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Abstract

The discovery that the apolipoprotein E (apoE) ε4 allele is genetically linked to both sporadic and 

familial late-onset Alzheimer’s disease (AD) raises the possibility that a dysfunction of the lipid 

transport system could seriously affect lipid homeostasis in the brain of AD subjects. The presence 

of the ε4 allele has been associated with lower levels of apoE in both serum and brain tissues of 

normal and AD subjects. In an attempt to reverse the apoE deficit in AD, we identified and 

characterized several apoE inducer agents using a low-throughput in vitro screening assay. The 

most promising of these compounds is called probucol. Administration of probucol, an old 

cholesterol-lowering drug, in a pilot trial in mild-to-moderate sporadic AD led to a significant 

increase in cerebrospinal fluid (CSF) apoE levels and a decrease in CSF in both phosphorylated 

tau 181 and beta-amyloid 1–42 concentrations without significant modifications of lipid 

hydroperoxide levels.
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1. Introduction

In the last 10 years or so, it has become obvious that the number of patients with 

Alzheimer’s disease (AD) has increased noticeably around the world. To fully understand 

the situation, we need to take a look at life expectancy over the past few centuries. Fig. 1A 

illustrates changes in human life expectancy since the beginning of the Christian era nearly 

2000 years ago. Eighteen hundred years were necessary before a modest increase in life 
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expectancy could be detected in European populations (Finch, 2012). However, life 

expectancy drastically changed these past 200 years where it nearly doubled at the turn of 

the current millennia (Wilmoth, 2000).

According to recent data from the World Health Organization, a new case of AD occurs 

every 7 seconds worldwide. In the United States, it is estimated that there are >5.1 million 

patients with AD (US Alzheimer’s Association, 2010), whereas it exceeds 6 million cases in 

Europe. Germany, Italy, and France are at the top of the list, the latter currently having 

>900,000 cases. Recent research findings from Asia indicate that there are >6 million cases 

in China alone. Fig. 1B gives the most cautious projections, based on US data, as to the 

number of cases expected by 2050 (US Alzheimer’s Association, 2010). Furthermore, 

roughly two-thirds of patients with diagnosed AD are women.

Sporadic AD is now considered to be a multifactorial disease with a preeminent genetic 

component. The identification of specific mutations and polymorphisms in genes associated 

with common AD has certainly changed our perception of the nature of the molecular 

changes controlling the pathophysiological process that characterizes the disease. The early-

onset familial autosomal form of AD accounts for roughly 1%–2% of all cases worldwide, 

whereas the sporadic form of AD, representing 98%–99% of the remaining cases, is 

generally believed to be of late onset, occurring after 65 years of age.

2. Vascular changes and AD

Converging evidences indicate a strong relationship between lipid homeostasis alterations 

and vascular changes in the brain of demented subjects. These associations include 

recognition that apolipoprotein E (apoE) ε4 allele, apoJ and ABCA7 genes (all being 

involved in cholesterol transport) are major genetic risk factors for vascular dementia and 

familial and sporadic AD; epidemiologic studies linking genetic and environmental vascular 

risk factors to dementia; awareness that small strokes do precipitate clinical dementia in 

cognitively normal elderly people with AD pathology; modulation of the degradation of the 

APP and tau metabolism by pharmacologic manipulations of cholesterol metabolism; 

association between hypercholesterolemia and amyloid deposition in young adults without 

symptoms of dementia; and abnormal appearance of microvascular endothelial cells in brain 

areas affected by AD (Poirier, 2003).

The precise mechanisms by which any or all these lipid-related risk factors affect the 

pathophysiology of AD remain to be clarified. However, several independent epidemiologic 

and clinical studies examining the effect of cholesterol-lowering drugs such as probucol, 

simvastatin, and pravastatin on the incidence and/or progression of AD suggest a protective 

effect in subjects with varying risk of vascular diseases (Jick et al., 2000; Poirier, 2003; 

Wolozin et al., 2000), particularly in the case of older statins such as pravastatin and 

simvastatin (Bettermann, 2011; Wolozin et al., 2007). Many of these studies support the 

notion of a subtle but significant interplay between cardiovascular (environmental and 

genetic) risk factors and the onset and/or progression of AD.
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3. Genetics and risk levels

Although >695 genes (and 2973 different polymorphisms) have thus far been examined and 

many have been proposed as putative genetic determinants of sporadic AD, none (except 

apoE) has yet been definitively accepted as such, in view of the lack of robustness of the 

associations observed between independent populations (Bertram et al., 2007 and http://

www.alzgene.org). Meta-analyses (n = 320) of these genetic variants have been performed 

systematically in recent years. These studies have reached 3 conclusions: (1) except for the 

ε4 polymorphism of the apoE gene and other polymorphisms at this locus (promoter 

polymorphisms), very few genes are consistently associated with sporadic AD and they are 

all minor genetic determinants (Bertram et al., 2007); (2) except for few genetic variants 

studied in detail, such as the insertion/deletion of the α2-macroglobulin (59 publications), 

most genes have been studied by only 1 or 2 laboratories; and (3) most of the time, very few 

genetic variants have been analyzed for each gene and they often differ from one study to 

another. To overcome some of these intrinsic problems, beyond the sharing of data using 

international databases, the study of AD genetics, like that of most multifactorial diseases, 

has turned toward very high-throughput genotyping analyses. Populations exceeding several 

hundreds, even thousands of samples have been used to generate sufficient statistical power 

to characterize the polymorphisms in the genes involved with the disease among the 

hundreds of thousands of polymorphisms in each individual. This type of approach has been 

recently successful in AD with the characterization of the APOJ, CR1, PICALM, BIN1, 
ABCA7, and CD33 loci as new genetic determinants of AD (in addition to the well-

established apoε4 variant) (Harold et al., 2009; Lambert et al., 2009; Seshadri et al., 2010) 

with at least 1 independent genome-wide association study (GWAS) replication for each 

major candidate. However, if the estimate that 60%–80% of the AD risk in twin studies is 

because of genetic factors is correct, a non-negligible part of the additional genetic 

susceptibility loci remains to be identified.

Table 1 summarizes some of the top consensus candidate genes associated with (1) the 

familial autosomal form of the disease and (2) the sporadic (common) form of the disease. 

The case of the butyrylcholinesterase (BuChE) gene is particular in that it was identified by 

GWAS using amyloid-deposition imaging and not disease status as pairing association 

criteria (Ramanan et al., 2013). What is most interesting in this list of genetic risk factors is 

the high number of lipid-related genes. Fig. 2 illustrates some of the known biologic 

functions of the top 6 genes in Table 1 in the context of cholesterol homeostasis. ApoE and 

apoJ (also referred to as clusterin) were originally cloned in the early 1990s from a 

complementary DNA differential screening of messenger RNAs (mRNAs) expressed in the 

AD hippocampus (May et al., 1990). Analysis of the expression of both mRNAs in 

experimentally deafferented hippocampus of rats revealed a time-course profile that clearly 

indicates a strong association between apoE and apoJ overexpression and active 

compensatory synaptogenesis (May et al., 1990; Poirier et al., 1991). ApoE and apoJ are 

normally synthesized and secreted by astrocytes and microglia in the brain and bind to high-

density lipoproteins (HDLs) to facilitate cholesterol and phospholipids mobilization and 

transport toward cell surface receptors belonging to the low-density lipoprotein (LDL) 

receptor family (Beffert, 2003). As mentioned earlier, butyrylcholinesterase, which is best 
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known for its ability to degrade acetylcholine both in the central nervous system and in 

periphery (Giacobini, 2000), is also involved in lipoprotein remodeling (Annapurna et al., 

1991; Iwasaki et al., 2007). Internalization of the apoE-HDL particles by members of the 

LDL receptor family occurs primarily in specific clathrin-coated pit structures in the plasma 

membrane where both BIN1 and PICALM gene products were shown to facilitate 

endocytosis of large complexes (McMahon and Boucrot, 2011). Once internalized via 

endocytic processes, the HDL complex is degraded and the cholesterol is released and 

esterified via the acyl-CoA:cholesterol acyltransferase for midterm storage purpose (Fig. 2). 

When intracellular concentration of cholesterol exceeds physiological requirements, a 

portion of the cholesterol is returned to the plasma membrane using the ABCA1/A7 reverse 

intracellular transport system for final transfer to surface-bound HDL complexes.

This molecular cascade involves 6 of the top 10 genetic risk factors for AD identified by 

GWAS these past 5 years. In contrast with the disease-causing autosomal dominant genes, 

which specifically target the APP or its processing (via the presenilins), the so-called risk 

factors involved in sporadic AD are primarily related to the immune system and the lipid 

metabolism.

4. ApoE and cholesterol transport in AD

The brain is a major site of apoE mRNA expression in humans, marmosets, rats, and mice, 

exceeded only by the human liver. Transcripts for apoE are distributed throughout all regions 

of the brain and have been localized to astrocytes and microglia by in situ hybridization. 

Accordingly, apoE was shown to be synthesized and secreted mostly by glial cells (>95%) 

and to serve as a ligand for the members of the LDL receptor family in the brain (Herz and 

Beffert, 2000). Primary cultures of hippocampal neurons from rat embryos and pro-simians 

have the capacity to internalize apoE-containing lipoproteins. Over the years, several 

explanations have been devised to address the pathophysiological role of apoE in the brain 

of ε4 carriers. These working hypotheses can be divided on the grounds of their respective 

target metabolic cascades. The first one revolves around the concept that apoE4 directly and 

indirectly compromise amyloid metabolism and causes a toxic accumulation of the amyloid 

beta over time. This hypothesis has been reviewed extensively recently (Kim et al., 2009) 

and will not be addressed in the present review. The second hypothesis implicates tau protein 

metabolism and assumes that apoE is released in the cytoplasmic compartment, where it 

interferes directly with the cytoskeletal architecture of neurons (Brecht et al., 2004). Finally, 

the third hypothesis, which stems in part from our understanding of the role of apoE in the 

cardiovascular system, postulates that this core apolipoprotein acts as a key player in the 

maintenance of lipid homeostasis in the mature brain and that carriers of the apoε4 allele 

display reduced levels of apoE compared with non-ε4 carriers (Poirier, 2005).

The major physiological differences between apoE4 and -E3 are attributed to the amino 

acids at 2 key positions in the peptide chain, numbered 112 and 158, each of which can 

either be arginine (R) or cysteine (C). In periphery, the presence of R112 in apoE4 causes its 

preferential binding to triglyceride-rich lipoproteins (chylomicrons and very low-density 

lipoproteins), whereas apoE3 binds preferentially to HDLs. These differences in lipoprotein 

binding by apoE3 and -E4 greatly influence lipo-protein clearance and LDL/HDL ratios in 
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periphery, which are risk factors in cardiovascular disease. However, it should be noted that 

the brain is entirely devoid of LDL and highly dependent on HDL to maintain cerebral lipid 

homeostasis. The semidominant nature of the association between the apoε4 allele and 

sporadic AD has been firmly established only recently (Genin et al., 2011).

5. Apoε4: a case of evolutionary underperformance

Apoε3 variant appears to have spread during later stages of human evolution after 

originating from the ancestral apoε4 gene. According to DNA sequences representing 4 

distinct ethnic groups, apoε3 is estimated to have spread some 225,000 years ago. The depth 

of the tree is estimated at 311,000 years ago (range 0.176–0.579) (Fullerton et al., 2000). 

Although these sequence analyses do not inform when ε3 originated as a mutation, they 

imply that ε3 arose before anatomically modern Homo sapiens first migrated from Africa 

about 100,000 years ago. This range also allows ε3 to be present in Neanderthals (from 

300,000 years ago) and in earlier ancestors of Africa from which H. sapiens is thought to 

have diverged. Only 1 apoE genotype has been reported in chimpanzees that closely 

resembles human apoE4 with arginine (R) at positions 112 and 158 (Table 2) (Hanlon and 

Rubinsztein, 1995). All other primates examined so far have arginine at 112 and 158 (Finch 

and Sapolsky, 1999). Because of these similarities between human apoE ε4 and primate 

apoE and because of the sequence analysis of the genealogical depth of human apoE alleles, 

human apoE ε4 is considered the ancestral allele in primates (Hanlon and Rubinsztein, 

1995). It should be noted that rodent apoE and that of many other mammals belong to the 

apoE type 4 family. Interestingly, apoE ε2 allele, which was shown to confer significant 

protection against sporadic AD, also happens to be overrepresented in human centenarians 

(Blanche et al., 2001; Frisoni et al., 2001), clearly pointing toward a role in longevity and 

successful aging. These and other observations argue against the hypothesis that apoE ε4 

allele exerts its main effects in the AD brain through gain of toxic activity as proposed by 

some investigators.

6. Synaptic plasticity and integrity in AD as a function of apoE ε4 allele 

dose

In the nervous system, the importance of the polymorphic nature of apoE has recently been 

revealed, with regard to function in neuronal plasticity and with respect to pathologies such 

as dementia of the Alzheimer type (Poirier, 1994). ApoE ε4 allele was shown to be strongly 

associated with the familial and sporadic forms of AD (Poirier et al., 1993; Strittmatter et al., 

1993). The apoε4 allele can affect the rate of progression of the disease, the extent of the 

neuronal cell loss, cholinergic activity, accumulation of amyloid plaques in hippocampal and 

cortical areas, and total beta-amyloid production and deposition in the brain of AD subjects. 

ApoE ε4 carriers were also shown to exhibit poor synaptic remodeling and defective 

compensatory plasticity in vulnerable brain areas in AD (Arendt et al., 1997; Beffert et al., 

1998), particularly in cholinergic-rich region (Poirier et al., 1995). Actually, the role of apoE 

in the maintenance of synaptic integrity and plasticity is so central to brain physiology that 

the ability of a subject to recover from traumatic brain injuries is highly dependent on apoε4 
allele dose (Friedman et al., 1999; Lichtman et al., 2000).
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The effect of apoE genotype on synaptic plasticity and recovery is not restricted to the AD 

condition. Whereas the apoE ε4 allele is associated with poor clinical outcome in patients 

with Parkinson’s disease (Li et al., 2004), stroke (Nicoll et al., 1996; Slooter et al., 1997), 

amyotrophic lateral sclerosis, or other type of neurode-generative disease (Hogh et al., 2000; 

Sorbi et al., 1995), apoE ε2 allele was found to be protective against several 

neurodegenerative diseases, including sporadic and familial late-onset AD (Corder et al., 

1994).

7. ApoE genotype versus apoE levels

The notion that human ε4 allele carriers are unable to maintain effective apoE 

concentrations in blood, brain, or cerebrospinal fluid (CSF) relatively to other isoform 

carriers has gained momentum in recent years. The original concept stems from observations 

made by Utermann et al. (1980) >30 years ago about the fact that humans expressing the 

apoE ε4/3 and apoE ε4/4 genotype display the lowest apoE blood levels of all living 

humans, whereas those with an apoE ε2/2 genotype (centenarian candidates) belong to a 

small group of humans with the highest blood concentration of apoE (for a review, see 

Poirier, 2008). This is true for blood (Gupta et al., 2011; Panza et al., 2003; Poirier, 2005; 

Soares et al., 2012; Utermann, 1985), brain tissues (Beffert et al., 1999; Bertrand et al., 

1995) (Glockner et al., 2002), and CSF (Cruchaga et al., 2012) (GWAS study in Alzheimer's 

Disease Neuroimaging Initiative [ADNI]) in humans and in fresh brain tissues from apoE ε4 

knock-in mice (Bales et al., 2009; Sullivan, 2009) when using liquid chromatography 

followed by tandem mass spectrometry (LC/MS/MS) quantitative methodology. Fig. 3B 

summarizes key published findings. Recently, cross-sectional analysis of the subjects 

enrolled in ADNI revealed a progressive reduction of plasma apoE concentrations as a 

function of disease progression, that is, normal cognitive controls > nonconverting mild 

cognitive impairment (MCI) > converting MCI = AD (Fig. 3C). Similar observations were 

recently reported in the CSF of ADNI subjects, with a highly significant decline in CSF 

apoE levels: CTL > MCI > AD.

The notion that compromised apoE levels in the central nervous system of apoE ε4 carriers 

contributes significantly to the pathophysiological process in AD was further extended by 

work performed in apoE knockout mice. The complete absence of apoE in the knockout 

mice is associated with progressive age-related cognitive deficit in the Morris swim maze 

(Champagne et al., 2002; Davignon et al.,1982; Oitzl et al., 1997; Veinbergs et al., 1999), a 

marked loss of cholinergic innervation with age (Kleifeld et al., 1998; Van Uden et al., 2000) 

and a pronounced loss of synaptic integrity after 10–12 months of age (Chapman et al., 

2000; Veinbergs and Masliah, 1999). Furthermore, long-term potentiation (Krzywkowski et 

al., 1999), synaptic plasticity, and terminal proliferation (Champagne et al., 2005; Veinbergs 

and Masliah, 1999) are markedly compromised in apoE-deficient mice in presence of 

abnormally high concentrations of tau phosphorylation (Gordon et al., 1996).

8. ApoE as a potential therapeutic target?

The bulk of these observations led scientists to develop assays to identify potential apoE 

inducer agents that could be used in vivo for the treatment (and conceivably the prevention) 

Poirier et al. Page 6

Neurobiol Aging. Author manuscript; available in PMC 2016 December 06.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



of sporadic AD. Some of the most interesting apoE-inducing candidates identified so far 

include indomethacin (Aleong et al., 2003), a potent anti-inflammatory drug used in the past 

to treat mild-to-moderate AD (Rogers et al., 1993); estrogen, the controversial hormone that 

exhibits protective effect (Craig et al., 2005); and probucol, the cholesterol-lowering drug 

used to treat familial hypercholesterolemia (Champagne et al., 2003). More recently, the 

Liver X receptor LXR) agonist T0901317 (Riddell et al., 2007) and the Retinoid X receptor 

(RXR) agonist bexarotene (Cramer et al., 2012) were both identified as modulators of the 

signaling cascade that regulate the acute synthesis of apoE, ABCA1/G1, and the LDL 

receptor family in the brain (for a review, see Leduc et al., 2010).

Supporting the notion that apoE induction might be beneficial for AD treatment; the potent 

apoE inducer bexarotene was shown to restore cognitive abilities in amyloid precursor 

protein (APP) transgenic mice as does LXR agonist T0901317 in a different APP mouse 

model. Although the bexarotene cognitive benefit was recently replicated (Fitz et al., 2013), 

it is not clear that these effects have anything to do with resorption of fibrillary amyloid or 

the amyloid metabolism itself. The nuclear activators are used for the treatment of cancer, 

where moderate toxicity is tolerated but are not safe enough for long-term use in either 

prevention or treatment of AD. Safer apoE inducers are needed, and the lipid-lowering drug 

probucol could be used as such an agent.

Probucol is an old cholesterol-lowering drug formerly given to treat hyperlipidemias and still 

used in many Asian countries. Added to rat and mouse diet (1% w/w), it achieves plasma 

concentrations that mimic those of high human doses (~1 g per day) and induces cortical and 

hippocampal apoE synthesis (Champagne et al., 2003). Probucol was shown recently to 

suppress enterocytic Aβ in the cerebral vessels of mice on a high-fat diet (Pallebage-

Gamarallage et al., 2012) and to prevent cognitive and synaptic impairment resulting from 

intravascular Aβ injections (Santos et al., 2012).

A few years ago, our team ran a small pilot proof-of-concept study of the then-standard dose 

of probucol (500 mg b.i.d.) in 12 people with mild-to-moderate AD who were not taking 

cognitive enhancers. We found a probucol-related increase in serum apoE (Poirier and 

Panisset, 2002) as reported earlier in cardiovascular trials (McPherson et al., 1991; Quinet et 

al., 1993) and saw a similar increase in CSF apoE after 1 month of treatment. Testing probed 

the stabilization of scores on Alzheimer’s disease Assessment Scale–Cognitive (ADAS-Cog) 

and MMSE and improvement on the Disability Assessment of Dementia scales over the 6-

month trial. Cumulative probucol dosage (pill count) correlated in a dose-dependent fashion 

with CSF apoE levels (Fig. 4A). We also found that serum probucol levels measured by 

LC/MS/MS correlates well with changes in ADAS-Cog after 6 months (not shown). 

Cumulative dosage correlated similarly with ADAS-Cog change (Fig. 4B). Fig. 4C shows 

correlation between changes in CSF apoE levels after 1- and 6-month improvement on the 

ADAS-Cog. Recently, we reassessed CSF levels of total tau (Ttau), phosphorylated tau (p-

tau) 181, and Aβ42 using the widely used Innogenetics Alzbio3 kit on a Luminex apparatus. 

Fig. 4D illustrates the result of a contrast analysis between apoE alteration and changes in p-

tau concentrations in the brain, the ladder serving as a marker of neuronal damage. These 

findings extended earlier results showing that apoE increase predicted decreased Aβ load, 

reflecting the amyloid scavenging properties of apoE-HDL complexes (Poirier, 2003) and 
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the removal of amyloid peptides from the brain to the CSF. Overall, improvement in CSF 

apoE concentration in probucol-treated subjects correlates well with cognitive performance, 

decline in p-tau, and scavenging of total amyloid into the CSF.

9. Conclusions

Clinical trials with potential treatments for AD have ended in repeated failures, without any 

new agents approved since 2003. Despite the obvious need, attempts to develop new drugs 

or especially prevention strategies have often encountered safety concerns. To avoid such 

problems, the field has turned increasingly to safer lifestyle interventions. These have 

achieved some success in other applications but usually require sustained behavioral 

interventions that may be of questionable “real-world” utility. More typically, even strong 

evidence fails to dissuade most people from health-adverse behaviors. Pharmacoprevention 

strategies may be more effective, but new drug development has been impeded by the 

enormous resources needed for discovery and testing of new agents (e.g., development times 

for new products often exceeding 13 years). Drug “repurposing” may offer a more efficient 

alternative as suggested in this short review. Furthermore, familiar generic drugs have known 

safety profiles that can deter unexpected risks. Given the many efforts by others based on the 

amyloid cascade hypothesis, we believe that a rationally justified, gene-based, alternate 

approach seems timely.
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Fig. 1. 
(A) Life expectancy over the centuries in the Western world. (B) Projected prevalence of 

Alzheimer’s disease in the next 40 years in the United States. Adapted from US Alzheimer 

Association (2010).
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Fig. 2. 
Schematic representation of the physiological compartmentalization of the most important 

proteins associated with the top 6 genetic risk factors identified by genome-wide association 

study these past 5 years.
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Fig. 3. 
Apolipoprotein E (ApoE) levels in different regions according to apoE genotype or 

diagnosis. (A) Human hippocampal and frontal cortex apoE levels as a function of disease 

status and APOE genotype (adapted from Beffert et al., 1999). Data represent average ± 

standard error of the mean. Statistical analysis: p < 0.05 for both APOE genotype and 

pathology effect (analysis of variance [ANOVA]) in the hippocampus; not significant, p = 

0.12 for APOE genotype (ANOVA) in the frontal cortex. (B) Plasma apoE levels as a 

function of APOE genotype in mild-to-moderate Alzheimer’s disease (AD) cases (p < 0.001, 

adapted from Poirier, 2005). (C) Baseline plasma apoE levels as a function of disease 

progression and diagnosis (p < 0.001, adapted from Soares et al., 2012). The diagnosis was 

established at the follow-up, which was no later than 48 months after the first visit. ApoE 

levels are lower in patients with AD and mild cognitive impairment (MCI) compared with 

healthy age-matched controls. Data represent means and 95% confidence intervals. MCInp, 

MCI patients who were not diagnosed with dementia at the follow-up; MCIp, patients with 

MCI who were diagnosed with dementia at the follow-up; and HCS, healthy control 

subjects.
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Fig. 4. 
Pilot study of probucol in mild-to-moderate Alzheimer’s disease (AD). (A) Cerebrospinal 

fluid (CSF) apoE protein variation between 1 month and baseline correlated with cumulative 

dose of probucol (number of 250 mg pills consumed). (B) Contrasting changes on 

Alzheimer’s disease Assessment Scale–Cognitive (ADAS-Cog) (6 months vs. baseline) as a 

function of cumulative probucol dose. (C) ADAS-Cog change as a function of CSF apoE 

variation (1 month vs. baseline). (D) Reduction of phosphorylated tau 181 concentration 

(standardized Innogenetic AlzBio3 X-MAP luminex bioassay) as a function of CSF apoE 

levels.
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Table 1

Genetics of AD

Chromosome Gene Proportion of all AD cases Function

Familial (autosomal dominant) form: 1%–2% of all AD cases

 1 PSEN2 Only a few families APP processing

 14 PSEN1 ~2% to 3% APP processing

 21 APP Only a few families Unknown

Common (sporadic) form: 98%–99% of all AD cases

 19 APOE (allele e4) 50%–60% Lipid transport (extracellular)

 8 CLU (APOJ) Lipid transport (extracellular)

 19 ABCA7 Lipid transport (intracellular)

 2 BIN1 Lipid internalization

 11 PICALM Lipid internalization

 3 BCHE Amyloid deposition/lipid processing/neurotransmission

 11 MS4A6A Unknown

 19 CD33 Immune reactions

 21 TRPM2 Immune reactions

Key: AD, Alzheimer’s disease; APP, amyloid precursor protein.
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Table 2

ApoE polymorphisms in human and primates

ApoE residue Population prevalence (%) Site 112 Site 156

Human

 ApoE2 8 Cysteine Cysteine

 ApoE3 78 Cysteine Arginine

 ApoE4 15 Arginine Arginine

Chimpanzee 100 Arginine Arginine

Gorilla 100 Arginine Arginine

Orangutan 100 Arginine Arginine

Key: ApoE, apolipoprotein E.
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