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Abstract

Sphingosine-1- phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, 

both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, 

migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is 

low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 

2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is 

mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid 

phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine 

phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled 

receptors, S1P1–5, which are differentially expressed in different cell types, S1P generates 

downstream signals that play crucial role in developmental and disease related pathologies. In 

addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act 

intracellularly, independently of S1P1–5, affecting calcium homeostasis and cell proliferation. The 

SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including 

respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels 

could offer therapeutic potential in ameliorating lung diseases. This review focuses on the 

prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule 

inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
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1. Introduction

Sphingolipids constitute a class of lipids that contain a sphingoid base such as sphingosine, 

sphinganine (dihydrosphingosine), or phytosphingosine backbone linked to long-chain fatty 

acids (ceramides). The resulting ceramides can be linked to hydrophilic head groups such as 

phosphorylcholine (sphingomyelin) (SM), carbohydrate moieties (glycosphingolipids), or a 

phosphate group (ceramide-1-phosphate) (Weete, 1974). SM is located on the exoplasmic 

surface of the eukaryotic plasma membrane where it plays a paramount role in protecting the 

cell surface from external agents (Simons & Ikonen, 1997), and also functions as a signaling 

lipid (Maceyka et., 2012). The first step of sphingolipid de novo biosynthesis is the 

formation of 3-keto-dihydrosphingosine via condensation of L-serine and palmitoyl CoA 

catalyzed by serine palmitoyltransferase (SPT), the rate limiting enzyme in sphingolipid 

biosynthesis (Merrill, 2002). 3-Keto-dihydrosphingosine is rapidly reduced to sphinganine 

(dihydrosphingosine) by ketosphinganine reductase (Stoffel, 1970), followed by ceramide 

synthase(s) mediated N-acylation to dihydroceramide with different fatty acid chain lengths 

(Stiban et., 2010). Mammals exhibit six different acyltransferases encoded by lass-genes that 

show specificities for different fatty acyl CoAs (Futerman & Riezman, 2005). 

Dihydroceramides can be desaturated to ceramides, which can be channeled to the synthesis 

of complex sphingolipids such as SM and glycosphingolipids, or phosphorylated by 

ceramide kinase to ceramide-1-phosphate (Mitsutake et., 2006). Mammalian cells do not 

convert dihydrosphingosine to sphingosine; however sphingosine can be generated from 

ceramide by ceramidases (Chalfant & Spiegel, 2005). Also, ceramide can be formed from 

SM in mammalian cells by sphingomyelinase activation in response to extracellular stimuli 

such as TNF- α or growth factors (Dbaibo et al., 1993). Sphingosine generated from 

ceramide is converted to sphingosine-1-phosphate (S1P) by sphingosine kinase (SphK) 1 

and/or 2 (Figure 1).

2. Sphingosine-1-phosphate Metabolism and Signaling

Cellular levels of S1P are tightly regulated by its synthesis from sphingosine through the 

activation of SphKs and degradation through reversible dephosphorylation of S1P to 

sphingosine by S1P phosphatases (SPPs), lipid phosphate phosphatases (LPPs), or 

irreversible degradation by a pyridoxal phosphate-dependent S1P Lyase (S1PL) to Δ2 
hexadecenal and ethanolamine phosphate (Saba & Hla, 2004). In unstimulated cells, the 

balance between S1P production and degradation results in relatively low intracellular levels 

of S1P. Erythrocytes and platelets have much higher levels of S1P compared to other cells 

and this is due to lack of S1PL (Ito et al., 2007). S1P is also transported from inside the cell 

to outside by ABC transporters (Kim et al.,2009; Kobayashi et al., 2009; Mitra et al., 2006; 

Sato et al., 2007), and the recently identified spinster homolog 2 (Spns2) transporter 

(Fukuhara et al., 2012; Hisano et al., 2012; Kawahara et al., 2009). In the last two decades, 

S1P garnered much deserved research attention as it has emerged as a bioactive lipid 

mediator of diverse cellular processes such as cell growth, and survival (Olivera et al., 1999), 

motility (Van Brocklyn et al., 2003; Xu et al., 2006; Berdyshev et al., 2011), cytoskeletal 

organization (Garcia et al., 2001), endothelial permeability (Wang & Dudek, 2009), vascular 

tone (Levkau, 2008), adherens junctions (Mehta et al., 2005), tight junctions assembly (Lee 

et al., 1999a; Lee et al., 2006), autophagy (Lavieu et al., 2006; Huang and Natarajan, 2015), 
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immune regulation (Chi, 2011; Spiegel & Milstien, 2011; Walzer, Chiossone, Chaix, & 

Calver, 2007) and morphogenesis (Lee et al., 1999a). These pleotropic actions are attributed 

to its unique inside-out (extracellular), and intracellular signaling, highlighting its role as a 

signaling sphingolipid. Intracellularly, S1P is known to act as a second messenger and plays 

a role in calcium homeostasis; however very little is known regarding intracellular targets of 

S1P. Release of S1P in human lung endothelial cells by the photolysis of caged S1P 

significantly enhanced endothelial cell (EC) barrier function, which was independent of 

S1P1, but was dependent on Rac1(Usatyuk et al., 2011). Interestingly, S1P generated in the 

nucleus by the action of SphK2 is shown to directly target HDACs and an integral 

component of the HDAC repressor complex (Hait et al., 2009; Fu et al., 2014), but the 

mechanism and its relevance to disease needs further study. Additionally, S1P has been 

identified as a missing co-factor required for the E3 ligase activity of TNF receptor-

associated factor 2 (TRAF2) (Alvarez et al., 2010). Equally important, S1P is a regulator of 

mitochondrial assembly and function by binding to prohibitin 2 (Strub et al., 2011), and a 

modulator of BACE1 activity in Alzheimer’s disease (Takasugi et al., 2011). Further, S1P 

binding to human telomerase reverse trancriptase Tak stabilizes telomerase at the nuclear 

periphery by allosterically mimicking protein phosphorylation (Panner Selvam et al., 2015). 

Taken together, S1P’s actions could be autocrine or paracrine or in situ where it is generated 

and thus offers immense therapeutic potential for a number of human diseases including 

respiratory disorders such as sepsis, asthma, fibrosis, pulmonary hypertension, and lung 

cancer, which is the focus of this review (Table 1).

S1P signaling has momentous clinical importance as evidenced by recent research, 

suggesting its pivotal role in regulating diverse immune regulatory networks that contribute 

to human health and diseases (Maceyka et al., 2012) including respiratory and lung disorders 

(Brinkmann & Baumruker, 2006). S1P signaling axis is implicated in regulation of many 

physiological and pathophysiological processes and diseases (Pyne et al., 2009), and 

targeting S1P levels in pathologies wherein increase or decrease in circulating or tissue S1P 

levels has been shown to be detrimental (Pyne & Pyne, 2010; Natarajan et al., 2013; Kunkel 

et al., 2013) which is of significant interest to scientists and pharmaceutical industry. Of 

note, anti-S1P monoclonal antibody (sphingomab) (O’Brien et al., 2009), which neutralizes 

extracellular S1P and inhibits its signaling via its receptors, is currently being investigated in 

pre-clinical and phase I and II trials of tumor growth suppression and age-related macular 

degeneration (Sabbadini, 2011) (Figure 2).

2.1. Sphingosine Kinases as Drug Targets

SphK1 and SphK2 are the two known isoenzymes that have been identified and 

characterized in mammals (Kohama et al., 1998; Liu et al., 2000a; Nava et al., 2000). 

Although both share significant sequence homology, they differ significantly in sub-cellular 

localization, tissue distribution, and function. Albeit ubiquitously expressed in most tissues, 

SphK1 expression is substantial in the lung and heart, and SphK2 in the liver and spleen 

(Melendez et al., 2000). Two functional nuclear export signal sequences (NES) direct SphK1 

localization to the cytosol (Inagaki et al., 2003). In contrast, SphK2 has both nuclear import 

and export sequences, and is found predominantly in the nucleus in many cell types 

(Igarashi et al., 2003). Both SphK1 and SphK2, when activated by growth and survival 
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factors, undergo translocation, post-translational modifications, protein-lipid, and protein-

protein interactions that ultimately result in elevated S1P levels in the cell (Alemany et al., 

2007), which regulates various biological responses. Cytosolic S1P produced by SphK1 

enhances cell growth, whereas Sphk2 generated S1P in ER and/or membranes promote 

apoptosis, as evident from studies using different model systems (Hait et al., 2006; Liu et al., 

2003). Despite their differences, in vivo studies have shown that SphK1 and SphK2 can 

compensate for each other, as neither SphK1 nor SphK2 knockout mice models reveal any 

ostensible phenotype in adulthood. The SphK1/2 double knockout mice are embryonically 

lethal (Mizugishi et al., 2005). Although S1P has barrier protective effects, and proven 

ameliorative effect against sepsis-induced lung injury in animal models (Peng et al., 2012), 

there are limitations to S1P therapy in acute lung injury (ALI) (Natarajan et al., 2013; Wang 

et al., 2014). Infusion of high concentrations of S1P produces pulmonary edema, stimulates 

contraction of airway and bronchial smooth muscle cells (Rosenfeldt et al., 2003), and 

increases airway hyper-responsiveness to allergens in mice (Roviezzo et al., 2007). Several 

small molecule inhibitors of SphK 1 and SphK2 have been reported and some are listed in 

Table 2.

2.2. S1P Lyase as a Drug Target

S1P Lyase (S1PL) is an endoplasmic reticulum-resident, pyridoxal phosphate dependent, 

type III membrane protein (Ikeda et al., 2004) that is ubiquitously expressed in all tissues 

(Serra & Saba, 2010). It catalyzes the terminal step in sphingolipid metabolism by 

irreversibly cleaving the C2-C3 bond of S1P to generate Δ2 hexadecenal and ethanolamine 

phosphate, thereby controlling the S1P concentrations in the cells. Deletion of both alleles of 

Sgpl1 gene in mice is lethal and animals do not survive beyond weaning due to congenital 

anomalies partially attributed to cytotoxic levels of S1P in major organs (Allende et al., 

2011); however, partial knock out of Sgpl1 gene results in small increase in S1P with no 

effect on the survival (Billich et al., 2013). S1PL is known to be up-regulated and activated 

in response to various stimuli like the bacterial endotoxin lipopolysaccharide (LPS) (Zhao et 

al., 2011) and radiation exposure of the mouse lung (Huang et al., 2013). S1PL is likely to 

undergo various post-translational modifications due to many potential phosphorylation and 

nitrosylation sites; however, they need to be validated experimentally (Huang et al., 2005; 

Zhan & Desiderio, 2006). Although S1PL is a novel target in immunomodulation, only a 

few S1PL small molecular inhibitors have been characterized. The vitamin B6 antagonist, 

4′-deoxypyridoxine (4-DP) (Bandhuvula et al., 2007) and the food colorant, 2-acetyl-4-

tetrahydroxybutylimidazole (THI) (Ohtoyo et al., 2015) have been widely used to block 

S1PL activity, in vitro and in vivo, respectively, and have limited therapeutic application. 4-

DP is a non-specific inhibitor of all pyridoxal phosphate dependent enzymes, and may lead 

to long-term cytotoxicity. THI modulates S1PL activity in vivo and not in vitro as 

biotransformation of THI is required for its inhibition of S1PL (Schwab et al., 2005). A 

recently designed S1PL inhibitor, [(4-benzylpthalazin-1-yl)-2-methylpiperazin-1-yl] 

nicotinonitrile 5, reduced peripheral T cell numbers after oral administration and conferred 

protection to experimental autoimmune encephalomyelitis in rats (Weiler et al., 2014). Thus, 

inhibition of S1PL, which increases intracellular S1P levels, may serve as an alternative 

pharmacological approach to FTY720 to reduce T cell egress from lymph nodes in treating 
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certain sub-types of multiple sclerosis. Table 3 lists S1PL inhibitors that may have 

therapeutic potential.

2.3. S1P receptors as Drug Targets

S1P is a unique lipid mediator that has both intracellular and extracellular targets. S1P 

generated in the cell is delivered to the extracellular environment by ABC transporters (Kim 

et al., 2009; Mitra et al., 2006; Sato et al., 2007; Kobayashi et al., 2009) and the recently 

identified Spns2 (Fukuhara et al., 2012; Kawahara et al., 2009; Hisano et al., 2012) where it 

acts in an autocrine or paracrine manner as a ligand for G-protein-coupled receptors on the 

cell surface. Five such S1P receptors (S1PRs) have been characterized so far that are 

designated S1P1–5. S1PRs are differentially expressed in cells and tissues, and are coupled to 

various heterotrimeric G-proteins, thereby accounting for its pleotropic effects (Hla, 2001). 

The pattern of S1PR activation differentially regulates downstream signaling effector 

molecules like small GTPases (Kume et al., 2007; H. Zhou & Murthy, 2004), MAP kinase 

(Guo et al., 1998; Dikic et al., 1996; Sato et al., 1999), Akt (Tanimoto et al.,, 2004; 

Baudhuin et al., 2004), and phospholipase C/D (Banno et al., 1999; Okamoto et al., 1998), 

which in turn mediate various cellular processes including migration, immunity, 

angiogenesis, and vascular development. The differential expression of S1PRs also accounts 

for the diversity of the activation of down-stream signaling pathways. For example, binding 

of S1P to S1P1 or S1P3 results in increase migration of endothelial cells, whereas activation 

of S1P2 has an opposite effect (Lee et al., 2001; Kimura et al., 2000; Ryu et al., 2002). 

Moreover, the differential regulation of Rho family of small GTPases, especially Rho and 

Rac, by S1PRs, is critical for barrier maintenance, cytoskeletal rearrangement, and motility 

of endothelial and epithelial cells (Lee et al., 1999a; Okamoto et al., 2000). S1P activation of 

S1P1 enhances barrier integrity by cortical actin rearrangement in endothelial cells via Rac 

activation but S1P3 activation in epithelial cells results in possible activation of Rho, leading 

to increased vascular permeability (Garcia et al., 2001; Liu et al., 2000b; Natarajan et al., 

2013). S1P1 deletion also hinders downstream Rac activation that leads to defects in vascular 

maturation, as evident from studies done using S1P1 receptor null mice (Liu et al., 2000b). 

S1P-mediated multiple immune modulatory functions are also attributed to the differential 

expression of S1PRs. S1P secreted by mast cells was found to enhance mast cell function by 

binding to its S1PR1&2 in an autocrine manner (Olivera et al., 2010). While activation of 

S1P1 by S1P in an autocrine manner causes mast cell migration (Olivera et al., 2010), 

binding to S1P2 inhibits mast cell migration by down-regulation of Rac activity (Olivera & 

Rivera, 2005; Sanchez & Hla, 2004). Extracellular addition of S1P to rat islet cells has been 

shown to inhibit apoptosis, which is also mimicked by di-hydro–S1P addition (Laychock et 

al., 2013). Similarly, blocking S1P1 & S1P3 by antisense nucleotide attenuated S1P 

mediated effect on cell survival in endothelial cells (Kwon et al., 2001). Although the 

differential expression and effects of S1PRs underscores the complexity of S1P signaling, it 

also presents a valuable approach for targeting S1PRs for drug development. Given the 

limitation of S1P as a therapeutic agent in treating ALI, there has been a growing interest in 

the development of analogs of sphingosine and S1P for therapy. One such analog is 

FTY720, a synthetic derivative of the fungal metabolite, myriocin (Troncoso & Kahan, 

1998). FTY720 is phosphorylated to FTY720-P by SphKs, especially by SphK2, in vitro and 

in vivo (Paugh et al., 2003). FTY720-P, similar to S1P, also binds to S1P1 and S1P3 (Gräler 
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& Goetzl, 2004), and modulates endothelial barrier function (Brinkmann et al., 2004). 

Moreover, FTY720 (Fingolimod) is an anti-inflammatory (Sehrawat & Rouse, 2008) and 

immune-modulatory agent (Zhou et al., 2009), which has been recently approved by FDA 

for the treatment of multiple sclerosis (MS) (Chun & Hartung, 2010). Most likely, as in 

animal models, phosphorylation of FTY720 to FTY720-P by SphK2 is essential for its 

therapeutic action in MS (Brinkman, 2010). Additionally, FTY720-P enhanced endothelial 

barrier function via S1P1 and reversed endothelial barrier dysfunction induced by VEGF in 

endothelial cells (Dudek et al., 2007). In addition to the beneficial effects, both S1P and 

FTY720-P have therapeutic limitations (Natarajan et al., 2013) as both these mediators 

induce ubiquitination and proteosomal degradation of S1P1 resulting in increased 

endothelial permeability after prolonged exposure. However, non-hydrolysable analog of 

FTY720-P, FTY720-(S)-Phosphonate, which also binds to S1P1 has been shown to exhibit 

superior efficacy as a barrier protecting agent in cultured ECs and pre-clinical animal models 

of ALI (Camp et al., 2016; Wang et al., 2014). Although the precise mechanism of action of 

FTY720-(S)-phosphonate is unclear, its superior efficacy may be attributed to maintenance 

of S1P1 expression for a prolonged period of time compared to S1P or FTY720-P. Further 

studies are necessary to delineate the down-stream signaling pathways mediated by S1P, 

FTY720, and FTY720-P analogs in regulating endothelial barrier function. Several agonists 

and antagonists that can modulate S1PR activity has been developed as pharmacologic tools 

to better understand the S1P receptor functions (Table 4 & 5).

2.4. S1P Phosphatases and Lipid Phosphate Phosphatases as Drug Targets

In addition to S1PL, S1P can also be metabolized by SPPs and LPPs to sphingosine (Le 

Stunff et al., 2002; Jasinska et al., 1999; Zhao et al., 2007; Tang et al., 2015). However, not 

much is known about the physiological and pathophysiological roles of SPP 1 and 2 and 

LPP1–3 in lung diseases. Depletion of SPP1 results in unfolded protein response and 

endoplasmic stress-induced autophagy (Lépine et al., 2011b) and doxorubicin switches 

protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated autophagy-

related gene 5 cleavage (Lépine, Allegood, Edmonds, Milstien, & Spiegel, 2011a). Also, 

there is evidence to suggest a role for SPP1 in cancer as depletion of SPP1 with siRNA 

confers resistance to chemotherapy (Johnson et al., 2003). In contrast to SPP1, SPP2 seems 

to have a role in inflammation. SPP2 is induced in human umbilical vein ECs (HUVECs) 

during inflammatory responses and silencing of SPP2 by siRNA significantly reduced TNF-

α mediated IL-1β mRNA and protein expression (Mechtcheriakova et al., 2007). LPPs 

comprising of three major isoforms, LPP1, LPP2 and LPP3, dephosphorylate several 

bioactive lipids including S1P, LPA, PA, and ceramide-1-phosphate, and modulate the 

bioavailability of these lipids for cell signaling (Burnett & Howard, 2003; Tang et al., 2015). 

Very little is known about the role of LPPs in lung diseases; In human endothelial cells, 

LPP1 has be shown to modify S1P signaling by decreasing extracellular S1P concentrations, 

thereby lowering the activation of S1P receptors and downstream signaling. In addition, 

overexpression of LPP1 increases intracellular S1P signaling by promoting intracellular S1P 

formation (Zhao et al., 2007). Also, studies done using human bronchial epithelial cells 

showed a physiological role of LPP1 in attenuating LPA-induced IL-8 secretion (Zhao et al 

2005). LPP3 may also have a role in tumor growth. LPP3 has been shown to impact 

glioblastoma progression by amplifying β-catenin and cyclin-D1 activities (Chatterjee et al., 
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2011). Several agents such as tetrafluoroaluminate (ALF4), orthovanadate, and N-

ethylmaleimide (NEM) are known to inhibit SPPs and LPPs; however, many of these 

compounds are cytotoxic and have no therapeutic value. Currently, specific small molecule 

inhibitors to dissect the roles of SPPs and LPPs in human diseases have not been developed.

2.5. Acid Sphingomyelinase as a Drug Target

Acid sphingomyelinase (ASM) belongs to a family of enzymes that catalyze the breakdown 

of SM to ceramide, a bioactive sphingolipid that has been implicated in the pathogenesis of 

human diseases including cancer, lung disorders, atherosclerosis, and diabetes (Ogretmen & 

Hannun, 2004; Brodlie et al., 2012; Petrache et al., 2005; Bismuth et al., 2008; Holland et 

al., 2007). Ceramide and S1P, two interconvertible lipids, form the ceramide-S1P rheostat 

that controls the cell fate, mediating opposing responses; ceramides are anti-proliferative 

whereas S1P stimulates cell survival pathways. In humans, deficiency of ASM results in an 

inherited lipidosis disorder called type A and B Niemann-Pick disease, characterized by 

accumulation of SM in neural and other tissues (Brady et al., 1966). Ceramide stimulates 

apoptosis in cells and increased ceramide levels have been observed in the lungs of patients 

with emphysema (Petrache et al., 2005); however, contradictory findings have been reported 

about ceramide levels in cystic fibrosis (CF) patients and in mouse model of CF where 

reduced ceramide levels correlated with defects in fatty acids (Wojewodka et al., 2010). 

These contradicting results in CF may be due to the various animal models used and the 

detection of only selected species of ceramides by mass spectrometry. Several pulmonary 

disorders result from either elevated ASM activity and/or expression. Pharmacological 

inhibition or genetic knockdown of ASM has been shown to normalize ceramide levels, 

decrease inflammation and infection, and prevent pulmonary disorders such as fibrosis 

(Dhami et al., 2010), cigarette smoke-induced emphysema (Petrache et al., 2005), and CF in 

mice (Becker et al., 2012). Several small molecule inhibitors of ASM such as amitriptyline, 

trimipramine, desipramine, chlorprothixene, fluoxetine, amlodipine, sertraline, and 

bisphosphonates may be useful for the treatment of pulmonary disorders such as CF, 

fibrosis, or emphysema via inhibition of ASM and modulation of ceramides in the lung 

(Table 6).

3. S1P/SphKs/S1PL Signaling Axis in Respiratory and Lung Diseases

Lung diseases are common medical conditions that affect the function of the lungs with 

symptoms ranging from mild to life threatening. Lung diseases fall into three broad 

categories: 1. Airway diseases that affect the tracheal and bronchial tubes resulting in 

structural changes in the airway, 2. Respiratory diseases that affect the lung structure leading 

to scarring of tissues, and 3. Pulmonary circulation diseases affect the blood vessels causing 

clotting and inflammation, which can also affect heart function. Irrespective of the nature of 

the disease, all the lung disorders affect the ability of the lung to exchange gases, which 

could lead to acute or chronic disease condition. S1P, being a potent signaling molecule, has 

been implicated in a number of lung disorders and because of its pleotropic nature it 

provides us with multiple targets, which could be exploited in developing therapeutics 

(Brinkmann & Baumruker, 2006). Lung disorders that affect the tubes cause constriction of 

airways, and airway diseases include asthma, chronic obstructive pulmonary disease 
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(COPD), and CF (Barnes, 2008; Lyczak et al., 2002). A number of diseases affecting lung 

tissues alter the tissue morphology by scarring or inflammation, which affects the lungs 

ability to expand and exchange gases. Diseases that cause restriction of the lung include 

pulmonary fibrosis, pneumonia, ARDS, and lung cancer (Chapman, 2004). Lung diseases 

that cause clotting, scarring, and inflammation of the blood vessels affect the normal 

functioning of the lungs and the heart; pulmonary hypertension is one such disease (Leeman, 

1996).

S1P can signal extracellularly (inside out mechanism) by ligation to G-protein-coupled 

S1P1–5 receptors or signal inside the cell, independent of the S1PRs. (Chun et al., 2002). 

However, the possibility of intracellular action of S1P via intracellularly localized S1PRs is 

understudied and cannot be ruled out. Recent evidences suggest localization and differential 

expression of S1PRs in normal and malignant human tissues. All the five S1PRs were 

expressed in both the cytoplasm and nucleus of benign and malignant tissues from multiple 

human organs as evidenced by Immunohistochemistry and Immunocytochemistry (Wang et 

al., 2014). Additionally, in estrogen receptor-positive breast cancer, high cytoplasmic S1P1 

and nuclear S1P2 and S1P3 expression and association of these receptors with signaling 

proteins such as ERK1/2, Akt or SphK1 was reported to be associated with survival or 

recurrence of estrogen receptor-positive breast cancer (Ohotski et al., 2013). A new 

paradigm of S1P signaling in the nucleus is emerging that may alter gene expression, in 

which, SphK2 specific generation of S1P in the nucleus can bind to HDACs 1 & 2 and 

inhibit HDAC activity (Hait et al., 2009; Fu et al., 2014). Similar to S1P, FTY720-P also 

seems to bind to HDACs 1 and 2 modulating HDAC activity (Hait et al., 2015). Thus, 

SphK2/S1P nuclear signaling may represent a novel mechanism of epigenetic regulation of 

gene expression and cell function. This new role of nuclear S1P signaling may have a 

potential role in the regulation of human lung pathologies such as inflammation, pulmonary 

hypertension, and pulmonary fibrosis.

Given the pleotropic nature of S1P signaling, it is evident that targeting S1P signaling and 

S1P metabolizing enzymes holds enormous therapeutic potential for the treatment of lung 

diseases. So a diverse array of small molecule inhibitors, agonists, and antagonists targeting 

SphKs, S1PL, and S1PRs have been identified, characterized, and tested in mice models of 

lung diseases to unravel the distinct roles of the individual players in S1P signaling. 

Development of new and specific inhibitors will help to target specific components of the 

S1P signaling in treating the lung diseases.

3.1a. Acute Lung Injury/ Acute Respiratory Distress Syndrome

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are sudden failure 

of the respiratory system due to accumulation of fluid in the alveoli. Some of the common 

causes of ALI/ARDS include sepsis, pneumonia, trauma, radiation, multiple blood 

transfusion, and aspiration of stomach fluids. Inflammation and endothelial dysfunction are 

hallmark features of ARDS (Leaver & Evans, 2007) and S1P/SphK1/S1PL signaling axis 

may have an important role in the pathophysiology of the syndrome (Brinkmann & 

Baumruker, 2006; Natarajan et al., 2013; Proia & Hla, 2015).
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S1P’s role as a key regulator of endothelial barrier function is attributed to its signaling 

through S1P1 & S1P3 that activates downstream Rho GTPases and rearrangement of 

cytoskeleton (Garcia et al., 2001). Intravenous infusion of S1P has shown to reduce LPS-

induced lung vascular permeability and inflammation in murine models (McVerry & Garcia, 

2004). The barrier enhancing effects of S1P are generally ascribed to ligation to S1P1, which 

initiates a series of downstream signaling cascades including Rac activation, cortactin 

translocation, peripheral myosin light chain phosphorylation, and rearrangement of focal 

adhesion and adherens junction proteins culminating in increased barrier function in lung 

endothelium cells in vitro (Sun et al., 2009; Abbasi and Garcia, 2013; Takuma et al., 2012; 

McVerry and Garcia, 2005; Xiong and Hla. 2014). However, elevated concentrations of S1P 

(>5–10 μM) produces barrier disruption in vitro and in vivo. Also, Intravenous infusion of 

S1P at 0.5 mg/kg body wt produces pulmonary edema in mice (Sammani et al., 2010) 

Ligation of S1P to S1P3 leads to activation of Gi/G/11/G12/13 coupled signaling pathways, 

and robust Rho/Rho kinase mediated EC contractile apparatus resulting in cell migration and 

vascular barrier dysfunction (Sun et al., 2012; Singleton et al., 2007; Li et al., 2015; Ni et al., 

2014). Consistent with these findings, mice with genetic knock down of SphK1 were much 

more susceptible to LPS-induced vascular leak (Wadgaonkar et al., 2009). Similarly, 
SphK1−/− mice showed poor recovery from anaphylaxis and delayed histamine clearance, 

which was improved after S1P injection (Olivera et al., 2010). S1PL expression is enhanced 

in LPS-induced lung injury mice models, causing decreased S1P levels thereby increasing 

inflammation and injury; targeting S1PL ameliorated lung injury as it increased intracellular 

S1P levels and decreased LPS-induced inflammatory cytokines (Zhao et al., 2011). In 

addition to ALI, SphK1 may play a role in sub-ALI such as radiation-induced lung injury 

(RILI). Exposure of mice to thoracic radiation (20–25 Gy) for 6 weeks enhanced SphK1 and 

SphK2 expression and ceramide to S1P ratio in plasma (Mathew et al., 2011). Genetic 

deletion of SphK1 potentiated susceptibility to RILI, indicating a protective role for SphK1 

against RILI (Mathew et al., 2011). Interestingly, pretreatment with myriocin, an inhibitor of 

SPT, decreased fibrogenesis and inflammation 18 weeks post-radiation exposure, and 

inhibiting SPT also modulated SphK1 activity and S1P levels in the lung tissue and plasma 

(Gorshkova et al., 2012). These results support a role for S1P and S1P metabolizing 

pathways as potential targets against ALI and RILI.

Given the barrier protective role of S1P in ALI, advances have been made in the 

development and the use of S1PR agonists. Experiments done in HUVECs indicate that at 

lower doses (0.1–1.0 μM), FTY720 enhance endothelial barrier function; however at higher 

doses (10 μM –100 μM), it causes barrier disruption and apoptosis (Müller et al., 2011). 

Similar observations were also recorded in mechanically ventilated mouse model of lung 

injury (Müller et al., 2011). This complex action of FTY720 in ECs is due to its 

phosphorylation to FTY720-P by SphK1 or SphK2 that increases its affinity for S1PRs 

(Billich et al., 2003; Paugh et al., 2003). Though S1P1 specific agonist SEW2871 increased 

endothelial barrier function in LPS model of lung injury pretreatment with S1P1 antagonist 

SB-649146 reduced the effect considerably (Sammani et al., 2012), validating the role of 

S1P1 in preventing vascular leakage. More importantly, studies carried out in murine 

model(s) of lung injury have highlighted the possibility of developing S1PL as a potential 

therapeutic option in ameliorating ALI. Mice orally treated with THI (0.05 mg/ml water) for 
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2 days, post intratracheal LPS instillation showed elevated S1P levels in the lung tissues and 

BAL fluids but not in the plasma (Zhao et al., 2011). Moreover, THI treatment also blocked 

neutrophil infiltration to the alveolar space and attenuated IL-6 secretion, thus clearly 

offering protection against LPS induced lung injury (Zhao et al., 2011). Targeting S1PL 

using siRNA in human lung microvascular endothelial cells (HLMVECs) challenged with 

LPS, paralleled with the murine studies show diminished barrier disruption, IL-6 secretion, 

and LPS-induced p38 MAPK phosphorylation, emphasizing that targeting S1PL could be a 

viable therapeutic option (Zhao et al., 2011).

3.1b Pseudomonas aeruginosa mediated lung inflammation and injury

Pulmonary infections remain a significant global health concern, as it is associated with 

significant morbidity and mortality in neonates and adults. Pseudomonas aeruginosa (PA) is 

a common, gram negative, environmental, opportunistic pathogen that causes clinical 

pneumonia in humans. PA mediated pulmonary infections are prevalent in people with CF, 

COPD, and in the clinical setting of mechanical ventilation. PA infection activates host 

NADPH oxidase (Nox) proteins (Fu et al., 2013), and acid SM (Managò et al., 2015), 

leading to the generation of reactive oxygen species (ROS) and ceramides, respectively. 

Excessive ROS and ceramide production have been implicated in lung inflammation, cell 

death, and susceptibility to infection in CF (Seitz et al., 2015). However, recent studies also 

suggest a role for ceramides and sphingosine in mounting lung defense against bacterial 

pathogens as targeting sphingolipid pathways suppresses the recruitment of neutrophils and 

other inflammatory immune cells into the lung, thereby reducing lung inflammation 

(ManagòAntonella et al., 2015). PA infection of mouse lung enhanced global acetylation of 

histones and genetic deletion of SphK2, but not SphK1, mitigated PA-mediated histone 

acetylation, and generation of pro-inflammatory cytokines such as IL-6 and TNF-α 
production both in mouse lungs and mouse lung epithelial cells (Fu et al., 2014). Further, 

infection of mouse alveolar epithelial cells with heat inactivated PA or flagellin, a principle 

component of bacterial flagella, induced SphK2 phosphorylation, and its translocation to the 

nucleus and inhibition of SphK2 with ABC 294760 attenuated histone H3 and H4 

acetylation and these data suggest a novel role for SphK2 in regulating HDACs/HATs and 

expression of pro-inflammatory cytokines in response to PA infection (Fu et al., 2014). The 

PA mediated H3 and H4 histone acetylation was also attenuated by Nox4 siRNA and SphK2 

inhibitor ABC 294760 blocked Nox4 dependent ROS generation (Fu et al., 2014). Thus, PA 
infection of mouse lungs induces chromatin modification via SphK2/S1P/Nox4 nuclear 

signaling. The role of nuclear SphK2/S1P signaling mediating chromatin modification and 

lung inflammation warrants further investigation (Fig. 3).

3.2 Asthma

Inflamed airways, as a result of exposure to pollutants, allergens, and infection are known to 

trigger asthmatic symptoms (Nelson et al., 2003); Elias et al., 1999). This causes recurrent 

wheezing and shortness of breath, accompanied by coughing that could worsen overtime 

resulting in asthmatic attack. Both in allergic and non-allergic asthma, T-helper cells are 

recruited to the airways, which secrete cytokines that in turn causes airway inflammation, 

and promoting leukocytosis (Cohn et al., 2004; Halim et al., 2012). Inflammatory cells such 

as mast cells, macrophages, and eosinophils that are recruited to the site, exacerbate the 
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inflammation, and work in concert to airway remodeling of the airway. While existing drugs, 

β2-Adrenergic receptor agonists, leukotriene analogs, and glucocorticoids (Bai, 1992; 

Chowdhury & Dal Pan, 2010; Hamid et al., 2003; Montuschi & Peters Golden, 2010; 

Barnes, 2012) can alleviate the clinical manifestations of asthma, there is no permanent cure 

for this complex airway disorder.

The role of S1P in the development of asthma by regulating inflammatory responses was 

first established by a study using rat mast cell line that showed Sphk activation and increase 

in S1P levels in response to FcεRI stimulation (Choi et al., 1996). Regulation of mast cell 

activation and degranulation has been credited to cytoplasmic S1P-interceded MAPK 

activation, while sphingosine was shown to have an opposite effect (Prieschl et al., 1999). 

Moreover, differential roles of SphK1 and SphK2 have been observed in a human mast cell 

line; SphK1 stimulated TNF-α, IL-6, and inflammatory mediators, and both SphK1 and 

SphK2 were required for TNF- α secretion (Oskeritzian et al., 2008). Elevated levels of S1P 

in BAL fluids from allergic asthmatic patients was shown to act on airway smooth cells, 

prompting airway remodeling in a Rho-Kinase dependent manner (Fuerst et al., 2014). Role 

of S1P in regulating macrophage function was validated in SphK1 knockdown mouse model 

of allergic asthma, where reduction in macrophage number and IL-4 and IL-5 secretion was 

observed (Lai et al., 2008). Evidences additionally point out that eosinophil infiltration into 

the airway and their adhesion to pulmonary endothelium is mediated by S1P via RhoA/Rho-

kinase pathway (Sashio et al., 2012). Elevated levels of S1P in airway smooth muscle cells 

also increase COX-2 mediated PGE2 production thereby repressing β-2 adrenergic activity 

(Rumzhum et al., 2016). S1P also induces IL-8 secretion in a dose-dependent manner in 

BEAS-2B cells, mediated by S1P2, and nuclear factor kB (NF-kB) (O’Sullivan et al., 2014). 

In rodent asthma models, S1P induced airway hyper responsiveness is mediated by S1P3 as 

evident from S1P3 agonist based study (Trifilieff & Fozard, 2012). The differential roles of 

S1P2 and S1P3 in asthma may be due S1P action on lung epithelial S1P2 and pulmonary 

artery smooth muscle cell S1P3. Given the deleterious effects of SphK1 and SphK2 in 

aggravating asthmatic conditions, blocking SphK activity and/or S1P2 or S1P3 may be 

beneficial in ameliorating asthmatic allergic inflammation.

Use of specific SphK1 inhibitor SK1-I in murine allergic asthma models revealed 

attenuation of inflammation due to the suppression of NF-kB (Price et al., 2013). Oral 

administration of FTY720-P, a potent agonist of all S1PRs except S1P2, increased airway 

hyper-reactivity in rodents, whereas AUY954, a highly selective S1P1 agonist did not, 

suggesting the potential role of S1P3 in S1P induced hyper-reactivity (Trifilieff & Fozard, 

2012). However, in repeat allergen exposure models, FTY720 abrogated airway 

inflammation and hyper -responsiveness by inhibiting Th-2 associated transcription factors 

(Karmouty-Quintana et al., 2012). In mice subjected to antigen-induced allergic bronchial 

asthma, pretreatment with SKI-II, a non-selective SphK inhibitor, diminished airway hyper-

responsiveness but not inflammation (Chiba et al.,2010b). In antigen-challenged mice, use of 

W123, JTE-013, and BML-241 – S1PR antagonists selective for S1P1–3 respectively, 

resulted in down regulation of S1PRs and further substantiated the role of S1P2 involvement 

in bronchial smooth muscle contractility, a distinctive feature of asthma (Chiba et al., 

2010a). Consistent with this study, subcutaneous administration of S1P to Balb/C mice have 

shown to increase bronchial hyper-responsiveness and lung resistance in a dose-and time-
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dependent manner (Roviezzo et al., 2010). Further, this study revealed an increase in mast 

cell number and elevated secretion of IL-4, IL-13, and IL-17 secretion levels, thereby 

demonstrating the importance of S1P signaling in asthma (Roviezzo et al., 2010). Inhaled 

delivery of SphK1 inhibitors dimethyl sphingosine and SKI-II also decreased asthmatic 

symptoms by preventing eosinophil inflammation in OVA administered mice (Nishiuma et 

al., 2008).

3.3 Bronchopulmonary dysplasia

Bronchopulmonary dysplasia (BPD) is a lung disease of the premature neonates treated for 

respiratory distress syndrome by mechanical ventilation (Gien & Kinsella, 2011). Babies 

with BPD have lung tissue scarring and inflammation that leads to interruption of lung 

development. BPD is characterized by thickened interstitium, alveolar simplification, 

abnormal pulmonary vasculature, and increased pulmonary resistance and in some cases, 

pulmonary hypertension (Coalson, 2003). There is no effective treatment for BPD and 

therapeutic approaches to alleviate symptoms are not efficacious.

A study that characterized sphingolipid profile in newborn mice exposed to hyperoxia 

showed transient increase in ceramide levels together with alveolar damage and lung 

function abnormalities. Nonetheless, ceramide levels decreased after treatment with D-

sphingosine that improved alveolar histology, suggesting a role for ceramide in BPD 

(Tibboel et al., 2013). However, recent investigations in the neonatal murine model showed 

that enhanced S1P generation in mice exposed to hyperoxia is injurious and is associated 

with BPD (Harijith et al., 2013). Interestingly, in vivo studies using specific knockout mice 

revealed that SphK1, but not SphK2, appears to have an adversarial role in hyperoxia 

induced BPD (Harijith et al., 2013). Further, SphK1 deficient mice exposed to hyperoxia 

revealed significantly less ROS formation and lung injury compared to SphK2 knockout 

mice under similar conditions of exposure, whereas S1PL heterozygous knockout mice 

showed increased lung inflammation and injury compared to the wild type neonatal mice 

exposed to hyperoxia (Harijith et al., 2013). Exogenous addition of S1P to human lung 

microvascular endothelial cells (HLMVECs) triggered reactive oxygen species (ROS) 

production whereas knocking down SphK1 using siRNA blocked hyperoxia-induced ROS 

generation (Harijith et al., 2013). The hyperoxia-induced ROS generation was mediated by 

Nox2 and involved S1P / SphK1 / Spns2 / S1P1&2 signaling axis in the endothelium.

SKI-II, a small molecule inhibitor of both the isoforms of SphK, attenuated hyperoxia-

induced ROS in HLMVECs (Harijith et al., 2013), further confirming that blocking S1P may 

confer protection in BPD. Mechanism(s) of S1P-mediated activation of ROS generation in 

BPD is unclear but may involve Nox family members, which require future investigations.

3.4 Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that causes 

obstructive airflow from the lungs. Cigarette smoke is the leading cause of COPD, followed 

by irritating gases and pollutants. COPD includes two conditions, emphysema-the damage 

of the air sacs and chronic bronchitis-the inflammation of air way lining, that obstructs the 

airflow to lungs causing shortness of breath(Yoshida & Tuder, 2007). One of the noteworthy 
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mechanisms of lung tissue damage in COPD is the disruption of the balance between 

apoptosis and generation of new structural cells in the lung. The pro-apoptotic effect of 

ceramide is implicated in alveolar cell apoptosis and oxidative stress in emphysema 

development, as evident from various in vivo (Petrache et al., 2005) and in vitro (Tepper et 

al., 1997; Ravid et al., 2003; Sawada et al., 2002) studies carried out in the past decade. 

Studies aimed to antagonize the effect of ceramides to tilt the balance against apoptosis were 

effective by increasing intracellular S1P levels, which is anti-apoptotic and pro-proliferative 

(Cuvillier et al., 1996; Osawa et al., 2005). S1PR profiling in the lungs of COPD patients 

showed significant down regulation S1P5, which could be a possible target for COPD 

pharmacotherapy (Cordts et al., 2011). A potential link between S1P5 and S1P metabolizing 

enzymes and defective alveolar macrophage function in COPD has been reported (Barnawi 

et al., 2015). A significant increase in mRNA levels of SphK1/2, S1P2, and S1PL in alveolar 

macrophages from COPD patients compared to control subjects was observed while S1P5 

and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease 

effect” rather than smoke effect per se (Barnawi et al., 2015). Further, significant 

associations were noted between S1P5 and both lung function and phagocytosis. Cigarette 

smoke extract significantly increased mRNA expression of SphK1, SphK2, S1P2, and S1P5 

in THP-1 macrophages, confirming the results from patient-derived macrophages, and 

antagonizing SIP5 significantly improved phagocytosis of the macrophages (Barnawi et al., 

2015).

Strategies to mimic S1P signaling are known to be effective in improving COPD. Triggering 

S1P signaling using FTY720 or S1P receptor agonist SEW2871 increased SphK1 expression 

and activity, and attenuated lung parenchyma apoptosis in emphysema (Diab et al., 2012). 

Administration of sphingosine activated pro-survival pathways and increased the S1P to 

ceramide ratio, thereby restricting alveolar space enlargement. (Ghidoni et al., 2015). Hence, 

increasing S1P to ceramide ratio and signaling could be a therapeutic option in attenuating 

lung apoptosis and could offer protection against COPD.

3.5 Cystic Fibrosis

Cystic fibrosis (CF) is a genetic disorder that causes lung damage and affects the cells that 

secrete mucus, sweat, and digestive juices. Rather than acting as lubricant, the thick and 

sticky secretions, the products of the defective CFTR gene, clog the airways that interfere 

with normal function of the lung (Wine, 1999).

The pro-inflammatory cytokine TNF-α-mediated down regulation of CF transmembrane 

conductance regulator (CFTR) negatively impact S1P signaling in resistance arteries 

(Meissner et al., 2012); however, a recent investigation suggests a feedback link of S1P, 

wherein it inhibits CFTR activity through adenosine monophosphate-activated kinase (Malik 

et al., 2015). Low levels of S1P in BAL fluids detected in CFTR knockout mice partly affect 

dendritic cell recruitment, which plays a crucial role in chronic infections in CF (Xu et al., 

2013).

Altered S1P signaling has been shown to affect dendritic cell function in CF lung. 

Augmenting cystic fibrotic BALF with S1P recovered the expression of major 

histocompatibility complex class II molecules (MHCII), CD 40, and CD 86 in both wild 
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type lung and blood dendritic cells (Xu et al., 2013). This finding argues that S1P could 

restore the innate immune function in CF. It will be interesting to test the effect of FTY720 

and its analogs in dendritic cell recruitment, mucus secretion, and lung infections in CFTR 

knockout mice.

3.6 Pulmonary Hypertension

Pulmonary hypertension is a lung disorder where the blood pressure in the pulmonary 

arteries rises above normal levels, as a result of constricted arteries that carry blood from the 

heart to the lungs. This strains the right ventricle of the heart, weakening it to an extent that 

it loses its ability to pump blood to the lungs (Rubin, 1997).

Influence of S1P and its receptors in vascular remodeling in pulmonary hypertension has 

been documented through multiple studies. S1P induces vascular inflammation in 

pulmonary hypertension through S1P1 by activation of p38MAPK and JNK/SAPK pathways 

mediated by EGFR and PDGFR transactivation (Yogi et al., 2011). S1P2 is identified as the 

primary cell surface receptor that mediates S1P-induced vasoconstriction of lungs in mice 

and S1P2 -dependent downstream activation of Rho-Kinase signaling alters pulmonary 

vascular tone (Szczepaniak et al., 2010). In contrast, S1P4 is implicated in S1P-mediated 

vasoconstriction in hypertensive rat lungs (Ota et al., 2011). However, in experiments using 

pulmonary artery smooth muscle cells, SphK1 generated S1P signals through both S1P2 and 

S1P4, activating downstream Rho kinase causing hypoxic pulmonary vasoconstriction 

(Tabeling et al., 2015). Recent investigation on the role of S1P signaling in excessive 

pulmonary vascular remodeling demonstrated that the pro-proliferative effects of SphK1 

comes into play to promote pulmonary artery smooth muscle cell (PMSMC) proliferation in 

hypoxia–dependent pulmonary hypertension mouse model (Chen et al., 2014).. S1P levels 

were increased in lungs of patients with pulmonary arterial hypertension and pulmonary 

arteries from rodent models of hypoxia-induced pulmonary hypertension (Chen et al., 2014). 

Unlike SphK2−/− mice, SphK1−/− mice were protected against hypoxia-induced pulmonary 

hypertension, whereas Sgpl1 +/− mice were more susceptible (Chen et al., 2014). In 

hPASMCs, PDGF induces SphK1 expression via Egr-1, a PDGF-associated transcription 

factor, to promote pulmonary artery SMC proliferation (Sysol etal., 2016). Pharmacologic 

inhibition of SphK1 prevented the development of hypoxia-induced pulmonary hypertension 

in rodent models of pulmonary hypertension. Overexpression of SphK1 and stimulation with 

S1P, potentially via ligation of S1P2, promoted PASMC proliferation in vitro, whereas 

SphK1 deficiency inhibited PASMC proliferation (Chen et al., 2014).

Use of S1P receptor agonists and antagonists in pulmonary hypertension models uncovered 

the prominent roles of S1PRs and the downstream signaling pathways. S1P4, initially 

thought to be restricted in cardiovascular system, was found to mediate S1P-mediated 

vasoconstriction in normotensive lungs when treated with S1P4 agonists VPC23153 and 

phytosphingosine-1-phosphate, while dual S1P1 and S1P3 agonist VPC24191 did not elicit 

such response (Ota et al., 2011). JTE013, a putative inhibitor of S1P2, has been shown to 

attenuate the S1P induced vasoconstriction in intact mouse lung (Szczepaniak et al., 2010). 

Further, intraperitoneal treatment of JTE013 prevented hypoxia-mediated pulmonary 

hypertension in mice, emphasizing a role for S1P2 in pulmonary vascular remodeling (Chen 
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et al., 2014). The collective body of evidence accumulated from the above studies underlines 

a broader role for S1P signaling in the pathophysiology of pulmonary hypertension and 

targeting S1P signaling axis could ameliorate hypertension.

3.7 Lung Cancer

Carcinoma of the lung is the uncontrolled growth of lung tissue that is malignant in nature. 

There are three types of lung cancer: Non-small cell lung cancer (NSCLC), Small cell lung 

cancer (SCLC) and Lung carcinoid tumor (Cai et al., 2015). Exposure to cigarette smoke is 

the principal risk factor for lung cancer development (Hecht, 2002). Lung cancer is the 

leading cause of cancer deaths in US and worldwide (Jemal et al., 2008).

S1P is a potent angiogenic factor (Argraves et al., 2004; Lee et al., 1999b; Liu et al., 2000b), 

and mitogenic signaling of S1P comes in the forefront of deciding cell survival and 

proliferation (Augé et al., 1999; Panner Selvam & Ogretmen, 2013). The ceramide/S1P 

rheostat is a prominent feature of human cancer and perturbed sphingolipid metabolism has 

been associated with increased risk of lung cancer in a nested-control study. The study also 

concluded that increased S1P and ceramide levels could be markers for latent lung 

cancer(Alberg et al., 2013). The reason for increased ceramide levels associated with 

increased lung cancer risk was attributed to precancerous and cancerous cells producing 

larger pools of ceramide resulting in the conversion to S1P eventually tilting the balance 

towards S1P (Alberg et al., 2013). A recent study using non-small cell lung cancer (NSCLC) 

cells identified intracellular S1P playing a principal role in enhancing cell migration and 

extracellular S1P in apoptosis (Bradley et al., 2014). These diverse effects of S1P are in part 

due to the altered expression of Spns2, the S1P transporter and impaired sphingolipid 

metabolizing enzymes (Bradley et al., 2014). Marked increase of SphK1 expression 

observed in NSCLC cells activates PI3K/Akt/NF-kB pathways, resulting in tumor 

progression and poor survival (Fumarola, et al., 2014). In lung adenocarcinoma cells, S1P3 

upregulation enhances EGFR expression, increasing proliferation and anchorage 

independent growth, thereby contributing to tumor progression (Hsu et al., 2012). SphK2 

generated S1P is implicated in chemo resistance of A549 lung cancer cell line exposed to 

hypoxia, where increase in SphK2 protein expression and activity correlated with increased 

S1P concentration (Schnitzer et al., 2009); however, knockdown of SphK2 using siRNA 

only resulted in partial protection. The role of S1PRs in tumor growth is not clearly 

established; S1P1 in ECs promotes angiogenesis and tumor growth, whereas S1P2 in ECs 

and bone marrow derived cells (BMDC) reveal an opposing effect (Du et al., 2010). Very 

recently, SphK2 generated S1P was found in association with the catalytic subunit of 

telomerase in normal fibroblasts and lung cancer cells, promoting cell proliferation and 

tumor growth (Panneer Selvam et al., 2015).

Targeting S1PRs suggests SphK2 generated S1P is responsible for offering chemo resistance 

in hypoxic A549 cells (Schnitzer et al., 2009). When A549 cells were incubated with 

S1P1/S1P3 antagonists, VPC 23019, and JTE013 (specific for S1P2), only VPC 23019 

exhibited a protective effect by blocking ERK1/2 signaling (Schnitzer et al., 2009). A 

combination therapy using SphK2 specific inhibitor ABC294640, and human recombinant 

TNF-α related apoptosis-induced ligand (TRAIL) heightened the activity of caspase 3/8 and 
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increased the expression levels of death receptors in NSCLC (Yang et al., 2015). A recent 

study that distinguished the role of S1P in telomerase stabilization in lung cancer cell lines 

used ABC294640 to delineate the role of SphK2 in hTERT stability in A549 cells. Inhibiting 

SphK2 with ABC294640 increased the ubiquitination-mediated degradation of hTERT, 

indicating that SphK2-generated S1P is responsible for the stability of hTERT (Panneer 

Selvam et al., 2015). Thus, blocking SphK1 and/or SphK2 activity may have beneficial 

effect in treating lung cancers.

3.8 Mesothelioma

Mesothelioma is a rare yet aggressive cancer that affects the membrane lining the lungs, 

with asbestos exposure being the principal risk factor (Abakay et al., 2015). Recent evidence 

points to the pro-apoptotic role of sphingosine in mesothelioma cells, promoting cell cycle 

arrest at G0/G1 phase by inhibiting PKC δ (Okuwa et al., 2012). The pro-proliferative 

effects of SphK1, as observed in malignant pleural mesothelioma (MPM) tumor tissues and 

MPM cell lines, is ascribed to its ability to alter the chromatin landscape by modulating the 

expression levels of histone acetyl transferases (HATs) and cell cycle checkpoint genes 

(Kalari et al., 2012). Studies using SKI-II (10μM) to inhibit SphKs in mesothelioma cell 

lines revealed attenuation of Histone H3 and Histone H4 acetylation and phosphorylation of 

H3 at serine 10 (Kalari et al., 2012). Also, inhibiting SphKs blocked the phosphorylation of 

CDK-2 that is vital for G1/S transition, obstructing mesothelioma cell division. Further 

investigation revealed that in response to SKI-II, there is an increase transcription of CDK-2 

inhibitors, P21Cip1, and P27Kip1. Supplementary experiments targeting SphK1/SphK2 using 

siRNA established SphK1 and not SphK2 as the principal player in the development of 

malignant mesothelioma (Kalari et al., 2012). These studies suggest that SphK1 could be a 

therapeutic target for the treatment of mesothelioma; however, the role of SphK2 in 

malignant mesothelioma cannot be ruled out and warrants further investigation.

3.9 Pulmonary fibrosis

Pulmonary fibrosis is a condition that causes scarring of lung tissues, marked by alveolar 

epithelial injury, and accumulation of myofibroblasts (Wynn & Ramalingam, 2012); 

(Selman & Pardo, 2012). The stiffened lung tissue makes breathing difficult and reduces 

oxygen supply in the blood. A number of factors including chronic inflammation, infections, 

environmental pollutants, radiation exposure, and autoimmune disease contribute towards 

pulmonary fibrosis, but if an identifiable cause of the disease cannot be pinpointed then it is 

termed idiopathic pulmonary fibrosis (IPF) (Bourke, 2006). Lung damage caused by 

pulmonary fibrosis is permanent and in certain cases a lung transplant, the only viable 

treatment, is recommended (Mason et al., 2007); (George, Arnaoutakis, & Shah, 2011). 

Recently, FDA has approved two drugs for the treatment of IPF but it is too early to 

determine the efficacy of these drugs in ameliorating the disease (Rangarajan et al., 2016; 

Bonella et al., 2015).

S1P and S1P signaling may contribute to the development and progression of IPF and 

pulmonary fibrosis in animal models. Increased expression of SphK1/SphK2 correlated 

negatively with lung function and survival, as analyzed by microarray in peripheral blood 

mononuclear cells of IPF patients (Huang et al., 2013). Consistent with this observation, SIP 
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levels were found to be elevated in BAL fluids of IPF patients compared to control groups 

that correlated with poor lung prognosis in IPF patients (Milara et al., 2012). Elevated S1P 

levels in a murine model of bleomycin-induced pulmonary fibrosis resulted from enhanced 

SphK1, but not Sphk2 expression (Milara et al., 2012), which exacerbated lung fibrogenesis 

by increasing expression levels of TGF-β, fibronectin, and lung collagen. Genetic 

knockdown of SphK1, but not SphK2, offered protection against bleomycin-induced 

pulmonary fibrosis in mice (Huang et al., 2013). SphK1 levels are found to be elevated in 

human and mouse lung fibroblast following TGF- β stimulation, causing myofibroblast 

differentiation by activating S1P2 & 3 (Huang et al., 2013). Similarly, in IPF patients, 

increased SphK1 levels contributed to epithelial to mesenchymal transition through S1P2 & 3 

in alveolar type II cells (Milara et al., 2012). In radiation-induced fibrosis murine model, 

impairing de novo synthesis of SphK1 delayed the onset of fibrosis and reduced pulmonary 

inflammation (Gorshkova et al., 2012). Diverse roles of S1P formed after TGF- β 
stimulation has also been reported in lung fibroblasts, with S1P inhibiting α-smooth muscle 

actin through S1P1 and stimulating via S1P3 (Sobel et al., 2013). Targeting SphK1 with 

specific inhibitors decreased pulmonary fibrosis and increased survival in bleomycin-

induced lung fibrosis mice models (Huang et al., 2013). Buildup of extracellular matrix 

proteins (ECM), a characteristic feature of fibrosis, has also been attributed to S1P signaling 

via S1P2 & 3 agonist-based studies in human lung fibroblasts (Sobel et al., 2013). Consistent 

with the previous study, S1P3 knockout mice showed decreased inflammation and fibrosis in 

bleomycin-induced murine model of fibrosis (Murakami et al., 2014). Furthermore, 

manipulating the intracellular levels of SphK1 by over expressing S1PL attenuated lung 

fibrosis post bleomycin challenge, suggesting a critical role of S1PL as a natural suppressor 

of lung fibrosis (Huang & Natarajan, 2015; Huang et al., 2015). These studies suggest a 

major role for S1P signaling in the development of lung fibrosis, where S1P-S1P1 signaling 

appears to be protective. Conversely, S1P-S1P2 & 3 signaling seems to promote fibrosis and 

could be potential therapeutic targets.

Extensive studies carried out using bleomycin and radiation–induced pulmonary fibrosis 

murine models underscore the therapeutic potential of S1P signaling in IPF. Mice 

administered with SphK inhibitor SKI-II on day 8-post-bleomycin challenge decreased S1P 

levels in lung tissue and increased survival (Huang et al., 2013). Use of TGF-β and S1PR 

agonists S1P, FTY720, Ponesimod, and SEW2871 to investigate the molecular pathway 

revealed divergent pathways involved in ECM synthesis in normal human lung fibroblasts 

(Sobel et al., 2013). While TGF- β signals through Smad pathway, S1PR agonists trigger 

P13K/Akt and ERK 1/2 –dependent pathways to induce ECM (Sobel et al., 2013). Besides, 

non-specific S1P receptor agonists S1P and FTY720 induced potent ECM synthesis, while 

highly selective S1P agonists Ponesimod, and SEW 2871 did not, underlining the pro 

fibrotic role of S1P2/S1P3 (Sobel et al., 2013). However, in a separate bleomycin model 

study, prolonged exposure to FTY720 and S1P1 specific agonist AUY954 resulted in 

fibrosis, suggesting S1P-S1P1 pathway could also be a therapeutic target (Shea et al., 2012).

4. Conclusion and Future Directions

Novel therapies are needed for the treatment of lung diseases, as most of them are fatal with 

no effective cure in sight. S1P, a potent bioactive lipid mediator, regulates plethora of 
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signaling pathways, which have been implicated in the development of a number of lung 

pathologies. S1P signals intracellularly or extracellularly via G-Protein-coupled receptors 

and there has been considerable interest and progress made in developing novel and specific 

antagonist for the S1PRs. Additionally, the recent observations that S1P generated in the 

nucleus by nuclear SphK2 functions as a epigenetic co-regulator, has opened a new area of 

nuclear S1P signaling in chromatin modification and epigenetic role of sphingolipids in 

inflammation and lung injury. Current evidence emerging from studies using small molecule 

inhibitors in rodent models of lung diseases suggests that SphKs/S1P/S1PR signaling axis 

could be potential target(s) to ameliorate respiratory ailments. However, decreasing S1P 

levels in circulation or lung tissue might have some adverse effect in vascular system as it is 

a potent angiogenic factor. Therefore, localized delivery of SphK or S1PR inhibitors might 

mitigate any adverse vascular effects of systemic route of altering S1P levels. While SphK1 

and to a limited extend SphK2 and S1PRs have been extensively investigated as potential 

therapeutic targets in a number of lung disorders, targeting S1PL, the enzyme that catalyzes 

the terminal degradation of S1P in the sphingolipid metabolic pathway, has received less 

attention. Given its role in regulating intracellular levels of S1P, both blocking and activating 

S1PL holds immense potential as a therapeutic target in treating lung diseases. Recently, a 

few specific S1PL inhibitors have been synthesized and their efficacy validated in 

autoimmune disease models; however, their therapeutic potential in combating lung diseases 

will require future studies in pre-clinical animal models of lung inflammation. Similarly, 

blocking ASM with small molecule inhibitor(s) seems to offer some protection against lung 

inflammation, an area that has potential for drug development. Last but not the least, 

targeting ceramide synthases with small molecule inhibitors may have beneficial outcome in 

COPD/emphysema and development of novel inhibitors specific for the six isoforms of the 

ceramide synthase is essential for in vivo studies in rodent models. Despite lack of Phase I or 

Phase II clinical trials with many of the sphingolipid inhibitors, there is tremendous potential 

to develop and test new and novel inhibitors of sphingolipid metabolizing enzymes and 

S1PRs to ameliorate respiratory disorders.
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Abbreviations

4-DP 4′-deoxypridoxine

ABC transporter ATP-binding cassette transporter

Akt Protein kinase B

ALF4 Tetrafluoroaluminate

ALI Acute Lung Injury

ARDS Acute Respiratory Distress Syndrome

ASM Acid Sphingomyelinase
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BACE1 beta-site APP-cleaving enzyme

BAL Bronchoalveolar Lavage

BMDC Bone marrow derived cells

BPD Broncho Pulmonary Dysplasia

CDK-2 Cyclin Dependent Kinase

CF Cystic Fibrosis

CFTR Cystic Fibrosis Transmembrane Conductance Regulator

CoA Co Enzyme A

COPD Chronic Obstructive Pulmonary Disease

COX-2 Cyclooxygenase-2

EC Endothelial Cell

ECM Extracellular Matrix

EGFR Epidermal Growth Factor Receptor

ERK Extracellular Signal-Regulated Kinase

FcεRI High-Affinity Receptor for IgG

HAT Histone Acetyltransferase

HDAC Histone Deacetylase

HLMVEC Human Lung Microvascular Endothelial Cells

hTERT Human Telomerase Reverse Transcriptase

HUVEC Human Umbilical Vein Endothelial Cell

IL-1β Interleukin-1-beta

IL-4 Interleukin-4

IL-5 Interleukin-5

IL-6 Interleukin-6

IPF Idiopathic Pulmonary Fibrosis

JNK c-Jun N-terminal kinase

LPA Lysophosphatidic Acid

LPP Lipid Phosphate Phosphatase

LPS Lipopolysaccharide
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MAPK Mitogen-Activated Protein Kinase

MPM Malignant Pleural Mesothelioma

mRNA Messenger RNA

NEM N-ethylmaleimide

NES Nuclear Export Sequences

NOX NADPH-oxidase

NSCLC Non-Small Cell Lung Cancer

P21Cip1 Cyclin-Dependent Kinase Inhibitor 1A

P27Kip1 Cyclin-Dependent Kinase Inhibitor 1B

PASMC Pulmonary Artery Smooth Muscle Cell

PDGFR Platelet-Derived Growth Factor Receptor

PGE2 Prostaglandin E2

PI3K Phosphoinositide-3-Kinase

PKCδ Protein Kinase C-delta

ROS Reactive Oxygen Species

S1P Sphingosine-1-Phosphate

S1PL Sphingosine-1-Phosphate Lyase

S1PR Sphingosine-1-phosphate receptor

SAPK Stress-Activated Protein Kinase

SCLC Small Cell Lung Cancer

siRNA Short Interfering RNA

SM Sphingomyelin

SphK1 Sphingosine Kinase 1

SphK2 Sphingosine Kinase 2

SPT Serine Palmitoyltransferase

Spns2 Spinster Homolog 2

SPP Sphingosine-1-phosphate Phosphatase

TGF- β Transforming Growth Factor- beta

Th-2 T helper 2, THI, 2-acetyl-4-tetrahydroxybutylimidazole
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TNF-α Tumor Necrosis factor- alpha

TRAF-2 TNF Receptor-Associated Factor 2
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Fig 1. De novo Sphingolipid Metabolism in mammalian cells
Illustration of the key enzymatic steps in the biosynthesis, degradation and recycling of 

sphingoid bases.
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Fig 2. S1P signaling Axis
This scheme depicts the inside-out signaling of S1P. S1P produced by Sphingosine kinase 1 

or 2 can act intracellularly on unknown targets in the cytoplasm; S1P generated by 

sphingosine kinase 2 in the nucleus inhibits HDAC activity. S1P is also exported out of the 

cell by specific transporter SpnS2 and act extracellularly on S1P receptors in an autocrine or 

paracrine manner. Extracellular S1P can be targeted by specific monoclonal antibody 

(sphingomab) to neutralize its effects.
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Fig 3. S1P receptors as drug targets
Extracellular S1P act as a ligand for specific G-protein coupled S1P receptors (S1PR 1–5) 

and regulate multiple cellular processes such as barrier integrity, migration, angiogenesis 

and inflammation. S1P receptors expression and activity can be modulated by well 

characterized S1P receptor agonists or antagonists that offer immense therapeutic potential 

in the treatment of lung disorders.
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Fig 4. Nuclear S1P signaling mediating chromatin modification in Pseudomonas aeruginosa-
induced Lung inflammation and injury
Nuclear S1P generated by activated Sphk2 in response to P. aeruginosa infection activates 

Nox 4 and generates nuclear ROS. SphK2/S1P signaling also induce histone acetylation and 

block HDAC activity in P. aeruginosa-induced lung inflammation.
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Table 1

SphK expression and S1P levels in Lung Diseases

Lung Disease Expression of SphK1/SphK2 S1P Levels Therapy Option

Sepsis Decreased SphK1
Increased S1P Lyase

Low Activation of SphK1

BPD Increased SphK1 Elevated Inhibition of SphK1 activity

IPF Increased SphK1 Elevated Inhibition of SphK1 activity

PH Increased SphK1 Elevated Inhibition of SphK1 activity

VILI Decreased SphK1
Increased S1P Lyase

Elevated Inhibition of SphK1 activity

Lung Cancer Increased SphK1/SphK2 Elevated Inhibition of SphK1/SphK2 activity

RILI Increased SphK1/SphK2 Elevated Inhibition of SphK1/SphK2 activity

Pharmacol Ther. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ebenezer et al. Page 39

Ta
b

le
 2

Sp
hi

ng
os

in
e 

K
in

as
e 

In
hi

bi
to

rs

In
hi

bi
to

r
C

he
m

ic
al

 n
am

e
St

ru
ct

ur
e

Sp
ec

if
ic

it
y

SK
1-

I
(2

R
,3

S,
4E

)-
N

-m
et

hy
l-

5-
(4

′-
 p

en
ty

lp
he

ny
l)

-2
-a

m
in

op
en

t-
4-

en
e-

1,
3-

 d
io

l. 
H

C
l

Sp
hK

1

SK
I-

I
5-

(2
-N

ap
ht

ha
le

ny
l)

-1
H

-p
yr

az
ol

e-
3-

 c
ar

bo
xy

lic
 a

ci
d 

2-
[(

2-
hy

dr
ox

y-
1-

 n
ap

ht
ha

le
ny

l)
m

et
hy

le
ne

]h
yd

ra
zi

de
Sp

hK
1 

&
 S

ph
K

2

SK
I-

II
2-

(p
-H

yd
ro

xy
an

ili
no

)-
4-

(p
- c

hl
or

op
he

ny
l)

th
ia

zo
le

Sp
hK

1

Sa
fi

ng
ol

(2
S,

3S
)-

2-
am

in
o-

1,
3-

oc
ta

de
ca

ne
di

ol
Sp

hK
1 

&
 S

ph
K

2

A
B

C
29

46
40

(1
s,

3r
,5

R
,7

S)
-3

-(
4-

ch
lo

ro
ph

en
yl

)-
N

- (
py

ri
di

n-
4-

yl
m

et
hy

l)
ad

am
an

ta
ne

-1
- c

ar
bo

xa
m

id
e

Sp
hK

2

D
M

S
(E

,2
R

,3
S)

-2
-(

D
im

et
hy

la
m

in
o)

-o
ct

ad
ec

- 4
-e

ne
-1

,3
-d

io
l

Sp
hK

1 
&

 S
ph

K
2

Pharmacol Ther. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ebenezer et al. Page 40

In
hi

bi
to

r
C

he
m

ic
al

 n
am

e
St

ru
ct

ur
e

Sp
ec

if
ic

it
y

P
F

-5
43

1-
[[

4-
[[

3-
m

et
hy

l-
5-

 [(
ph

en
yl

su
lf

on
yl

)m
et

hy
l]

ph
en

ox
y]

m
et

h 
yl

]p
he

ny
l]

m
et

hy
l]

-2
R

- p
yr

ro
lid

in
em

et
ha

no
l

Sp
hK

1

F
T

Y
-7

20
 M

et
hy

l e
th

er
2-

am
in

o-
2-

(m
et

ho
xy

m
et

hy
l)

-4
-(

4-
 o

ct
yl

ph
en

yl
)b

ut
an

-1
-o

l
Sp

hK
2

Pharmacol Ther. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ebenezer et al. Page 41

Table 3

Sphingosine-1-Phosphate Lyase inhibitors

Inhibitor Chemical name Structure Specificity

LX-2931 (1R,2S,3R)-1-[(2Z)-2-(1- nitrosoethylidene)-1,3- dihydroimidazol-4-
yl]butane-1,2,3,4- tetrol,

S1PL

THI 1-[5-[(1R,2S,3R)-1,2,3,4- tetrahydroxybutyl]-1H-imidazol-2-yl]-ethanone S1PL

4-Deoxy pyridoxine 5-(Hydroxymethyl)-2,4- dimethylpyridin-3-ol S1PL

Compound 31 (Novartis) (4-benzyl-phthalazin-1-yl)-2-methyl- piperazin-1-yl]-nicotinonitrile 5 S1PL
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