, 4 mice).

Conclusions: Whilst any detailed analysis of sleep patterns in mice will require
EEG, behaviourally-defined sleep provides a valuable non-invasive means of
simultaneously phenotyping both circadian rhythms and sleep. Whilst previous
approaches have relied upon analysis of video data, here we show that simple
motion sensors provide a cheap and effective alternative, enabling real-time
analysis and longitudinal studies extending over weeks or even months. The
data files produced are small, enabling easy deposition and sharing. We have
named this system COMPASS - Continuous Open Mouse Phenotyping of
Activity and Sleep Status. This simple approach is of particular value in
phenotyping screens as well as providing an ideal tool to assess activity and
rest cycles for non-specialists.
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(:I3757:3 Amendments from Version 1

We have added further methodological details to the paper and
have extended the discussion to highlight other promising work
in this field. We have also added two supplementary figures,
with further details relating to the comparison of PIR and EEG-
derived measurements of sleep (Figure2_suppl) and relating to
the variation in patterns of activity and sleep in wild-type mice
(Figure5_suppl). Finally, we have added an additional electronic
notebook to the online resources, highlighting one possible
approach to the analysis of bouts of sleep from COMPASS data.

See referee reports

Introduction

24 hour rhythms of activity and rest occur in virtually all organ-
isms. Remarkably, these circadian (‘around a day’) rhythms persist
in the absence of external stimuli, demonstrating the presence of
an internal biological clock. The timing of many biological proc-
esses, including locomotor activity and sleep, are regulated by the
circadian system and disruption of these rhythms has been associ-
ated with a wide range of health consequences, including cogni-
tive impairment, metabolic and cardiovascular disease and even
cancer'”. In laboratory mice, patterns of activity and sleep provide
valuable markers of health and disease. Animals display character-
istic changes in physiology and behaviour associated with illness,
including increased sleep, fever, weight loss and reduced social
interaction’, yet changes in activity and sleep are rarely used as
welfare indicators*. Furthermore, changes in circadian rhythms and
sleep may precede symptoms in other disorders, as has been shown
in neurodegenerative and neuropsychiatric disease’”. As a result,
many researchers working with laboratory mice are interested
in studying longitudinal patterns of activity and sleep in disease
models.

Measuring long-term locomotor activity and sleep in mice requires
specialised resources and expertise, and may require surgical inter-
vention. Cost and complexity have previously placed limits on the
widespread use of such measures. Whilst many commercial sys-
tems are available, these are often targeted at those with specific
research interests in circadian rhythms or sleep, and are not suitable
for widespread implementation. When a potential behavioural phe-
notype is predicted in a transgenic model and the mice are available
in another facility, the ability to examine activity and sleep patterns,
non-invasively, within the home facility would be beneficial. Mov-
ing transgenic animals often requires specialist facilities for import
and re-derivation of the model, a process often required to maintain
health standards within facilities. Avoiding the need for such pro-
cedures would reduce the number of animals bred for research and
kerb increased economic costs of the research.

A wide range of methods are used to monitor locomotor activity,
such as running-wheels, beam-break or video monitoring. Whilst
home cage running wheels are widely used in circadian biology®”,
it is recognised that exposure to a wheel may modify the behaviour
of the animal'’. Beam-break methods are ideal for short duration
assessment of exploratory behaviour'', but require specialised cag-
ing and are therefore not suitable for long-term monitoring.
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Sleep is a complex physiological process resulting in coordinated
changes in locomotion, body posture and responsiveness to stimuli'”.
Whilst sleep provides an ideal welfare indicator, it is rarely used in
laboratory rodents due to the requirement of electroencephalogra-
phy (EEG) and electromyography (EMG) which involve surgical
intervention. Whilst the detailed study of sleep stages require EEG/
EMG, a number of non-invasive correlates including video-based
monitoring and piezo-electric sensors have been described which
enable high-throughput assessment of sleep status, enabling total
sleep, sleep timing and sleep fragmentation to be measured'*~'°.
Whilst video monitoring has been increasingly used", such meth-
ods generate large amounts of data and are computationally inten-
sive, making them unsuitable for large scale implementation or
real-time analysis.

To address these issues, we established a minimal system for meas-
uring activity in relation to the lighting environment. The use of
microcontrollers (simple, single-chip computers) and in particular
the Arduino family of open-source hardware has been discussed
as a flexible solution to a number of scenarios where current lab
equipment and technologies are either insufficient or prohibitively
expensive'*!”. From the outset, the design of the system was kept as
simple as possible, whilst maintaining integration of the sensors at
the level of the microcontroller. Using pyroelectric or passive infra-
red sensors (PIRs) provide a cheap means of measuring activity
which is easily incorporated in home cages and is easily scalable.

Methods

Activity monitoring system

The PIR used incorporated an integrated digital amplifier (model:
Panasonic EW AMN32111) alongside a light-dependent resis-
tor (LDR, Excelitas Tech - VT90N1). The use of PIR sensitive to
slight movements and with an inbuilt amplifier will help to ensure
consistency of the data generated. In this regard, the essential con-
siderations for reproducibility will be the type of sensor used, the
distance from sensor to mouse and the temporal resolution of the
measurements. In the system built for this paper the sensors were
incorporated into simple circuits (see Supplementary material). The
sensors were read using the Arduino Uno (Rev3) board, featuring an
ATmega328 microcontroller (http://arduino.cc/en/Main/Arduino-
BoardUno). Printed circuit boards were designed using Fritzing
(http://fritzing.org/home/, versions up to 0.9.3b), and manufactured
through their fabrication service. All other components were from
Farnell (http://uk.farnell.com/, Leeds, UK), or Mouser Electron-
ics (http://uk.mouser.com/, London, UK). Software (sketches) for
the system was written and tested using versions 1.0.1-1.0.5 and
1.5.6-1.6.8 of the Arduino integrated development environment
(IDE, available at http://arduino.cc/en/Main/Software). This soft-
ware is written in Java and is both open-source and cross-platform'®.
Data storage and visualization was carried out using Processing
(also free and open-source and available for multiple platforms, see
http://processing.org/). The programs detailed in the current paper
work with versions up to 2.2.1.

Positioning of sensors

The cages used in the study were either Techniplast 2154F (Tech-
niplast S.p.A., overall size 482 x 267 x 210 mm), with a modified
top and externally-mounted holders for food and water, or an MB1
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mouse cage (North Kent Plastic Cages, Overall size: 450 x 280 x
130mm), with wire top. An accurate measurement of activity and
rest relies on the infrared radiation from the mouse being able to
reach the sensor at all times. For this reason the small gaps under
the food and water hoppers on the MB1 cages were blocked using
Perspex blocks and no environmental enrichment was used that
could fully obscure the animal (e.g. Perspex tubes). The nesting
materials used in the study were either paper-based Sizzle-Nest, or
cotton fibre Nestlets (Datesand Group, Manchester, UK), with a min-
imum of 10g in each cage (in excess of that required for successful
thermoregulation by mice with similar materials'’). Excessive nest-
ing materials could potentially obscure the mouse from the sensor
and nesting boxes will prevent the accurate assessment of activity
and sleep. Cages require wire tops as most plastics show very low
transmissivity for the wavelengths of energy detected by infrared
sensors (approximately 5—10um).

The timing and collection of data

In order to establish an efficient system, the collection of data was
based around previous work showing that periods of immobility
>40s in mice were an accurate indicator of sleep'*". Preliminary
experiments with the PIRs showed that a polling time of 100msec
was a good balance between capturing brief movements and over-
estimating movement due to the dwell-time of the PIR (the time
the sensor stays active after movement stops). With 10s bins this
provides 100 separate 100msec measurements and therefore a
simple % activation of the sensor can be calculated for each of
the 10s epochs. A serial message containing all the activity data
and a single measurement of environmental light from the LDR
is then sent to the PC connected via USB, where it stored along-
side a timestamp. Using ISO8601 UTC (Coordinated universal
time) timestamps for the data as saved to file helps to minimise
future errors caused by difference in time zones and daylight
savings times.

Calculation of sleep status from activity

With data collected as a percentage activity in 10s bins, the
calculation of 40s of immobility is as simple as a rolling sum
over the last 4 bins. This can be achieved in many software pro-
grams, including the Microsoft Excel (using a function such as
“=IF(SUM(A1:A4)=0,1,0)"). For the current study these calcula-
tions were carried out using the python PyData stack, (http://pydata.
org/), including the Pandas library (version 0.18.0)* that will
allow easy import of the .csv files produced by the system, resa-
mpling and rolling-sum calculations. Examples of the processing
of data are provided in a series of interactive notebooks online
(Data and software availability).

The use of animals

All work was carried out in accordance with Animal [Scientific
Procedures] Act 1986, with procedures reviewed by the clini-
cal medicine animal care and ethical review body (AWERB),
and conducted under project licence PPL 30/2812 and personal
licences 1459D3D59 and IDB24291F. Young-adult male wild-type
C57BL/6J mice (RRID:IMSR_JAX:000664), were obtained from
Envigo (Alconbury UK), with all experiments carried out when
the mice were between 12 and 24 weeks of age. Animals were
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housed in specific pathogen free conditions, with the only reported
positives on health screening over the entire time course of these
studies being for Helicobacter hepaticus and Entamoeba spp. All
animals were singly-housed, provided with food and water ad-
libitum and maintained on a 12h light:12h dark cycle (150-200 lux,
measured at the cage floor), in light-tight environmental enclosures
(in groups of 6 cages). Where constant light was used to estab-
lish circadian parameters, the same intensity of 150-200 lux was
used. Comparison of EEG and PIR-derived sleep was carried out
within individual mice, and no mice were excluded from any group
in this work.

Comparison of EEG and PIR-estimated sleep

A telemetric transmitter (volume, 1.9cm?; total weight, 3.9g;
TL11M2-F20-EET; DSI, St. Paul, MN, USA) connected to elec-
trodes for continuous EEG and EMG recordings was implanted in
4 adult male C57BL/6J mice (15.8 + 0.6 weeks old, mean = S.E.M.)
as described in (and adapted from Hasan et al., 2014)*'. Briefly,
in mice under anesthesia (isoflurane induction 4.5%, maintenance
0.7-2.25%), 2 stainless-steel EEG electrodes (length of screw
shaft, 2.4mm; outer diameter of screw thread, 1.19mm) were
implanted epidurally over the right frontal and parietal cortices*
and connected to the telemetry transmitter via medical grade
stainless-steel wires (surrounded by silicone tubing). The EEG
electrodes and connections to the subcutaneous wiring were cov-
ered with dental cement (RelyX Arc; Kent Express, Kent, UK).
Two EMG stainless-steel leads were inserted into the neck mus-
cle ~5Smm apart and sutured in place. The telemetry transmitter
was placed into the abdominal cavity of the mouse. Perioperative
analgesics were administrated at the onset of surgery (buprenor-
phine, 0.1mg/kg; meloxicam, Smg/kg) and the next day (mel-
oxicam, 5Smg/kg). Saline (0.9%, 500ul) was also administered by
subcutaneous injection at the end of the surgery. After surgery, the
animals were allowed to recover for more than 2 weeks and 24 h
EEG data-collection began when the mice were 20.1 + 0.4 (mean +
S.E.M.; n=4) weeks of age. The telemetric transmitters were acti-
vated 1-2 days before recordings, and EEG/EMG signals were then
recorded continuously (Dataquest ART; DSI). The EEG and EMG
signals were modulated with a one pole high-pass (-1.1dB at 1.0Hz;
-3.8dB at 0.5Hz) and a two pole low-pass antialiasing (-1.6dB at
50Hz) analogue filters built in the transmitter. An additional (30th
order low-pass FIR) digital filter was selected at 499Hz (2dB of
attenuation). These signals were visually classified into 10s epochs
of vigilance states according to standard criteria®.

Statistics and figures

Correlation coefficients (Pearson’s r) were calculated and correla-
tion plots and hierarchical clustering produced using the Seaborn
package for Python (http://stanford.edu/~mwaskom/software/sea-
born/, version 0.7.0). Actograms and Chi-squared periodograms
in Figure 1 were generated using the Actogram] plugin (version
0.9-1.0, http://actogramj.neurofly.de/)* for the Image] program
(version 1.5.1g, http://imagej.nih.gov/ij/), and based on 10min
bins of mean activity to improve clarity. Other figures were gen-
erated using Matplotlib® (http://matplotlib.org/, 1.5.1) and final
figures were arranged using Adobe Illustrator and Photoshop
(CS5, Adobe Systems Inc.)
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Figure 1. Considerations for a system for monitoring activity and rest. (Top Panel) Positioning of sensors and shielding to ensure
accuracy of readings: Positioning of the sensors and any required shielding can be calculated using the angle of detection for any given
sensor. In the case above, a sensor positioned 440mm above the cage floor at the back of the cage (WHITE) will also sense movement in
neighbouring cages. This can be prevented by shielding the sensor (BLUE), or moving the sensor centrally, 220mm above the floor (GREEN).
At different heights the sensor will be activated by different degrees of motion. Models created in the Blender 3D modelling program (version
2.68a, http://www.blender.org/) with each PIR represented as a lamp with the field of illumination the same as the field of detection for the PIR.
Interspersed cages in the illustration are left empty to aid with clarity. Accurate positioning of the sensors will negate cross-talk and remove
the need for empty cages.; (lower panel) Examples of actograms collected from a single C57BL/6J mouse under a 12h:12h light:dark-cycle,
constant darkness and constant light, with Chi-squared periodograms showing the main rhythmic component of activity under these 2
constant conditions (sensor in equivalent position to blue light in top panel).
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Results

PIRs with inbuilt amplification and a binary digital output, used
alongside a light-dependent resistor (LDR) provide the simplest
configuration that could be used for consistent measurement of
activity. Whilst LDRs provide a good marker for gross changes
in the light environment, this is no replacement for a correctly
measured and calibrated light source, especially when consider-
ing circadian and visual processes”. The experimental setups are
shown visually in Figure 1 and further details of the experimental
setup can be found in the Supplementary materials.

Circadian measures of activity can be established using PIRs
Studies initially ensured that no cross-talk between cages was occur-
ring, before characterising the degree of motion that was required
for activation of the PIR sensor. The sensitivity of the detectors is
dependent on the lensing and the distance of the sensor from the
cage floor. Using information about the angle of detection (in this
case 91°) the field of detection can either be calculated, or the envi-
ronment modelled using 3D-modelling software (Blender, version
2.68, http://www.blender.org/), see Figure 1, upper panel). This
approach is useful when considering the environment in different
animal facilities to show the options for positioning or shielding
sensors, to prevent cross-talk. PIRs were then incorporated into
the microcontroller system, where data could be analysed using
existing tools*. This demonstrated circadian entrainment, with
elevated nocturnal activity and clear activity onsets, free-running
activity in constant dark (DD) with a circadian period of <24h and
period-lengthening in constant light (LL) with a circadian period
>24h (Figure 1, lower panel). For comparison, these PIR sensors
were also incorporated into an established system for studying
circadian behaviour (ClockLab, Actimetrics, IL), providing
comparable results.

To determine the activity threshold required to activate the PIR,
video of mice in cages was recorded, while the output of the PIR
was linked to a circuit including a near-infrared LED (emission
peak 850nm). This LED was placed in the corner of the field of
view of the camera, outside and below the top of the cage. As sen-
sitivity is determined by how close the PIR was positioned rela-
tive to the cage floor, this was assessed under two PIR positions
440mm and 220mm (equivalent to BLUE and GREEN positions in
Figure 1, top). At 440mm, activation every 1-2 steps was observed
(gross locomotion), whereas at 220mm, activation of the PIR was
also observed with small movements, such as head turns and rear-
ing (see Video). This ability to separate small movements from
immobility raised the possibility that this approach could be used to
identify sleep in addition to locomotor activity'*".

Sleep scored by immobility under PIR correlates well with
total EEG-scored sleep

Using a criteria of >40sec of immobility as used previously'*",
a PIR at 220mm above a cage floor was found to provide a high
correlation with sleep assessed by video-tracking. As such, PIR-
determined sleep was directly compared against sleep meas-
ured using EEG/EMG in the same animals. C57BL/6 mice (n=4)
were implanted with dual biopotential telemeters (DSI, St. Paul,
MN, USA). Following recovery and entrainment to a 12:12 light:
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dark-cycle, 24h of activity from PIRs at 220mm above the cage
floor was compared to EEG/EMG scored sleep (Figure 2). A
high degree of correlation was observed with the total amount
of sleep reported by EEG/EMG (>0.95 in all mice, Pearson’s r,
Figure 3, left). A Bland-Altman comparison of methods™
showed a good agreement of the total sleep in each 30min bin
(PIR-EEG = +1.9min, -3.5 to +7.3min, 95% confidence intervals),
with a slightly lower agreement in the 12h of light (Figure 3, right).
This is likely to be due to reduced overall movement in the light
leading to over-estimation of total sleep by the PIRs as has been
reported for other immobility-based methods'.

Long-term monitoring of activity and immobility-scored
sleep

Removing the need to collect and process video files allows the
assessment of activity and sleep (as immobility over 40s) over
longer periods of time. Figure 4 shows an example of the length
and detail of recording that is possible. A time series of activity
data (and from immobility, sleep) over 1 month can be examined in
more detail in sections of 1 week, or a single day.

Wild-type laboratory mice show repeatable patterns of
activity from day to day, but these patterns differ between
individuals

When studying any biological process, rhythmic variation in
measurements is often important but either ignored or not studied.
Attempts to study variation over time will usually involve collect-
ing time series of data. These can either be longitudinal (multiple
measurements within the same subject) or transverse (a time series
constructed from measurements from many individuals). The data
in Figure 5 reveals the importance of longitudinal measurements
where possible. Unsupervised hierarchical clustering of 1 week
of data from 24 male wild-type mice shows that although many
animals show repeating patterns of activity from day to day (high
interday stability), these patterns of activity and sleep are often
different to those mice in neighbouring cages. Clusters do not
just consist of those mice in the same environmental chamber
(4 chambers, with mice numbered 1-6, 7-12, 13—-18 or 19-24
housed together, Figure 5). The clustering also indicates the meas-
ure of sleep from immobility does not result in the same clustering
as activity, showing that sleep is not just the absence of activity and
that cycles of activity and sleep are distinct (yet related) biological
processes. Furthermore, differences in the positions of individual
mice in the heatmaps of all immobility (>0s) vs sleep defined as
extended immobility (>40s) show that, although the estimation
of sleep is related to immobility, use of immobility (>0s) alone
will overestimate sleep. Moreover, the relationship between
these two measurements is not the same for all individuals
(File 5_supplementary). Longitudinal measurement over multiple
days also reveals additional ultradian rhythms in activity and sleep
in some mice (Figure 5, lower panels).

Examples of movements of a mouse required to activate PIR
sensors at different heights from the cage floor

1 Data File
http://dx.doi.org/10.6084/m9.figshare.4072701
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Figure 2. Sleep, as assessed by EEG recordings and by immobility. Comparison of periods of immobility (> 40s) measured by PIR to
manually-scored sleep from EEG telemetry (as proportion of 30min bins), in 4 male C57BL/6J mice, entrained to a 12h:12h light:dark-cycle
(labelled A to D).
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Figure 3. Immobility as a correlate of sleep, and compared to total sleep scored from EEG/EMG records. a) Correlation plot shows
the relationships between the activities of 4 C57BI/6J mice, the sleep scored from periods of immobility between bouts of activity and the
total sleep scored by EEG/EMG in the same mice. High correlation between PIR and EEG: Pearson correlation coefficients of 0.95-0.98 for
sleep per 30min bin (scored by immobility >40sec by PIR and by manual scoring of total sleep by EEG traces, red boxes). b) Bland-Altman
comparison of methods for scoring total amounts of sleep. Good agreement of the total sleep in each 30min bin is achieved in the 12hrs
of dark (PIR-EEG = +0.7min, -3.3 to +4.7min 95% C.l.). As is apparent from the individual traces (see Figure 2) the agreement is lower in
the 12hrs of light (PIR-EEG = +3.1min, -2.6 to +8.7min 95% C.I.). This is likely to the reduced overall movement in the light leading to over-
estimation of total sleep by the PIRs. A closer look at the data from Figure 2, with 5min bins for sleep as measured by EEG and PIR, supports
the suggestion that bouts of quiet wakefulness (with minimal or no associated movement) would be detected by EEG but may be missed in
any measure of sleep based on extended immobility (see File 2_supplementary). Although these bouts of waking make minimal difference to
overall measurement of time asleep, they can lead to longer bouts of sleep being reported.
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Discussion

Here we have shown that passive infrared sensors (PIRs) coupled
with an LDR and a readily available microprocessor provide a sim-
ple, affordable system for the combined measurement of activity,
light and sleep over days, weeks, or even months (Figure 4). We
have named this system COMPASS - Continuous Open Mouse Phe-
notyping of Activity and Sleep Status. COMPASS enables research-
ers working on transgenic mouse models in any discipline to easily
use activity and sleep as biomarkers without the need for specialist
resources or expertise. Longitudinal monitoring of activity and sleep
will also help to assess the effect of any novel therapeutic interven-
tions in pre-clinical models and act as potential objective welfare
indicators. Early incarnations of the system have already proved
valuable for studies of a number of mouse models of disease’’*,
with phenotypes described using video-based assessment of sleep
and the COMPASS system appearing the same (both offering an
important comparison to patterns of wheel-running behaviour)®.
Measures of immobility will potentially have difficulty detecting
phenotypes such as narcolepsy, if the onset of sleep is sudden and
sleep duration is short. However, as recent studies of orexin knock-
out mice with a non-invasive piezo-electric system to assess have
suggested, the total daily amount of sleep between wild-type and
transgenic animals was the same, suggesting that missed bouts of
narcoleptic sleep (occurring with without preceding inactivity),
may lead to different total amounts of sleep being recorded™. As
always, users should always be mindful of the temporal resolution
and assumptions in the measurements they employ.

There are a number of labs working to explore non-invasive meth-
ods of assessing sleep and both video-tracking and piezo-electric

systems have proved to be valuable in the study of sleep in mutant
mouse models of disorders such as narcolepsy” and Huntington’s
disease’’. Furthermore, modelling and machine learning using
EEG/EMG data*, video-tracking®, or piezo-electric data** are help-
ing to improve the scoring of different stages of sleep, especially
for Rapid Eye Movement (REM) sleep. There are also systems for
monitoring the behaviour of multiple co-housed animals, includ-
ing patterns of activity and rest”>. COMPASS prioritises simplicity
and efficiency for assessing sleep, while additionally providing a
measure of locomotor activity. Although this system is simple, this
allows both the cost (from around £20 per cage) and size of the data (1-
2Mb per cage per month) to be kept to a minimum. Affordability and
minimal data requirements mean such a system is ideally suited for
web-baseddatalogging,enablingresearcherstomonitortheirongoing
experimental animals remotely and the open nature should allow for
integration of other environmental and physiological sensors.

It is important to note that PIRs will only measure total movement
in a cage, necessitating single-housing to establish individual pat-
terns of activity and sleep. Although this is the standard experimen-
tal approach used in circadian and sleep laboratories, group housing
is preferable for long-term colony housing. However, COMPASS
is also suitable for monitoring total cage activity in group housed
mice, where altered behavioural patterns or health status in one ani-
mal may be identified via changes in whole cage activity. Further
studies may be required to establish standards for group monitor-
ing in this manner. Non-invasive, longitudinal measurement of both
activity and sleep status would be transformative for many fields
of research, as well as animal welfare. Recent studies have shown
that, in models relevant to psychosis, depressive and anxious states
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are correlated to infradian variation in home cage locomotion®.
Furthermore, recent work shows that the success of haemopoietic
stem cells transplants in repairing blood and bone in a recipient
mouse are abrogated when the donor is sleep deprived®’. This
suggests prior activity and sleep history are important variables in
many if not all animal experiments, ones that are currently often
ignored. This study details an important step towards the goal of
widespread longitudinal measurements of activity and sleep in
laboratory animals.

Data and software availability

The programs (sketches) for the Arduino microcontroller and data-
collection (via Processing) are provided online (current GitHub
repository), alongside a series of interactive Python notebooks
(http://jupyter.org/). All PIR data for assessing activity and sleep
in mice is also provided in this repository (Figure 2-Figure 5),
as is the sleep scoring from the EEG data used for comparison in
Figure 2 and Figure 3.

Zenodo: Dataset 1. The programs for hardware, Python notebooks,
and files from Dataset 2, 10.5281/zenodo.345396%

Zenodo: Dataset 2. PIR data, and sleep as scored from EEG files
(.csv), 10.5281/zenodo.160344%

Zenodo: Dataset 3. The raw EEG data, 4 files (EEG_A to D), in
European data format (.edf), 10.5281/zenodo.160118%

Supplementary material

Wellcome Open Research 2017, 1:2 Last updated: 17 MAY 2017

Figshare: Examples of movements of a mouse required to activate
PIR sensors at different heights from the cage floor. doi: 10.6084/
m9.figshare.4072701*
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Click here to access the data.
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previously made good progress using a video based system to quantify sleep behavior. This system has
been used by laboratories around the world. So we read with interest this study which describes simple,
non-invasive system to measure home cage activity in mice based upon passive infrared (PIR) motion
sensors. Careful calibration of this system will allow users to simultaneously assess sleep status in mice.
The use of open-source tools and simple sensors keeps the cost and the size of data-files down. We
looked over the plans and felt that we could implement this system. Broadly, this is a very promising
approach to address an important issue i.e. measurement of sleep in rodents using a high-throughput
system.
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While we are generally supportive, we did have some problems with the present ms. First, as the authors
well know, inactivity is not the same as sleep. Some more validation of their sleep measurements is
important. For example, do hypnotics increase and stimulants alter PIR defined sleep? When the mice
are sleeping can they demonstrate the increase in threshold to external stimuli? The authors undertook
this type of validation in their prior study with video analysis and we feel that they should do the same type
of validation with this new methodology.

In addition, we would like them to compare sleep fragmentation with the IR and compare that to values
obtained with the EEG. Sleep fragmentation is an important parameter in disease models and should be
detected with their methodology. Their prior video-based system was effective in measuring this
parameter.

It was unclear if the mice needed to have an empty cage in between the measurement cages. We do not
see why this would be the case but the illustration in Fig. 1 suggests the need for a separating cage.
Please clarify.

We were uncertain as to the utility of the cluster analysis. We did like the clear demonstration that the
intra-day patterns were stable between mice. But we felt that the cluster analysis would be more useful if
it compared the inverse of activity in top panel with the IR-defined sleep below. This would help address
the issue of whether IR-defined sleep is more than the absence of activity.

Finally, several labs have been exploring the use of behavior measures of sleep including IR measures as
used in the present study. The authors should expand this part of their discuss to include others working
in this space.

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Laurence Brown, University of Oxford, UK

Dear Dr Loh and Professor Colwell

Thank you for your review and the important points that you raise. On the first point we agree that
we should continually reassess of the use of immobility as a surrogate of EEG-defined sleep.
However, we would consider the use of passive infrared sensors as a more efficient way of
assessing immobility, rather than a new methodology to measure sleep. As you have discussed,
the previous work from the group with video tracking showed that hypnotics increase and
stimulants decrease immobility. It is definitely the case that data from the COMPASS system will
allow efficient measurement of bouts of both activity and sleep, as well as measures of stability in
these bouts. This is one area where long-term recordings will be especially useful. We are
focusing current and future efforts on this aspect of analysis, but we wish to collect data from a
number of known sleep and circadian mutant models first. One additional advantage of the .csv file
format used is that it provides easier import of data in to existing programs for bout-analysis and
measures of fragmentation with which groups might already be familiar. In order to help
demonstrate how analysis of bouts could be approached we have included another notebook for
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download with the revised paper (COMPASS_sleep_bouts.ipynb).

It is also possible to look at the PIR and EEG-defined sleep in Figure 2 at a higher temporal
resolution. Averaging sleep with each system over 5min bins further supports the suggestion that
small waking movements in the light period would be the main source of error for the PIR-based
estimate of sleep. Consequently, this would lead to longer uninterrupted bouts of sleep being
recorded with PIRs. A note to this effect has been added to the revised manuscript (along with a
supplementary version of Figure 2).

You are correct that, provided the sensors have been correctly tested, there is no need to leave
empty cages between those in use. As one sensor is shown reading from a neighbouring cage, we
left some empty in Figure 1. A note to this effect has been added to the legend of Figure 1.

We have added a comparison of the hierarchical clustering of the 24 wild-type mice from
immobility (>0s) verses sleep defined as extended immobility (>40s) (now included in the revised
paper as a supplement to Figure 5). This shows that sleep will be over-estimated based on
immobility alone, and that the clustering of mice by their immobility (>0s) vs extended immaobility
(>40s) profiles differs, illustrating that sleep behaviour is not simply the inverse of locomotor
activity.

Finally, we agree that by keeping the focus on the practicalities of this particular system, we
neglected to describe the extent of other efforts towards a non-invasive estimate of sleep. We
have expanded the discussion in an attempt to cover others working in this field, with regard to
both improvements in methodology and uses of non-invasive measures of sleep in biomedical
research.

Competing Interests: No competing interests were disclosed.
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"  Valter Tucci
Neuroscience and Brain Technology Department (NBT), Istituto Italiano di Tecnologia (IIT), Genoa, Italy

In the manuscript ‘COMPASS: Continuous Open Mouse Phenotyping of Activity and Sleep Status’, Brown
et al. describe the development of a new method to approach the investigation of sleep in mice. In
particular, by using passive infrared sensors the system recapitulates the main distribution of
physiological sleep in animals. This is a very important study in the field of sleep, in which EEG
time-consuming approaches are currently still the standard. The authors have provided a comprehensive
evaluation of the PIR based system with EEG-based (10-sec epochs) sleep scoring, the manuscript is
well written and the methods precise, as well as results and discussion. | have no major issues to raise
but only two minor questions that perhaps would be useful to clarify.

® The authors report a high correlation between PIR at 220nm and sleep. If | understand correctly

this was better than the PIR at 440nm. Was this a significant improvement?
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®  The main comparison reported in the paper is between PIR detected immobility and EEG.
However, at Page 6 second column, the authors discuss of a high correlation with video-tracking.
Was this paralleled with EEG or on different mice?

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 11 Apr 2017
Laurence Brown, University of Oxford, UK

Dear Professor Tucci,

Thank you for your time and effort reviewing the work. In answer to the points you raise we can
confirm that the original positioning of the PIR sensor at 440mm was at the top of our
environmental chambers, in which the cages sat. As is indicated by the video we published, the
detection of small movements by the mice was poor at this height. Our findings in preliminary
experiments looked at sleep assessed by the video-tracking protocol previously used in our lab
and the PIRs. We found the correlation of video-tracking and PIRs at 440mm from the cage floor
often fell below 0.75 (Pearson’s r, over 24h), but with the sensors at 200-220mm from the cage
floor, the correlation between methods was very high (Pearson’s r, >0.98). These experiment were
carried out on different mice to the EEG experiments. As both of these methods are based on
immobility we felt it was best to focus on the comparison with EEG-scored sleep.

Competing Interests: No competing interests were disclosed.
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Dominic Wells
Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK

This is an excellent piece of work describing a simple, low-cost, non-invasive system to measure mouse
activity in their home cage. The system is based on passive infrared (PIR) motion detectors. Using 40
seconds of immobility as an indicator of sleep, the authors demonstrate that PIR based estimates of sleep
correlated very well with EEG recordings from implanted telemetry transmitters.

In general, the work is very well described, allowing other researchers to use this system in their animal
facilities, but there are a few points that it would be useful to clarify:
1. Second paragraph of the introduction. The fourth sentence should be rewritten to make it clear that
the import, re-derivation and breeding issues relate to access to specialised facilities.

2. Inthe methods it would be helpful if the authors could identify the cage type they used. By small
gaps do they mean the spaces under the feed and water hoppers?
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3. The authors note that no environmental enrichment can be used that might fully obscure the
animal. Can the authors confirm that some nesting material was available but presumably was
limited in quantity?

4. The authors used cages in light tight boxes. Have they tested their PIR system in more
conventional animal caging?

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Laurence Brown, University of Oxford, UK

Dear Professor Wells
Thank you for your review. We hope the revised manuscript will address the important points you
raised:

1. We agree this should be clarified. We have rewritten this paragraph in the revised
manuscript.

2. This is correct. In some cages we have food and water hoppers mounted externally, so no
further modification was needed, but where the water bottles and food are integrated into
the wire of the cage lid, a Perspex block was used to ensure the mice were active and
nested in view of the sensor. We have added the cages types used in the paper to the
revised version.

3. We provided nesting materials for all of the mice in the study and in preliminary work. This
was paper-based Sizzle-Nest, or cotton fibre Nestlets, with a minimum of 10g in each cage
(in excess of that required for thermoregulation by mice with similar materials, Gaskill et al
2012, PLOS ONE, (http://dx.doi.org/10.1371/journal.pone.0032799).

1. We are currently collecting data with collaborators in a range of cage sizes and types of
racking. For some types of cage, particularly those with food and water hoppers recessed in
the centre of the cage lid rather than at one end, it will be difficult to ensure complete
coverage of the cage. Individually-ventilated cages (IVCs) would need modification for the
integration of PIR sensors, as the polycarbonate material most are constructed with will
block the 5-10um infrared wavelengths of body heat.

Competing Interests: No competing interests were disclosed.
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