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Abstract

We propose a new design for dose finding for cytotoxic agents in two ordered groups of patients. 

By ordered groups, we mean that prior to the study, there is clinical information that would 

indicate that for a given dose, one group would be more susceptible to toxicities than patients in 

the other group. The designs are evaluated relative to two previously proposed designs for ordered 

groups over a range of scenarios generated randomly from a family of dose-toxicity curves.
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1. Background

The primary goal of a Phase I trial of a cytotoxic agent in oncology is to estimate the 

‘maximum tolerated dose’ (MTD), the highest dose that can be administered with an 

acceptable level of toxicity. The level of toxicity at a given dose is defined in terms of the 

proportion of patients who experience a sufficiently severe, protocol-specified adverse event, 

usually called a ‘dose-limiting toxicity’ (DLT). With cytotoxic agents, it is generally 

assumed that the greater the dose administered, the greater the probability that a patient will 

experience a DLT.

In some cases, the phase I trial is designed to include heterogeneous groups of patients, and 

the goal is to estimate an MTD within each group. Ramanathan et al. [1] stratify patients 

into ‘none,’ ‘mild,’ ‘moderate,’ or ‘severe’ liver dysfunction at baseline. LoRusso et al. [2] 

uses a similar classification. Dasari et al. [3] defined groups in terms of type of cancer, while 

Prados et al. [4] stratify patients by prior therapies. Ura et al. [5] and Kim et al. [6] 

conducted phase I trials in groups defined by patient genetic characteristics. These examples 

use different dose-finding designs within groups; Ramanathan et al. [1] use the traditional 

3+3 design, while Ura et al. [5] uses the more efficient continual reassessment method [7], 

but the trials share the common feature that the MTD in each group is determined only from 

the data obtained within that patient group. Ignoring the group structure can lead to at least 2 

problems: reversals and inefficiency. By reversals, we mean that the MTDs in the groups can 

contradict what is known clinically. For example, a parallel design might recommend a 
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greater dose level as the MTD in the most severely impaired group compared to a less 

severely impaired group. By inefficiency, we mean that a design that takes into account the 

known clinical relationship might recommend the correct MTDs in the groups a greater 

proportion of times.

Several methods have been proposed to address the problem of patient heterogeneity in 

dose-finding. O’Quigley, Shen and Gamst [8] introduced a two-sample CRM, which allowed 

for the identification of the appropriate MTD’s for two groups simultaneously. Legedza and 

Ibrahim [9] proposed a related method, augmenting the dose-toxicity model for a vector of 

patient characteristics and putting a prior on the coefficient in the dose-toxicity model. Thall, 

Nguyen, and Estey [10] introduced a Bayesian sequential Phase I/II method that accounts for 

the interaction between patient characteristics and dose.

In this paper, we propose a design based on the procedure of Hwang and Peddada [11] a 

method of estimation for parameters subject to a partial order. These estimates were the 

basis of a method proposed by Conaway, Dunbar and Peddada (CDP) [12] for dose-finding 

in trials of combinations of agents. Recent comparisons [13] have shown that in combination 

agent trials, the CDP method has excellent properties and this motivated us to consider the 

use of these estimates in trials with heterogeneous groups. The design that we propose 

modifies the CDP method in several ways to account for the fundamental differences in the 

conduct and the goals of combination agent trials and trials in heterogeneous groups of 

patients. One important distinction is that the CDP method for combinations targets a single 

MTD; in a heterogeneous groups study, an MTD estimate is needed for each of the groups. 

More importantly, studies of combinations of agents or studies of dose and schedule [14, 15, 

16] allow the investigator to assign the dose of both agents or the dose and schedule 

simultaneously to patients. In heterogeneous groups, the group assignment is a characteristic 

of the patient, and not under the control of the investigator. In addition to proposing two 

versions of designs using Hwang-Peddada estimates, this paper will evaluate the proposed 

and existing methods across a broad range of scenarios for the dose-toxicity relationships in 

the groups, providing more information about the performance of existing methods than has 

been published previously.

1.1. Methods and applications in ordered groups

In O’Quigley et al. [8], no assumption was made regarding the order of tolerance towards 

the treatments between the two groups. O’Quigley and Paoletti [17] proposed a two-

parameter CRM for ordered groups that utilizes known differences between the groups. 

Morita [18] presented an application of the CRM that utilized information from Caucasian 

patients in order to design a phase I dose-finding study for Japanese patients. Ivanova and 

Wang [19] also incorporate isotonic estimates into designs for ordered groups that take into 

account both toxicity and efficacy endpoints. Wages, Read and Petroni [20] describe the 

design of a dose-finding trial that explicitly uses the known ordering in the probabilities 

associated with ’good’ and ’poor’ prognosis patients. Their design is based on the shift 

model [21, 22] that generalizes the CRM to two ordered groups.

In this paper, we compare our proposed methods to two generalizations of the CRM. Yuan 

and Chappell [23] propose a hybrid of the single agent-single group CRM and isotonic 
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regression methods [24]. As in the single agent CRM, the working model and the data 

within each group are used to estimate the DLT probabilities at each dose for that group. 

Using the algorithms described by Robertson, Wright and Dykstra [24] for two-way isotonic 

regression, the resulting DLT probability estimates within each dose level are modified so 

that there are no reversals, meaning no dose levels where a lower risk group has greater DLT 

probability estimates than a higher risk group, and preserves the monotonicity of toxicity 

probabilities within groups.

Another generalization of the CRM to ordered groups is the shift model [21, 22]. To 

illustrate this method, we assume that DLT probabilities are at least as great in group 2 as in 

group 1. One way to interpret the notion of at least as much toxicity in group 2 as in group 1 

is to say that we anticipate that the MTD in group 2 will be L dose levels lower than in 

group 1, with L = 0, 1, 2, …, K − 1. Using the simple power model, as in the original CRM, 

the DLT probability at dose level k in group 1 are equal to . A shift of L = 0 means 

that the DLT probabilities are the same in the two groups. If L = 1, the probability of a DLT 

in group 2 at dose level k is equal to . The method uses the data from all group-dose 

combinations to estimate the parameter a and the magnitude of the shift L, L = 0, 1, 2, …, K 
− 1.

2. The proposed design

An example of a dose-finding study in ordered groups is given in [20]. In the actual study, 

both measures of toxicity and efficacy were considered, and the dose levels under 

consideration differed between the groups. To motivate our proposed designs, we will use a 

simplified version of the study in which there are two groups of patients, those with a poor 

prognosis and those with a good prognosis, toxicity is the only endpoint, and there are 4 

doses of radiation in each group. The probability of a DLT at dose j, j = 1, …, 4 in group g, g 
= 1, 2 is denoted by by πgj. In Table 1, within each row, the probability of a DLT will 

increase across columns, πgj ≤ πgj′ for j < j′. Within columns, the probability of a DLT is 

greater for the poor prognosis population than for the good prognosis population, π1j ≤ π2j, 

where g = 1 represents good prognosis and g = 2 represents poor prognosis. The 

probabilities in Table 1 are a partial order [24] because there are pairs of parameters, π12 and 

π21 or π14 and π22 for example, for which the ordering is not known prior to the study.

2.1. Pre-trial specifications

Before the trial begins, we choose a set of M guesses at the orderings among the parameters. 

As described in [25, 26], this set of M orderings need not be all possible simple orders 

orders consistent with the partial order. In this example, we choose M = 8 possible orders 

out of a total of 14 possible simple orders. The chosen orders are displayed in Table 2. 

Ordering 1 is ‘ordered by columns’ and suggests that the group effect is smaller than the 

increase in the toxicity probability between adjacent doses. Ordering 2 is ‘ordered by rows’ 

and suggests a large group effect, where the probability of a DLT at the highest dose in the 

good prognosis group is less than the probability of a DLT at the lowest dose in the poor 

prognosis group. Orders 3, 7 and 8 are motivated by the shift model, with a shifts of 1, 2 or 3 

levels in the MTD. Orders 4 through 6 suggest that the group effect is smaller at lower doses 
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than at higher doses. The orderings used here were suggested by heuristic arguments about 

how the dose-toxicity curves might differ between two ordered groups. In an actual clinical 

trial, different orderings might be chosen based on clinical knowledge of the groups and the 

agent under study.

In addition to choosing the orderings prior to the study, we need to decide on the ’possible 

escalation doses’ for each of the dose-group combinations under study. By definition, the 

possible escalation doses associated with a specific group-dose pair are the group-dose pairs 

that can be tried if the specific group-dose pair has been deemed sufficiently safe [25]. In 

combination agent trials or in dose-finding for multiple schedules, this choice gives the 

investigator some flexibility in how conservatively or aggressively escalation can occur. In 

the heterogeneous group case, the choice is simpler; the possible escalation dose for group-

dose pair (g, j), j = 1, … J and g = 1, …, G is (g, j + 1) for j < J and (g, J) for j = J.

The final pre-trial specification is a beta prior with parameters (αgj, βgj) for the probabilities 

of a DLT for each group-dose pair. As in [25], we elicit these priors by asking investigators 

to specify an expected probability of a DLT and a value that they are 95% sure that the 

probability will not exceed. From these two values, we can solve for the parameters (αgj, 

βgj). These prior values will be used as smoothing parameters in the Hwang-Peddada 

estimation.

2.2. Stage 1

We propose a two-stage design that uses single patient cohorts until a toxicity is observed 

and takes into account the ordering between groups [17, 25, 27]. For example, if the first 2 

patients are from the poor prognosis group and are given dose levels 1 and 2 respectively, 

and neither patient experiences a DLT, then if the next patient is from the good prognosis 

group, that patient can be assigned to dose level 3. In general, in stage 1, a new patient in 

group g is assigned to one dose level greater than the highest dose observed so far with no 

DLTs from patients in group g or in any higher risk group. Once a DLT is observed in any 

patient in any group, stage 2 begins.

2.3. Stage 2

Stage 2 is iterative and will continue until we have observed a pre-chosen number of 

patients. At any point in the iteration, Ngj patients in group g have received dose level j. Of 

these, Ygj patients have experienced a DLT, g = 1, …, G and j = 1, …, J, and the log-

likelihood is

(1)

Using the beta prior, we compute ’smoothed’ observed proportions,  and 

compute Hwang-Peddada estimates, denoted  for each of the m = 1, …, M pre-

specified orders, using only those group-dose pairs with Ngj > 0. The method of smoothing 
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the estimates prior to computing isotonic estimates is also found in [14, 25]. The algorithm 

for computing the Hwang-Peddada estimates is given in the Appendix. For each of the M 
orders, we evaluate the log-likelihood Lm (2) at the HP estimates under the assumed 

ordering.

(2)

We propose two versions of the design depending on how the sets of estimates from each of 

the M models are used. The first selects the ordering that yields the largest value for (2) 

when evaluated at the corresponding Hwang-Peddada estimates. If two or more orders have 

values equal to the maximum, we choose among these orderings at random. Denoting the 

chosen order by m*, the current estimated probabilities of toxicity, π̂gj is equal to .

The second version uses a weighted average of the Hwang-Peddada estimates from each of 

the orderings, with the weights proportional to (2) evaluated at the H-P estimates. With the 

weighted average, the current estimated probability of toxicity are given by (3).

(3)

Empirically, we have observed that the properties of the method are greatly improved if the 

single correct ordering is chosen. In practice, this is unrealistic, and we considered a simple 

method of adapting the number of orderings to try to capitalize on the improvements that 

come with selecting the correct ordering. After 5/8 of the patients have been accrued, we 

choose the 3 orderings with the largest values of (2). The remainder of the trial is done with 

only those three orderings under consideration.

Once the current estimates have been computed, if the next patient is in group g, the 

recommended level for this patient is the dose level j*, such that j* = arg minj(|π̂gj − θ|). If 

the estimated probability of a DLT for the suggested dose, π̂gj*, is less than the target, and 

there have been no patients as yet allocated to the possible escalation dose (g, j* + 1), then 

the recommended dose for the next patient is (g, j* + 1). This process continues until a pre-

specified number of patients have been accrued. Other measures of the deviation from the 

target could be used, such as an asymmetric distance that penalizes deviations above the 

target more than deviations below the target [25]. In our evaluations of the method, however, 

we will only use the absolute distance loss and set the target equal to 0.20.

3. Comparison of methods

We will evaluate both versions of the proposed method, with the estimated toxicity 

probabilities chosen from the largest value of Lm evaluated at the corresponding HP 

estimates and the weighted average method with adapting the number of orderings partway 

through the trial. The “default” beta priors for the simulations all have mean 0.2, equal to the 
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target toxicity level θ, and an upper limit of 0.70, yielding a beta distribution with α = 0.41 

and β = 1.65 for each group-dose pair. For the 2 × 4 case, the 8 orderings listed in Table 2 

were used. In the 2 × 6 case, 12 orders were used, and in the 2 × 8 case, 16 orders were 

hypothesized. For the weighted average method, the number of orderings was reduced to 3 

after 20 patients when the total n was equal to 32, at 30 patients when n = 48 and at 40 

patients when total n = 64.

The two versions of the method will be compared to the shift model [22], using the skeleton 

values given in this paper and a pseudo-data prior with mean 0.20 at every level, and with 

total weight equal to one patient across all doses and groups. A second comparison is the 

method of Yuan and Chappell [23], choosing a skeleton with the method of Lee and Cheung 

[28] and with the same pseudo-data prior as for the shift model.

For two ordered groups we varied the number of doses per group (4, 6 and 8) and the trial 

sample size (32, 48, 64) and evaluated the methods over 1000 scenarios randomly generated 

from a family of dose-toxicity curves. The 1000 scenarios allowed us to do other 

investigations of the relative performance of the methods, including a comparison of the 

methods by the pattern of MTDs and the magnitude of the shift, the difference in the MTD 

between groups. For each scenario, we ran 500 simulated trials; for any individual scenario, 

this yields a standard error for estimating the PCS that is no greater than 0.022 percentage 

points. Averaged over 1000 scenarios, the average PCS values have a standard error that is 

no greater than 0.007. The supplemental material gives additional simulation results for a 

selected set of 12 scenarios, chosen by applying K-means clustering to the 1000 scenarios in 

each of the 4-, 6- and 8-dose cases. In the simulations with specific scenarios, we also varied 

the proportion of patients in group 1 (0.25, 0.5 and 0.75).

3.1. A family of curves

We generated scenarios at random [29] to create a range of shapes and toxicity probabilities 

within groups, and preserve the ordering between groups. The basis of the model is the four 

parameter logistic model for the probability of a DLT, πgx at dose level x in group g,

(4)

where b was chosen to be constant across groups and c1, c2, …, cG are generated so that c1 > 

c2 > … > cG. We laid out a grid of possible dose levels, with x taking integer values between 

0 and 20, and b generated as U(2, 7). The parameter c1 was generated as a U(4, 20). The 

remaining cg values are generated conditionally, given cg−1, cg was generated as U(cg−1, 20) 

for g = 2, …, G. Once b and c1, …, cG were generated, we computed the dose toxicity 

probabilities for each group for x = 0 to 20. For the 2-group, 4-dose level scenarios, we 

selected 4 consecutive x values, x*, x* + 1, x* + 2, x* + 3 such that π1,x* > 0.01 and π2,x*+3 

< 0.70. For the 2-group, 6 dose level scenarios, we chose 6 consecutive x values such that 

the lowest dose in the least toxic group had toxicity probability at least 0.01 and the highest 

dose in the most toxic group had toxicity probability no greater than 0.80. In the 2-group, 8 
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dose level case, we chose 8 consecutive values of x with toxicity probabilities no greater 

than 0.90. The supplementary material gives a plot of the first 100 scenarios in each of these 

cases.

3.2. Analysis of Simulation Results

The two proposed methods and the two existing methods are compared on the basis of 1) the 

accuracy index (AI) [30], a measure that incorporates the entire distribution of the doses 

selected to be the MTD selection and 2) the percentage of correct selection (PCS), the 

percentage of times the method correctly selects the dose with the toxicity probability 

closest to the target. Within group g, the accuracy index is

(5)

where ρj is a measure of the deviation of the true toxicity probability at dose j in group g, πgj 

from the target θ. Cheung (2011) gives several choices for ρj, including an absolute 

deviation, ρj = |πgj − θ|. The Accuracy Index has a maximum value of 1, occurring when the 

design always recommends the correct MTD.

Both the AI and the PCS were computed separately for each group; Table 3 shows the AI 

and PCS averaged over both groups. In this table, ‘HP-L’ and ‘HP-W’ are the proposed 

methods that use either the estimated probabilities from the ordering with the greatest 

likelihood when evaluated at the Hwang-Peddada estimates or from a weighted average of 

Hwang-Peddada estimates. The columns labeled ‘YC’ and ‘OI’ are results from the isotonic 

version of Yuan and Chappell and the shift model of O’Quigley and Iasonos methods. In 

some of the scenarios generated at random, the toxicity probabilities associated with the 

doses did not “bracket” the target probability of 0.20, meaning that either the lowest toxicity 

probability in a group exceeded the target, or the highest toxicity probability was less than 

the target. Comparing the performance of the methods in these cases tends to dampen the 

differences between the methods, and Table 3 displays results for all 1000 scenarios as well 

as for the subset of scenarios where the toxicity probabilities contain the target.

Some general recommendations can be given by comparing the methods across different 

numbers of doses. For the accuracy index in all 1000 scenarios, in the 2 × 4 and the 2 × 6 

cases, one of the two proposed methods, HP-W or HP-L has the largest AI for sample sizes 

n = 32 and n = 48. When n = 64 in the 2 × 4 and the 2 × 6 cases, the AI values for the HP-W 

and the OI methods differ by only 0.004. For the accuracy index in the 2 × 8 case for all 

1000 scenarios, the YC method has the greatest average accuracy index across the 3 sample 

sizes considered, although the differences between the YC and OI methods are small. In 

comparing the PCS across all 1000 scenarios, the OI method has the largest values for the 

both the 2 × 4 and the 2 × 6 cases. For the 2 × 8 case, the YC method has the greatest 

average PCS.

In the ’bracket’ scenarios, in both the 2 × 4 and the 2 × 6 cases, one of the two proposed 

methods, HP-L or HP-W, has the highest average accuracy index across the n = 32 and n = 
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48 sample sizes. For n = 64, the HP-W method has the highest average accuracy index in the 

2 × 4 case, but the HP-W and OI methods have the same average accuracy (0.633) for n = 64 

in the 2 × 6 case. In the 2 × 8 case, the YC method has the greatest average accuracy index, 

although these averages are only slightly greater than for the OI method. For the PCS in 

the ’bracket’ scenarios, in the 2 × 4 case, and the samples sizes n = 32 and n = 48, the HP-W 

has the greatest average PCS. For the 2 × 4 case with n = 64, the HP-W and OI methods 

have the same average PCS (0.640). In the 2 × 6 case, all the average PCS values are similar, 

but with the HP-W or OI generally having the greatest average PCS. In the 2 × 8 case, the 

YC method has the greatest average PCS for all three sample sizes, but the differences 

between YC and OI are small.

Figure 1 and figure 2 present a more detailed comparison of the performance of the methods. 

These figures show the empirical survival function for the accuracy index and the percent 

correct selection for each of the methods, for n = 32 and n = 64 across the 1000 scenarios. 

The top left panel in figures 1 and 2 show the degree to which the proposed methods 

dominate the O’Quigley and Iasonos and Yuan and Chappell methods in the 2 × 4 case. The 

lower right panel in these figures shows the degree to which these CRM-based methods 

dominate the Hwang-Peddada based methods in the 2 × 8 case.

We compared the methods by the configuration of the true MTD, and by the magnitude of 

the shift between the level of the MTD in the two groups. Figure 3 shows average accuracy 

index over the bracketing scenarios by the true MTD configuration. This panel suggests that 

the proposed methods (HP-L and HP-W) perform well when the true MTDs are in the 

middle of the dose range, and not as well as the Y-C and O-I methods when the MTD is at 

the highest level in each group. Figure 4 shows the average accuracy index by the degree of 

the shift. In the 2 × 4 and the 2 × 6 cases, the HP-L and HP-W methods perform best for 

smaller shifts and relatively less well for larger shifts. The opposite is true in the 2 × 8 case 

for which the HP-L and HP-W methods do worse for smaller shifts.

4. Non-rectangular group-dose studies

In the actual study in [20], the dose levels of interest were not the same in the two groups. 

Table 4 shows the dose levels under consideration in this study with cells not under 

consideration colored in gray. Having different dose levels in different groups is not 

uncommon in studies done in heterogeneous groups. In fact, a ‘non-rectangular’ structure is 

found in both of the cited studies [1, 2] that we used to motivate the problem of dose finding 

in ordered groups.

The proposed methods based on Hwang-Peddada estimation require no modification to 

accommodate these cases. To assess how the properties of these methods are affected by 

having different dose levels in each group, we simulated trials under the 1000 scenarios 

summarized in Table 3. We eliminated the group-dose pairs (1, 1) and (2, 4) from each 

scenario and from the orderings in Table 2. The population proportion in each group was set 

at 50%, and we assessed sample sizes of 24, 36 and 48. The lower sample size, 24, was 

included because of the reduced number group-dose combinations under consideration. For 

the sake of having a method for comparison, we applied the Yuan and Chappell method 
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without any modification to the same set of scenarios. Table 5 displays the results for both 

the accuracy index and the PCS. As in Table 3, we present results for all 1000 scenarios, and 

separately for the randomly generated subset of 501 scenarios where the target toxicity 

probability is within the set of toxicity probabilities in each group. For the scenarios that 

contain the target, the proposed HP − L and HP −W methods have a greater average 

accuracy index and percent correct selection than the Yuan and Chappell method for sample 

sizes of 24, 36 and 48. These methods achieve the same average accuracy index in 24 

patients as the Yuan and Chappell method achieves in 36 patients, and nearly the same 

accuracy in 36 patients as the Yuan and Chappell method achieves in 48 patients.

5. Discussion

Our evaluation of two new methods and two existing methods over a range of scenarios 

suggests that for studies with a smaller number of dose levels, the proposed methods have 

better performance than the existing methods. In studies with a larger number of doses, the 

existing methods are preferred. Further research is also needed into methods for choosing 

and adapting orderings in the proposed methods to assess whether the advantages seen with 

4 dose levels can be extended to studies with a greater number of doses. The Yuan and 

Chappell method was originally proposed for more than 2 groups and we are in the process 

of extending our proposed methods, and the shift model, to 3 or more ordered groups.
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Appendix

Hwang-Peddada estimation

Hwang and Peddada [11] proposed a general method of estimation of parameters subject to 

a partial order. In a partial order, there are pairs of parameters for which the ordering of the 

parameters is known, but also pairs for which the ordering is not known. Before describing 

the design based on these estimates, we will briefly describe Hwang-Peddada estimation for 

binary variables subject to a partial orders, using the example in Table 1.

Hwang-Peddada estimation depends on a distinction between “nodal” and “non-nodal” 

parameters. Nodal parameters are those whose ordering with all the other parameters is is 

known. For example, π11 and π24 are nodal parameters, since π11 is known to be less than, 

and π24 is known to be greater than, any of the other parameters. The remaining parameters 

are non-nodal; for each parameter, there is at least one other parameter for which the 

ordering is unknown; for example, the ordering between π12 and π21 is unknown. 

Estimation of the nodal parameters proceeds by guessing at the unknown orders among the 

parameters, making sure that the guess preserves the known orderings. For example, a 

possible guess at the ordering is given in (6)
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(6)

This preserves the monotonicity within rows and within columns, and could be interpreted 

as a guess that the difference in the probability of a DLT between groups is less than the 

difference in the probability of a DLT due to changes in dose within a group. Once the guess 

is made, the parameters follow a ”simple order” and the estimates of the nodal parameters 

can be obtained with any one of several standard methods in order restricted inference, such 

as the ’pool adjacent violators algorithm’ (PAVA) or the minimum lower sets algorithm [24]. 

At this stage, we retain the estimates of the nodal parameters and discard the estimates of the 

non-nodal parameters. In the example, at this point, we have estimates π̂11 and π̂22. To 

estimate each of the non-nodal parameters, we delete the smallest number of parameters 

from the set that will make the given parameter nodal. For example, to estimate π12, if we 

were to remove π21, then π12 would be a nodal parameter. The parameter π12 could be 

estimated using a modification of the PAVA algorithm for the simple order 7 determined by 

our guess at the unknown orderings, with π21 removed, and π11 and π24 fixed at their 

previously estimated values.

(7)

Estimation proceeds until all the nodal and non-nodal parameters have been estimated. 

Further details on computational aspects, other examples and the statistical properties of 

Hwang-Peddada estimates are given in [11].
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Figure 1. 
Empirical Distributions of Accuracy Index
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Figure 2. 
Empirical Distributions of Percent Correct Selection
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Figure 3. 
Average Accuracy Index by MTD configuration
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Figure 4. 
Average Accuracy Index by shift
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Table 4

Different doses in 2 groups

Dose

prognosis 8 10 12.5 15

poor π21 π22 π23

good π12 π13 π14
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