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Abstract

The evaluation of measurement invariance is an important step in establishing the validity and 

comparability of measurements across individuals. Most commonly, measurement invariance has 

been examined using one of two primary latent variable modeling approaches: the multiple groups 

model or the multiple-indicator multiple-cause (MIMIC) model. Both approaches offer 

opportunities to detect differential item functioning within multi-item scales, and thereby to test 

measurement invariance, but both approaches also have significant limitations. The multiple 

groups model allows one to examine the invariance of all model parameters but only across levels 

of a single categorical individual difference variable (e.g., ethnicity). In contrast, the MIMIC 

model permits both categorical and continuous individual difference variables (e.g., sex and age) 

but permits only a subset of the model parameters to vary as a function of these characteristics. 

The current paper argues that Moderated Nonlinear Factor Analysis (MNLFA) constitutes an 

alternative, more flexible model for evaluating measurement invariance and differential item 

functioning. We show that the MNLFA subsumes and combines the strengths of the multiple 

group and MIMIC models, allowing for a full and simultaneous assessment of measurement 

invariance and differential item functioning across multiple categorical and/or continuous 

individual difference variables. The relationships between the MNLFA model and the multiple 

groups and MIMIC models are shown mathematically and via an empirical demonstration.

The progress of any science depends in large part upon the availability of reliable, valid 

measures for the quantities and qualities of theoretical interest. More colloquially, we 

require that our measures produce precise measurements of the things they are supposed to 

be measuring. One important aspect of validity concerns the comparability of measurements 

across observations. In particular, we can only meaningfully compare between scores that 

are scaled equivalently. If a measure produces scores that are, say, systematically too high 

under some circumstances and systematically too low under others then the observed score 

differences will not accurately reflect true differences in the quantity being measured. In the 

educational testing literature, for instance, such differential measurement would be referred 

to as test bias. When a test is biased, examinees with certain characteristics are advantaged 

over others, scoring higher even at equal levels of underlying ability. Due to this differential 

measurement, differences in the test scores fail to accurately represent differences in ability. 

More broadly, when measurements are not scaled equivalently, analyses of individual 

differences may not only reflect the phenomena of interest (e.g., construct-level relationships 
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or change) but also systematic variation in measurement. It is thus essential to determine 

whether our measures produce comparable measurements for all individuals within the 

population under study.

A great deal of theoretical and empirical research has been conducted on this topic within 

the contexts of factor analysis and item response theory (IRT), particularly as the issue 

pertains to psychological and educational assessment. Given the increasing convergence of 

the factor analysis and IRT literatures, here we shall provide a brief, unified overview of the 

key concepts, including measurement invariance (MI) and differential item functioning 

(DIF). MI refers to “the situation in which a scale or construct provides the same results 

across several different samples or populations” (APA, 2014, p. 211). If MI holds, one may 

validly compare scores and other results between individuals from the different populations. 

Typically, MI is evaluated for a multi-item scale by evaluating whether the items relate to the 

construct(s) in the same way for all individuals. If instead these relationships vary then there 

is DIF, defined as “the circumstance in which two individuals of similar ability do not have 

the same probability of answering a question in a particular way” (APA, 2014, p. 93). A 

well-known example is that girls endorse the item “cries easily” more often than boys who 

share the same level of depression (Steinberg and Thissen, 2006). If this DIF was ignored 

when generating scale scores it might lead to a sex bias, with girls who endorse the item 

receiving higher scores than boys even if their underlying depression is equal. Scale 

developers often attempt to remove or replace items with DIF to enhance MI, but this is not 

always possible to do without sacrificing coverage of the construct domain (AERA, APA, 

NCME, 2014, p. 82). To continue the example, it would be difficult to justify removing the 

item “cries easily” from a depression inventory, since this is a core behavioral manifestation 

of depression. Thus, when developing, evaluating, and applying measures, key interrelated 

tasks are to evaluate MI, identify specific items with DIF, and account for DIF when 

generating scale scores so as to mitigate bias.

Recognition of the importance of assessing MI/DIF has grown rapidly since approximately 

1990, as can be seen in Figure 1, which reports the number of articles, proceedings papers, 

reviews, and book chapters on the topics of MI and DIF published between 1990 and 2014 

and cataloged in the Web of Science database. Given the increasing prominence of these 

topics in the field, it is a timely moment at which to re-examine the procedures used to 

evaluate MI/DIF. A variety of approaches exists, with many techniques developed in the 

context of large-scale high-stakes educational testing programs (Holland and Wainer, 1993). 

Here, however, we restrict our focus specifically to latent variable modeling approaches, as 

we believe these to be both most frequently used and best suited to a wide array of research 

contexts. The overarching goal of our paper is to therefore to present and contrast latent 

variable modeling approaches for the assessment of MI/DIF, including a relatively new 

approach that we argue offers important advantages over current practice.

We begin by defining measurement invariance and reviewing the two latent variable 

modeling approaches that are most frequently used to evaluate MI/DIF, namely the multiple 

groups (MG) modeling approach and the multiple-indicator multiple-cause (MIMIC) 

modeling approach. In comparing these traditional approaches for assessing MI/DIF, we 

highlight that MG and MIMIC approaches offer contrasting strengths and weaknesses. We 
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then present and advocate a third, more general approach which employs a moderated 

nonlinear factor analysis (MNLFA) model. MNLFA was recently developed by Bauer and 

Hussong (2009) for the purpose of facilitating integrative data analysis but has not 

previously been described as a general tool for evaluating MI/DIF, nor has its relationship to 

MG and MIMIC models been fully explicated, two of the primary aims of this paper. We 

will show that MNLFA incorporates the strengths of both the MG and MIMIC modeling 

approaches while avoiding their limitations. Next, we present an empirical analysis 

illustrating how the MNLFA can be used to evaluate MI/DIF. Finally, we conclude with 

general recommendations for the use of MNLFA in studies of MI/DIF and future directions 

for research.

A General Definition of Measurement Invariance

Here we establish formal definitions of MI and DIF that will prove useful as we proceed to 

compare modeling approaches. To begin, MI is said to exist if the distribution of the item 

responses we might obtain for an individual depends only on the person’s values for the 

latent variables and not also on other characteristics of the individual (Mellenbergh, 1989). 

Drawing upon Millsap (2011, p. 46), we can express this definition mathematically as

(1)

where f designates a probability distribution, yi is a p × 1 vector containing the observed 

item responses for person i, ηi is a r × 1 vector of unobserved latent factors, and xi is a q × 1 

vector of observed person-level characteristics (e.g., gender, ethnicity, or age). In words, 

Equation (1) states that MI exists if the distribution of the observed items depends only on 

the values of the latent variables. This condition does not preclude that xi may be related to 

ηi, but it does imply that xi has no direct influence on the distribution of yi other than 

through its influence on ηi.

Measurement invariance would hold, for instance, if the values for a set of depression items 

depend only on a person’s underlying level of depression. But if the response distributions 

for some items (e.g., frequency of crying) differ as a function of sex, even after controlling 

for the level of depression, then this would indicate a lack of MI and the presence of DIF for 

those items. A general definition of DIF is then that, for a given item j,

(2)

That is, an item that shows DIF is one for which Equation 1 is not satisfied; the distribution 

of the item responses depends not only on the latent variable the item is intended to measure 

but on other individual characteristics as well. The term partial invariance is often used to 

describe measures for which Equation (1) is satisfied for a subset of items, but where a small 

proportion of items evince DIF (Byrne, Shavelson and Muthén, 1989). Although full 
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invariance is not satisfied, valid individual difference analyses can still be conducted under 

partial invariance as long as DIF is appropriately identified and modeled.

Although we have defined MI/DIF here with respect to the conditional response distributions 

of the items, many comparisons are valid under the less stringent condition of first-order 

invariance (Millsap, 2011, p. 49–51). First-order invariance is defined in terms of the 

expected (average) values of the item responses as opposed to their full distributions, and is 

satisfied if

(3)

For instance, first-order invariance would be met if the expected values for a set of 

depression items depended only on a person’s underlying level of depression, and would be 

violated if the expected value differed depending on, say, sex. If, holding constant 

depression, there was greater variability in the item responses of girls than boys then this 

would violate Equation (1), since the response distribution for girls would differ from boys, 

but would not necessarily violate Equation (3), since the expected values of these 

distributions might still be equivalent.

Assessing MI/DIF with Multiple Groups Models

Historically, a common way to assess measurement invariance was to fit a factor analysis 

model separately to the data obtained from each of two or more groups, with the goal of 

identifying similarities and differences in the obtained factor pattern matrices (e.g., 

Holzinger and Swineford, 1939). Apparent differences in factor structure or in the 

magnitude of factor loadings might then lead to a rejection of MI. More rigorous 

assessments of such differences became possible through the development of the multiple 

groups confirmatory factor analysis model (and structural equation model) by Jöreskog 

(1971) and Sörbom (1974). With the MG model, one can simultaneously fit a confirmatory 

factor analysis in each of two or more groups, with the option to impose equality constraints 

on subsets of the model parameters. Comparing the fit of models with more versus fewer 

equality constraints (e.g., via likelihood ratio tests) thereby offers a formal means to assess 

across-groups invariance in measurement.

The basic principle behind the MG approach is that the data is subdivided by group. A 

confirmatory factor model is also stipulated for each group, with the potential to impose 

across-group equality constraints on specific parameter values. For example, Figure 2 

depicts the situation where seven continuous items, y1-y7, are used to measure two factors, 

η1 and η2, in each of two groups (e.g., a seven item measure that divides into two subscales). 

In this case, the same basic factor structure holds in each group, a condition that is 

sometimes referred to as configural invariance (Horn and McArdle, 1992) and is necessary 

but not sufficient to ensure MI. What the diagram does not indicate, but is critical for the 

establishment of MI, is whether the parameter values governing the relationships between 

the items and the factors are identical across groups.
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To formalize this point, we can write the multiple groups factor analysis model in terms of 

two sets of equations. The first set of equations expresses the expected values and 

(co)variances of the observed variables conditional on the latent variables and group 

membership, and the second set of equations expresses the expected values and 

(co)variances of the latent variables in each group. Indexing group by g = 1, 2, … G and 

assuming continuous items, these equations may be written

(4)

(5)

and

(6)

(7)

The intercepts and slopes (or factor loadings) from the regression of the items on the factors 

within group g are contained in the p × 1 vector νg and p × r matrix Λg, respectively, 

whereas the group-specific residual variances and covariances of the indicators are contained 

in the p × p matrix Σg. Usually, Σg is assumed to be diagonal, consisting only of the residual 

variance parameters , a condition referred to as local independence. 

Finally, the r × 1 vector αg contains the group means for the factors whereas the r × r matrix 

Ψg contains the group-specific factor variances and covariances.

This conditional representation of the model is somewhat non-standard but has several 

advantages. First, as we will see, we can straightforwardly define measurement invariance in 

terms of the conditional distributions of the items. Second, this way of writing the model 

will facilitate subsequent comparisons to the MIMIC and MNLFA models. Finally, although 

written as a linear model for continuous items, this expression can easily be generalized for 

discrete outcomes. One way to accomplish this generalization is to posit that for a vector of 

binary or ordinal items yi there exists a corresponding vector of underlying continuous latent 

response variables, , which are related to yi through a threshold model (see Bollen, 1989, 

pp. 433–447; Muthén, 1984). Then Equations (4) and (5) would express the expected value 

and variance of . Alternatively, we can invoke a generalized linear modeling perspective 

and replace E(yi | ηi, g) in Equation (4) with a vector of linear predictor values (e.g., logits 

for binary outcomes) which pass through a nonlinear link function (e.g., the logistic link) to 

produce the expected values of the discrete responses (e.g., endorsement probabilities; see 
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Skrondal & Rabe-Hesketh, 2004). In this alternative formulation, Equation (5) might or 

might not include scale parameters, as for many discrete distributions the variance is a 

function of the expected value. Our empirical example will illustrate this generalization of 

the MG model (as well as the MIMIC and MNLFA models) to discrete outcomes, but until 

then we shall retain the simplifying assumption that the items are continuous and linearly 

related to the factors.

For the linear factor analysis model, Meredith (1993) defined a hierarchy of levels of 

invariance that validate different types of between-group comparisons on the latent variables. 

The highest level of invariance is strict invariance, which requires that all of the item 

parameters are equal over groups, i.e., νg = ν, Λg = Λ, Σg = Σ. In this case Equations (4) and 

(5) simplify to

(8)

(9)

Thus the moments of the response distributions are independent of group membership after 

conditioning on the values of the latent factors. If, as is common, we additionally assume 

that the item responses are normally distributed in each group then Equations (8) and (9) 

imply that full measurement invariance is met. That is, the model conforms to Equation (1), 

where g takes the place of the vector x.

The next lower level of invariance is strong invariance, which requires only equality of the 

intercepts and factor loadings, i.e., νg = ν, Λg = Λ. In contrast to strict invariance, in this 

case the residual variances of the items are free to differ. Thus, the simplification in Equation 

(9) is no longer possible, but Equation (8) continues to hold. Equation (8) conforms to 

Equation (3), establishing first-order invariance. That is, group membership has no impact 

on the expected values of the items given the values of the latent variables. Under this 

condition, between-group comparisons of the factor means, variances, and covariances all 

remain valid. Since these are the usual comparisons of interest, strong invariance is often 

considered sufficient for most practical purposes.

Finally, the lowest level of invariance is weak invariance, in which only the factor loadings 

are equal over groups, i.e., Λg = Λ, and both the intercepts and residual variances are free to 

differ. Weak invariance satisfies neither Equation 1 nor 3, but continues to permit valid 

comparisons of factor variances and covariances.

Within the IRT literature there has been less emphasis on levels of invariance and more 

emphasis on the types of DIF that may be present. This difference in emphasis naturally 

follows the context within which IRT models are typically applied. Most IRT models were 

developed for categorical items, and the distributions of these items (e.g., binomial or 

multinomial) ordinarily do not include scale parameters (e.g., Σg) that would differentiate 
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strict versus strong invariance. Equality of the intercepts and loadings (or, in an IRT 

parameterization, the related difficulty and discrimination parameters) is then sufficient to 

satisfy either Equation (1) or (3). Additionally, weak invariance does not permit the 

comparison of individual scores, which is the primary emphasis of many IRT applications, 

and is thus not a desirable property of a measure. Thus, within the IRT literature, Meredith’s 

(1993) levels of invariance are less relevant, and a different distinction has arisen, between 

uniform and non-uniform DIF. Uniform DIF exists if only the intercept for an item differs 

over groups, whereas non-uniform DIF exists if there is a between-group difference in the 

factor loading (whether or not the intercept differs as well).

Regardless of whether one approaches the problem from a factor analytic or IRT perspective, 

however, the principal concern is the same: determining whether the item parameters (e.g., 

intercepts, loadings, residual variances) are equal across groups. Customarily, the factor 

means, variances, and covariances are permitted to freely differ across groups, as improperly 

restricting their values could bias estimates of the item parameters and compromise tests of 

their equality. Moreover, the goal of establishing MI is often to unambiguously examine 

precisely these sorts of between-group differences in the latent factors while ruling out 

superficial differences in measurement. Thus the evaluation of MI/DIF ultimately hinges on 

whether there is empirical evidence that the item parameters differ over groups. A variety of 

model comparison strategies and inferential tests (e.g., likelihood ratio tests, modification 

indices, and Wald tests) have been proposed for the evaluation of MI/DIF. We will discuss 

some of these procedures in the context of the empirical demonstration but a thorough 

review is beyond the scope of the present manuscript (for a more complete treatment, see 

Millsap, 2011).

To get a better sense of MI/DIF evaluation with the MG approach, consider again the model 

in Figure 2. Suppose that strong invariance holds for this model with the exception that the 

intercept and factor loading for item y5 differs over groups. That is, y5 is characterized by 

non-uniform DIF. The goal of MI/DIF evaluation would then be to empirically determine 

that y5 is the sole indicator that fails to conform to strong invariance. Accommodating this 

partial invariance within the model by allowing the item parameters for y5 to differ over 

groups may in turn mitigate potential biases that could otherwise emerge at the level of the 

latent variables (i.e., in their means, variances, or covariance). In this scenario, only one item 

exhibits DIF, lending credibility to the notion that the factors retain comparability across 

groups so long as this DIF is incorporated in the model. When a higher proportion of items 

evince DIF, however, it becomes less clear whether the factors retain the same meaning and 

scale across groups and the comparison of results becomes less defensible (Widaman and 

Reise, 1997).

There are several key features of the MG approach for evaluating MI/DIF. First, because 

parallel models are fit in unison to the data from each group, any and all parameters of these 

models can be constrained to equality or permitted to differ between groups. As noted 

above, usually the factor means and (co)variances are allowed to differ between groups and 

interest centers on the equality of the item parameters, critically the intercepts and factor 

loadings but sometimes also the residual variances. Second, the architecture of the MG 

approach is designed to evaluate MI/DIF across discrete groups. It does not, therefore, 
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accommodate possible DIF as a function of continuously distributed individual 

characteristics, such as age or socioeconomic status. This limitation follows from the 

original development of the fitting functions for MG models which relied on sufficient 

statistics, namely the within-group observed means, variances, and covariances of the items. 

The calculation of these sufficient statistics within each level of a grouping variable (e.g., 

males and females) is straightforward, but this is not the case for a continuously measured 

characteristic such as age or socioeconomic status, for which there may be only one set of 

item responses per observed value. These features of the MG approach, summarized in Table 

1, contrast directly with those of the approach we describe next, the MIMIC model.

Assessing MI/DIF with MIMIC Models

Currently, the primary alternative to the MG model for evaluating MI/DIF is the MIMIC 

model. At its inception, the MIMIC model was defined by the presence of a single latent 

variable that was both measured by multiple items (i.e., the multiple indicators) and also 

predicted by multiple exogenous observed variables (i.e., the multiple causes; Hauser and 

Goldberger, 1971; Jöreskog and Goldberger, 1975). Only later was the MIMIC model 

repurposed for assessing MI/DIF. Specifically, Muthén (1989) showed that with a modest 

modification, namely the addition of a direct effect from a predictor to an item, the MIMIC 

model could capture uniform DIF (a difference in the item intercepts). At about the same 

time, Oort (1992, 1998) proposed restricted factor analysis, which differs from the MIMIC 

model only in having the exogenous variables correlate with rather than predict the factors. 

Here, we focus on the more commonly implemented MIMIC model formulation.

Figure 3 provides an example of a MIMIC model for MI/DIF in path diagram form, again in 

the situation where seven continuous items, y1-y7, are used to measure two factors, η1 and 

η2, in two groups. Notice that the MIMIC model is a unitary model for the entire population 

and that, here, the groups are differentiated explicitly by the exogenous predictor, x, which 

might be dummy coded as x = 0 for individuals in Group 1 and x = 1 for individuals in 

Group 2. Note also the regression of both the factors and the item y5 on the predictor x. The 

regression of the factor on x allows for differences in the conditional mean of the factor as a 

function of x (i.e., the expected values of η1 and η2 differ between the two groups). Beyond 

this, the regression of the item y5 on x implies that the expected value of y5 differs as a 

function of x even when holding η2 constant (i.e., individuals from one group score more 

highly on y5 than individuals from the other group even when their true scores on η2 are 

equal). This direct, main effect of x on y5 thus captures uniform DIF.

The general form of the MIMIC model may be written via the equations

(10)

(11)
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and

(12)

(13)

where K is a p × q matrix of regression coefficients for the direct effects of the predictors on 

the items, and Γ is a r × q matrix of regression coefficients for the effects of the predictors on 

the latent factors. All other notation and parameters remain defined as before, with the 

exception that intercepts, νi, and factor means, αi, are now covariate dependent and thus ν0 

and α0 represent baseline values when xi = 0. Again, generalizations of Equations (10) and 

(11) for discrete items are straightforward based on these expressions.

A defining feature of the MIMIC model is that the expected values of both the observed and 

latent variables are linear functions of xi and are therefore individual-specific. That is, the 

factor mean may vary as a function of individual characteristics (e.g., girls may have a 

higher mean level of depression than boys), as may the intercept of an item (e.g., even after 

controlling for mean-level differences in depression, girls tend to provide higher ratings on a 

“crying” item than boys). For this reason, αi and νi are subscripted by i, as their values 

depend on the values of xi observed for the person (αi and νi are not, however, random 

effects, nor do they have probability distributions; they are deterministic functions of xi).

When the intercept of an item depends directly on xi, this represents uniform DIF. Thus, MI 

is obtained only if K is a null matrix, for then νi = ν0 and Equation (10) simplifies to

(14)

This equation conforms to Equation (3), establishing first-order invariance. That is, 

differences in the expected values of the items are explicable entirely by differences in the 

latent variables ηi, and do not otherwise vary as a function of the individual characteristics 

xi. Moreover, if the item responses are normally distributed, Equations (11) and (14) 

together are sufficient to satisfy Equation (1), implying that the response distributions differ 

only as a function of the latent variables.

At this juncture it is useful to compare the MIMIC approach to the MG approach for 

evaluating MI/DIF. This comparison is facilitated by initially assuming that one is concerned 

only with assessing MI/DIF across groups of individuals. In this case, if there were G 
groups, the xi vector in the MIMIC model would consist of G – 1 coding variables (e.g., 

dummy codes). The factors would be regressed upon these coding variables, as would any 

indicators manifesting DIF.
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In contrast, in the MG approach, a factor model would be specified for each of the G groups, 

and subsets of the model parameters would be restricted to be equal across groups, 

depending on the level of MI and the location of DIF.

In this scenario, the MIMIC model imposes a number of restrictions relative to the MG 

model. First, because the MIMIC model is specified for the total population, configural 

invariance is implicitly assumed to hold across groups, whereas this not required when using 

the MG approach. Although this is an advantage of the MG approach, it may not always be 

of much consequence. In our experience, many investigations of MI/DIF presume configural 

invariance to hold (sometimes on the basis of prior empirical evidence) and have the 

principal goal of identifying higher levels of invariance that will permit objective 

comparisons of results and scores between groups.

Second, both the MIMIC and MG model allow the factor means to differ between groups, 

but only the MG model also allows the factor variances and covariances to differ. That is, 

when xi consists solely of coding variables differentiating nominal groups, αi in Equation 

(12) will represent group-specific factor means, paralleling αg from Equation (6). For 

example, the MIMIC model in Figure 3 implies that the factor means are

(15)

If x has been dummy coded 0 for individuals in the first group and 1 for individuals in the 

second group, then the implied factor means for the first group are simply α10 and α20 and 

for the second group they are α10 +γ11 and α20+γ21. Thus, in this MIMIC model, the values 

of the factor means α1i and α2i differ only by group, just as α1g and α2g differ by group in 

the corresponding MG model. In contrast, in the MIMIC model, the within-group variance-

covariance matrix for the latent variables, given by Equation (13) as Ψ, bears no subscript 

and is assumed to be constant (i.e., at any given level of xi or for any given group). This 

assumption differs from the MG model, for which Equation (7) allows for a different 

variance-covariance matrix for each group, designated Ψg.

The third difference between the MIMIC and MG models concerns DIF evaluation. Both 

models offer the ability to capture uniform DIF, but they differ in their ability to capture non-

uniform DIF. Consider again the model depicted in Figures 2 and 3. The MIMIC model 

implies an expected value for y5 of

(16)

The intercept of this equation is ν50 for individuals in the first group and ν50 +κ51 for 

individuals in the second group. Thus ν5i varies by group when the predictor is a coding 
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variable, capturing uniform DIF. Likewise, ν5g varies by group in the MG model. 

Specifically, per Equation (4), the MG model implies an expected value for y5 of

(17)

Notice, however, that the MG model also allows for between group differences in the factor 

loading or non-uniform DIF, whereas the factor loading in the MIMIC model is assumed to 

be constant over groups. Additionally, comparing the conditional variance expressions in 

Equation (11) versus Equation (5) shows that the MIMIC model assumes the within-group 

residual variance for the item to be equal across groups whereas the MG model allows the 

residual variance to differ in value over groups.

Recently, Woods and Grimm (2011) proposed incorporating non-uniform DIF into the 

MIMIC model through the specification of latent by observed variable interactions, referred 

to as the MIMIC-interaction model (see also Barendse, Oort and Garst, 2010). For instance, 

using the symbol ω to designate the interaction, the equation for y5 would be specified as

(18)

Here, the top line shows the inclusion of the product interaction η2ixi in the model; the 

middle line regroups terms to show how the intercept and slope of the y5 on η2 regression 

line depend linearly on the value of x; finally, the last line shows that the intercept and slope 

are individual specific (depending on x). Again, if x is a dummy coded predictor, then we 

simply obtain group-specific intercepts and slopes, thus matching the MG model and 

allowing for non-uniform DIF across groups.

In sum, the MIMIC model requires configural invariance, implicitly assumes homogeneity 

of (co)variance for both the latent variables and items, and assumes equal factor loadings, 

precluding the assessment of non-uniform DIF (unless one extends to the MIMIC-

interaction model). Notwithstanding these limitations, however, the MIMIC model offers 

two principal advantages. First, the MIMIC model may have greater power to detect uniform 

DIF, particularly when some group sample sizes are small, provided its restrictions on the 

nature of between-group differences are not entirely unreasonable (Muthén, 1989; Woods, 

2009b). It is worth noting, however, that imposing parallel restrictions in a MG model would 

be expected to result in comparable power (Kim & Cao, 2015). Second, the MIMIC model 

easily accommodates multiple predictors and these may include continuous covariates. We 

can thus evaluate DIF for multiple characteristics simultaneously, including main effects and 

possibly also interactions (e.g., ethnicity, gender, age, and gender × age). In contrast, even 

given sufficient within-group sample sizes it would be cumbersome to separate main effects 

and interactions for multiple grouping variables within the MG model. Additionally, any 

continuous characteristics would have to be discretized (e.g., by a median split), a practice 
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that can reduce power and bias estimates (MacCallum et al., 2002). Thus, as summarized in 

Table 1, the MG and MIMIC approaches for assessing MI/DIF offer contrasting strengths 

and weaknesses.

Assessing MI/DIF via Moderated Nonlinear Factor Analysis

The MNLFA approach to MI/DIF evaluation is inspired by the desire to combine the 

strengths of the MG model with those of the MIMIC model. In particular, the MNLFA 

model retains the principal strength of the MG model, namely that all parameters, including 

variances, covariances, and factor loadings, can be allowed to differ as a function of known 

individual characteristics. At the same time, the MNLFA incorporates the principal strength 

of the MIMIC model, namely that there may be multiple individual characteristics of interest 

for MI/DIF and that these may be either discrete or continuous in nature.

Bauer and Hussong (2009) originally presented the MNLFA as a modeling approach to 

facilitate integrative data analysis (IDA), or the pooled analysis of raw data from multiple 

studies, for which a primary challenge is to establish common, equivalent measures. More 

recently, Curran et al. (2014) provided a review and practical guidance on the use of 

MNLFA for integrative data analysis. Here, we depart from those earlier works in presenting 

the MNLFA as a general purpose tool that offers significant advantages relative to MG or 

MIMIC approaches for assessing MI/DIF even in single-study investigations. For instance, 

one could use the MNLFA to evaluate MI/DIF for a quality of life measure as a function of 

age, intelligence, and/or socioeconomic status, without the need to discretize these naturally 

continuous variables.

In the MNLFA model, MI/DIF is viewed as a form of parameter moderation. Figure 4 

conveys this idea conceptually via the arrow pointing from x to the measurement model for 

the indicators y1-y7. The exogenous variable x (e.g., age) may alter the values of any subset 

of the model parameters in this measurement model, including the means, variances, and 

covariance of η1 and η2 as well as the item intercepts, factor loadings, and residual variances 

of y1-y7. The presence or absence of MI/DIF then becomes a question of which parameters 

are moderated by x. If moderation is restricted to the parameters characterizing the factors – 

their means, variances, and covariance – then this is consistent with MI. If, however, the 

item parameters are also moderated by x then this represents DIF. Moderation of the 

intercepts would indicate uniform DIF, whereas moderation of the factor loadings would 

indicate nonuniform DIF. Moderation of the residual variances is also possible.

More formally, the MNLFA for continuous items may be written as

(19)

(20)
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and

(21)

(22)

with similar potential for generalization to models for discrete outcomes (see Bauer and 

Hussong, 2009). The notation used in these equations, defined as before, differs somewhat 

from prior presentations of the MNLFA but facilitates comparison to the MG and MIMIC 

models. Of particular importance for the current discussion is the presence of the i subscript 

on each parameter vector/matrix. This subscript indicates that the values of these parameters 

may vary deterministically (not randomly) over individuals as a function of xi. To complete 

the model specification, the moderation function must be defined for each parameter. In the 

event that a parameter is invariant, we will simply remove the i subscript.

For parameters that depend on xi various moderation functions might be considered. For 

intercepts, factor means, and factor loadings, Bauer and Hussong (2009) suggested the use 

of linear functions. Following this suggestion, we can write the functions for the intercepts 

and factor means as

(23)

(24)

where vectors subscripted by zero contain the baseline values of the parameters when xi = 0 
and the coefficient matrices K and Γ (defined as before) capture the linear dependence of the 

intercepts and factor means on xi, respectively. Similarly, to express linear moderation for 

any given column of factor loadings, say for factor a, we may write

(25)

where λa0 is a p × 1 vector of baseline factor loadings for factor a when xi = 0 and Ωa is a p 
× q matrix of coefficients that produce linear changes in the loadings associated with factor a 
given changes in the values of xi.

In contrast to means, intercepts, and loadings, a linear moderation function is plainly not 

suitable for elements of the variance-covariance matrices, Σi and Ψi. Linear moderation 

could, for instance, imply negative variances or correlations exceeding one in their absolute 
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values. This issue of how best to specify moderation of variance-covariance parameters is 

complex and greater detail is provided in the Appendix for the interested reader. In the 

interest of brevity, here we will present one set of moderation functions that we find 

appealing. First, we employ log-linear moderation functions for variances to avoid obtaining 

negative values. For instance, the variance of factor a may be expressed as

(26)

where ψ(aa)0 is the baseline variance when xi = 0, and β(aa) is a q × 1 vector of moderation 

effects, capturing differences in the factor variance (i.e., heteroscedasticity) as a function of 

xi. The log-linear form of this equation ensures that the implied factor variance is positive 

for any value of xi so long as the baseline variance is positive. Log-linear moderation 

equations can likewise be used to model residual variances within Σi.

Second, we model covariance parameters indirectly through Fisher’s z-transformation of the 

corresponding correlations to ensure that the correlations remain bounded between −1 and 1. 

Designating the Fisher-transformed correlation between factors a and b as ζ(ab)i, we can 

specify the linear moderation function

(27)

Here, ζ(ab)0 is the baseline value when xi = 0 and moderation effects are contained within 

the q × 1 vector υ(ab) . The model-implied conditional correlation between the two factors at 

any given value of xi can be obtained by inverting Fisher’s z-transformation. In turn, the 

covariance ψ(ab)i can be computed as a function of this correlation and the constituent factor 

variances (see Appendix for details). If present, covariances among the residuals could be 

modeled using the same approach.

Having now established the MNLFA model we can explicate its relationships to the MG and 

MIMIC models. We describe these relationships mathematically here, and demonstrate them 

empirically in the example analysis to follow. Most straightforward is the relationship 

between the MIMIC model and the MNLFA model. Simply put, the MNLFA model 

generalizes and subsumes the MIMIC model. The MNLFA model reduces to the standard 

MIMIC model if the following restrictions are imposed: only the factor means and intercepts 

are moderated by the exogenous variables and the functional form of moderation is in each 

case linear. Equations (19) – (22) for the MNLFA model then simplify to have the same 

form as Equations (10) – (13) for the standard MIMIC model. If we relax the constraint that 

the factor loadings are equivalent, and instead permit linear moderation of the factor 

loadings per Equation (25) then the MLFA is equivalent to the MIMIC-interaction model. 

The MNLFA, however, also permits the variance-covariance parameters of the model to vary 

as a function of the predictors. In this sense, another way to conceptualize the MNLFA is as 

an extended MIMIC model in which not only the factor loadings but also the variance-
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covariance parameters depend on the predictors. Indeed, one way to implement a MNLFA is 

to specify the model as a MIMIC-type model with nonlinear constraints on the loadings and 

variance-covariance parameters (see Supplemental Materials on the journal website).1

The relationship between MNLFA and MG models is slightly more complicated. The 

MNLFA model (like the MIMIC model) presumes configural invariance, whereas the MG 

model allows for potentially distinct factor structures in each group. Notwithstanding this 

difference, however, a large and important class of MG models is nested within the MNLFA. 

Specifically, any configurally invariant MG model can be expressed equivalently as an 

MNLFA where xi consists solely of coding variables to differentiate the levels of a grouping 

variable. The MNLFA allows for between-group differences in the intercepts and factor 

means in precisely the same way as the MIMIC model, reproducing the corresponding 

parameter differences in the MG model as shown in our earlier comparison of the MIMIC 

and MG models. Similarly, the MNLFA allows for between-group differences in the factor 

loadings in the same way as the MIMIC-interaction model. Unlike these MIMIC models, 

however, the MNLFA also allows for between-group differences in the variance-covariance 

parameters of the model, enabling the MNLFA to fully reproduce the range of potential 

between-group parameter differences provided by the MG model.

To better see how the MNLFA reproduces between-group differences in the variance-

covariance parameters, we shall compare the MNLFA in Figure 4 to the parallel MG model 

in Figure 2. For this example we have two groups, represented in Figure 4 via the dummy-

coded predictor x. The MNLFA model, using the log-linear moderation function given in 

Equation (26), implies the following factor variances:

(28)

When x = 0 (i.e., for the first group) the terms within the exponential functions equal zero, 

and since exp(0) = 1 we obtain implied factor variances of ψ(11)0 and ψ(22)0. These 

correspond directly to the factor variances that would be obtained from the MG model for 

the first group. In contrast, if x = 1 (i.e., for the second group) then the implied factor 

variances are ψ(11)0 exp(β(11)) and ψ(22)0 exp(β)(22)). The exponentiated regression 

coefficients in these equations therefore indicate the ratios by which the factor variances 

differ between groups (e.g., if β(11) = .69, then exp (β(11)) = 2, and the variance of the factor 

is twice as large in the second group relative to the first). Thus, in this MNLFA model, the 

values of the factor variances differ only by group, just as ψ(11)g and ψ(22)g differ by group 

in the corresponding MG model. The principal difference is that these variances are 

estimated directly in each group in the MG model whereas they are estimated directly only 

in the reference group in the MNLFA model and are captured by multiplicative contrasts in 

the other group.

1This way of thinking about and specifying the MNLFA presumes, however, that a linear moderation function is specified for the item 
intercepts and the factor means. The MNLFA no longer conforms to a MIMIC-like specification if the moderation functions for these 
parameters are nonlinear.
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Similarly, the MNLFA model equally captures between-group differences in covariance 

parameters, albeit through an alternative parameterization. The MNLFA models 

heterogeneity in the factor covariance in Figure 4 through the Fisher-transformed correlation 

via the equation

(29)

When x = 0 we obtain ζ(21)0 and when x = 1 we obtain ζ(21)0 + υ(21) and these values would 

result in correspondingly different covariance values ψ(21)i for each group, matching the 

ψ(21)g covariance values obtained from the MG model. Likewise, the MNLFA and MG 

models are equivalent but differ in their parameterization when expressing residual variance 

or covariance differences. In short, because the MNLFA can reproduce group differences in 

any parameter of the model, an equivalent MNLFA can be specified for any configurally 

invariant MG model. Unlike the MG model, however, the MNLFA can also allow for 

heterogeneity in these parameters as a function of continuous predictors.

To summarize, the MNLFA model offers a number of important advantages relative to the 

MG and MIMIC models. Unlike the MG model, MNLFA permits the assessment of MI/DIF 

as a function of individual characteristics which may include continuous variables. Unlike 

the MIMIC model, MNLFA allows for the moderation of variance and covariance 

parameters in addition to means and intercepts, as well as allowing for non-uniform DIF 

through moderation of the factor loadings. These differences are summarized in Table 1.

We now turn to an empirical application to demonstrate the flexibility of the MNLFA model 

for modeling MI/DIF relative to the MG and MIMIC models.

Empirical Application

Our empirical application focuses on the evaluation of measurement invariance for measures 

of violent and non-violent delinquent behaviors, with particular attention to age and sex 

differences during adolescence. We use this example to demonstrate the application of the 

MNLFA as well as its relations to the MG and MIMIC modeling approaches. Specifically, 

we show that different restrictions on the MNLFA model produce the MG and MIMIC 

models but that these restrictions are not empirically supported by the data.

Sample and Measures

We analyze a subsample drawn from the National Longitudinal Study of Adolescent to 

Adult Health (Add Health), and we include items drawn from the Delinquency and Fighting 

and Violence scales administered during the Wave I in-home interview. The Add Health 

sample is representative of adolescents in the United States who were in grades 7–12 during 

the 1994–1995 school year. To be selected for inclusion in the current analyses, an 

adolescent needed to be part of the public-use, self-weighting core sample, have at least 

partial item-level data, have no missing data on age or sex, and be between 12 and 18 years 
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of age. In total, our sample consisted of N = 4,243 adolescents from 124 schools (47% male; 

MAge = 14.9; SDAge = 1.7).

All analyses reported here were conducted with maximum likelihood estimation (with 

adaptive quadrature and 15 quadrature points per dimension) using Mplus 7.3 (Muthén & 

Muthén, 2012). Detailed information on fitting MNLFAs using the Mplus software program 

is provided in online Supplemental Materials at the journal website. For the current analyses, 

standard errors and test statistics were adjusted to account for the complex sampling design 

(Muthén & Satorra, 1995). Note that this approach to analyzing clustered data provides 

aggregated (total) effect estimates and does not differentiate within- versus between-school 

factor structures, which were not of specific interest in this investigation (see, however, Wu 

& Kwok, 2012, for concerns about the interpretation of total effect estimates, and Ryu, 

2014, 2015 on MI/DIF evaluation with multilevel data). Due to sparseness within the upper 

categories of the ordinal response scales, for the present purposes all items were 

dichotomized to reflect yes/no responses, and models were fit using a logistic specification. 

We also centered age at 15 years to enhance the interpretability of the model parameters.

Steps for Fitting the MNLFA

Testing MI/DIF typically involves a specification search in which multiple models are 

compared to identify an optimal model for the data. This is true for MG and MIMIC models 

as much as it is for the MNLFA, but the greater complexity of the MNLFA requires 

additional decisions on the part of the analyst. We draw upon the steps described by Curran 

et al (2014) for unidimensional MNLFA applications in integrative data analysis, modified 

here in Table 2 for greater generality and in view of possible multidimensional applications.

Step 1: Determination of the factor structure—This step consists of preliminary 

research to determine the basic structure of the item set prior to fitting MNLFA models. 

Such a determination may be made based on theoretical considerations, the factor structure 

reported in prior literature, and/or through preliminary analyses conducted in the full sample 

as well as specific subsamples (see Curran et al., 2014, for more elaboration). In the current 

case our theoretical expectation was that the items would divide into non-violent and violent 

sub-dimensions of delinquent behavior (Barnes, Beaver & Miller, 2010; Molinengo & Testa, 

2010; Willoughby, Chalmers & Busseri, 2004). Content analysis of the available items and 

preliminary factor analyses (not shown) supported this view. Several items were, however, 

excluded due to low content validity (e.g., “Run away from home”), high local dependence 

(e.g., “Get into a serious physical fight” with “Got into a physical fight”), or substantial 

cross-loadings (e.g., “Use a weapon to get something from someone” includes both a 

property crime and threat of violence). The remaining items (shown in Table 3) nicely 

mapped onto the theoretical sub-dimensions of interest.

Step 2: Fit MNLFA models separately to each factor—Given the complexity of the 

MNLFA and the additional computing time required to fit multidimensional versus 

unidimensional models2, it may often prove useful to pursue a “divide and conquer” strategy 

2On the author’s standard-issue personal computer, single-factor models typically converged within a minute or two, whereas two-
factor models often required 15–30 minutes to converge.
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in conducting the analysis. In particular, in applications that involve a simple factor structure 

(no cross-loadings) we suggest first identifying the optimal model for each factor in isolation 

of the other factors before fitting a model that includes all factors simultaneously. For each 

factor, model specification is determined in two steps.

Step 2a is to identify the moderation functions for the factor mean and variance. This may be 

based on theory and/or empirical information. In the present case, it is well known that 

delinquent, criminal, and aggressive behaviors tend to be higher among boys and exhibit a 

curvilinear trend across adolescence and young adulthood in which there is an initial 

increase followed by a later decrease (Farrington, 1986; Loeber & Dale, 1997; Moffit, 

1993). For the current data, such trends were apparent in scatterplots of total scores by age 

and gender (as well as with factor score estimates computed from a model excluding 

covariates). These plots also suggested potential differences in the factor variances with age. 

We thus included male, age, age2, male × age and male × age2 effects on the factor mean 

and variance via the functions given in Equations (24) and (26) (regardless of significance 

level).

Step 2b is to identify items exhibiting DIF. As noted previously, many DIF detection 

procedures have been proposed and investigated within the context of fitting factor analysis 

or IRT models. Generalizing one of these approaches to the MNLFA, Curran et al. (2014) 

suggested using likelihood ratio tests to evaluate DIF for each item while holding all other 

items invariant. Because this general approach has been shown to produce higher than 

nominal Type I error rates (Finch, 2005, Woods, 2009; Millsap, 2011, p. 199–200), Curran et 

al. (2014) subsequently fit a simultaneous model in which DIF is permitted for each flagged 

item followed by trimming of non-significant effects (on the basis of Wald tests). Another 

option, which we pursue here, is to use an iterative strategy in which we initially assumed all 

items to be invariant and then tested DIF associated with the set of covariates (i.e., male, age, 

age2, male × age and male × age2) in a sequential process. Using the scaled likelihood ratio 

test of Satorra and Bentler (2001) to account for the cluster-correlated nature of the data3, 

we first identified the item for which DIF would result in the largest improvement in fit. We 

retained DIF for this item and then determined whether allowing for DIF in a second item 

would significantly improve model fit. Allowing for DIF in the second item that would most 

improve model fit, we then considered a third item, and so on, until no further significant 

improvement in model fit could be obtained. Finally, we removed non-significant DIF terms, 

other than lower-order terms involved in higher-order effects (based on scaled LRTs). 

Similar iterative approaches have been shown to perform reasonably well for related models 

(Oort, 1998; Navas-Ara & Gomez-Benito, 2002), but the number of model comparisons 

increases rapidly with the number of items in the analysis. Woods (2009) suggested an 

alternative approach that is more practical with large item sets and which could also be 

generalized to the MNLFA. In addition, it may be useful to consider adjusting significance 

tests to maintain a specific family-wise Type I error rate (e.g., the Benjamini-Hochberg 

procedure; Thissen, Steinberg & Kuang, 2002; Thissen, Steinberg, & Wainer, 1993). We did 

3See http://statmodel.com/chidiff.shtml for implementation details.
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not use any such adjustment in the present case in an effort to be overly inclusive in the 

initial iterative identification of DIF prior to subsequent model trimming.

Step 3: Fit multidimensional MNLFA model—Finally, we recombine the items and fit 

the full MNLFA, incorporating the specifications obtained in Step 2 for each factor (i.e., for 

the factor means, factor variances, and DIF) and adding moderation of the factor covariances 

(using the Fisher’s z specification in Equation (29)). Our covariate set for the covariance 

between the non-violent and violent factors again included male, age, age2, male × age and 

male × age2. Non-significant effects were trimmed (based on the scaled LRT), with the 

exception that we retained all main effects on the factor means, variances, and covariance/

correlation (regardless of significance).

MNLFA Results

The results obtained from the final MNLFA model are presented in Table 4, which reports 

the factor mean, variance, and covariance parameter estimates followed by the item 

parameter estimates. We shall focus first at the level of the latent factors. In interpreting 

these parameters we must be mindful that we have specified linear models for the means, 

log-linear models for the variances, and a linear model for Fisher’s z to capture differences 

in the factor covariance. To enhance interpretation, we can convert the implied factor 

variances to standard deviations and the implied Fisher’s z values to factor correlations, as 

shown in Figure 5. As seen in the upper row of plots, for the factor means, we observed 

quadratic age trends as well as sex differences, with girls displaying lower levels and more 

rapid desistance in late adolescence. The sex differences are more marked for violent 

behavior (upper left panel) than non-violent delinquency (upper right panel). As shown in 

the middle row of Figure 5, the standard deviation for violent behavior increased with age, 

whereas individual differences in non-violent delinquency decreased with age. Slightly more 

variability in violent behavior was observed among female than male adolescents. Finally, as 

shown in the bottom panel, the correlation between violent and non-violent delinquent 

behavior decreased significantly with age. Notably, the variance and covariance trends 

depicted in middle and lower panels of Figure 5 are unique to the MNLFA; neither the MG 

nor MIMIC model could produce these substantively interesting findings.

The validity of these findings hinges on our ability to measure the factors equivalently at all 

ages and across male and female adolescents. We thus now turn to the interpretation of the 

item parameters, in particular, those that capture DIF. For the non-violent factor, we detected 

some form of DIF for four of eight items, including age DIF for three items and sex DIF for 

three items. For the most part, this DIF was restricted to the item intercepts. Only DS2, 

which refers to the deliberate damaging of property, displayed non-uniform DIF (a 

significantly higher factor loading for boys versus girls). In contrast, for the violent factor, 

DIF was more extensive – five of the eight items displayed age DIF and three of these items 

also displayed sex DIF. In each case non-uniform DIF was detected. Thus, for both factors, a 

relatively high proportion of items were detected with DIF. To some extent, this reflects the 

high power of the current analysis, as well as the fact that our DIF-detection strategy may 

have been somewhat overly inclusive. Our interpretations of age and sex differences in the 
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factors remain valid to the extent that we did not fail to detect and model any DIF present in 

the population.

Relation to the Multiple Groups Model

As noted above, the MNLFA is equivalent to an MG model that minimally assumes 

configural invariance, provided that the only covariate included in the MNLFA is a nominal, 

grouping variable. To show this correspondence we re-fit the MNLFA with only sex 

included as a covariate (excluding all age effects) and compared the results to a standard MG 

model in which sex was the grouping variable. We permitted the intercepts and loadings of 

those items showing any form of sex DIF in the prior MNLFA model to also differ in the 

current models.

Table 5 presents the subset of estimates that differs across groups, permitting a side-by-side 

comparison of the MG and MNLFA results. As can be seen, the MG and MNLFA results are 

equivalent, with estimates differing only due to alternative model parameterizations. 

Separate estimates are obtained for each group in the MG model, whereas baseline estimates 

are obtained for the reference group (girls) and differences are estimated for the contrast 

group (boys) in the MNLFA. Accordingly, the baseline estimates from the MNLFA directly 

reproduce the corresponding estimates for girls from the MG model. For means, intercepts, 

and loadings, one can add the male covariate effect to the baseline value from the MNLFA to 

match the corresponding values for boys from the MG model (within rounding error). The 

computations for variances and covariance are slightly more complicated but again yield 

converging values. For boys, the MNLFA implies that the variance of the non-violent factor 

is 1*exp(-.01) = .99, and the variance of the violent factor is 1*exp(-.30) = .74, matching the 

MG model results. Standardizing the covariance values from the MG model and inverting 

Fisher’s z transformation for the MNLFA model, both analyses yield inter-factor 

correlations of .65 for girls and .58 for boys.

Of course, what is missing in Table 3 is any information about measurement invariance with 

respect to age. Since the current MNLFA model (excluding age effects) is nested within the 

prior MNLFA model (including age effects), we can conduct a scaled likelihood ratio test to 

evaluate the relative fit of the two models. The result, χ2(df=34) = 363.99, p < .0001, 

indicates that the MNLFA with both age and sex differences fits significantly better than the 

MNLFA with only sex differences. Since the latter model is equivalent to the MG model, we 

conclude that the fitted MG model neglected an important source of individual differences in 

the measurement of violent and non-violent delinquent behavior. This result is not 

surprising, given the large number of significant age differences detected in the prior 

MNLFA. Neglecting age may even occlude important sex differences. For instance, in the 

current models no significant sex DIF was detected for item DS6, whereas the prior MNLFA 

analysis indicated male × age DIF for this item. Within the MG modeling approach, 

capturing such effects would require that we first discretize age into two or more categories, 

then cross these categories with gender to create a single nominal grouping variable. With 

this approach, however, it would quickly become cumbersome to specify the model, evaluate 

invariance constraints, parse age and sex main effects from interactions, and interpret results. 
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The MNLFA much more easily accommodates this second, continuous dimension of 

individual differences.

Relation to the MIMIC Model

An alternative approach for simultaneously evaluating measurement differences due to age 

and gender is the MIMIC model. In the traditional formulation of the MIMIC model, 

however, the factor loadings, variances, and covariance are all held constant across 

individuals; only the factor means and item intercepts depend upon the covariates. The 

standard MIMIC model thus represents a constrained MNLFA in which moderation is 

restricted to the means and intercepts. For comparison purposes, we fit a MIMIC model of 

the same form as the full MNLFA model with the exception that the covariate effects 

reported in Table 4 for the factor loadings, variances, and covariance (Fisher’s z) were all 

omitted. Table 6 presents the subset of estimates from the MIMIC model that varies as a 

function of sex and/or age (no corresponding estimates are presented for a restricted 

MNLFA as the models are in this case not just equivalent but also identically 

parameterized).

Since the traditional MIMIC model is nested within the full MNLFA, we can again conduct 

scaled likelihood ratio tests to compare their fit. Relative to the full MNLFA (Table 4), the 

restrictions imposed within the traditional MIMIC model (Table 6) resulted in a significant 

reduction in model fit, χ2(df=16) = 101.47, p < .0001. Again, this result is not surprising. In 

our prior MNLFA analyses we detected both non-uniform DIF (i.e., moderation of the factor 

loadings) as well as differences in the factor variances and covariance, particularly with 

respect to age. These effects are all omitted from the MIMIC model. Failure to attend to 

these other covariate effects could lead to a distorted pattern of results. In particular, 

comparison of the parameter estimates between Tables 4 and 6 shows that DIF estimates 

provided by the MIMIC model were similar to the MNLFA for items with only uniform DIF 

(DS3, DS8, and DS15) but differed meaningfully for items with non-uniform DIF (DS2, 

FV1, FV2, FV3, DS6, and DS14). For the latter set of items, covariate effects on the 

intercepts were often smaller in absolute magnitude and in some instances reversed sign 

(e.g., the intercept difference associated with male for the item DS2). Additionally, covariate 

effects on the violent factor mean were diminished relative to the corresponding MNLFA 

estimates. Not coincidentally, it was this factor for which the greatest nonuniform DIF was 

detected in the MNLFA.

As an additional point of comparison, we fit the MIMIC-interaction model to the data, 

adding non-uniform DIF effects (thus excluding only moderation of the factor variances and 

covariance). Table 7 presents the subset of estimates from the MIMIC-intereaction model 

that vary as a function of sex and/or age. Like the standard MIMIC model, the MIMIC-

interaction model (Table 7) produced inferior fit relative to the full MNLFA (Table 4), 

χ2(df=6) = 48.20, p < .0001, indicating the need to model differences in the factor variances 

and covariances in addition to non-uniform DIF. Comparing the estimates between Tables 4 

and 7 reveals a generally similar pattern of results. Particularly for parameters related to the 

violent factor, however, the estimates tend to be somewhat smaller in magnitude in the 

MIMIC-interaction model relative to the MNLFA.4
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Aside from these differences in fit and parameter estimates, a notable limitation of both 

MIMIC modeling approaches is the inability to evaluate potential individual differences in 

variance and covariance parameters. Such changes may be of key interest. For instance, 

theory may posit that initially highly correlated characteristics differentiate with age (e.g., 

distress in infancy differentiating into anger, sadness, and disgust; Lewis, 2007), or that 

previously distinct characteristics become more correlated with time (e.g., crystallized and 

fluid intelligence may become more integrated in senescence; Baltes, et al., 1980). For the 

present application, the MNLFA showed that, with age, violent behavior becomes more 

variable across individuals whereas non-violent behavior becomes less variable and that the 

correlation between the two forms of delinquency is high in early adolescence but becomes 

fairly modest by late adolescence. These important results (shown in Figure 5) could only be 

obtained from the MNLFA.

Conclusions

There is growing awareness within the field regarding the need to determine whether our 

measures provide equally valid and comparable scores for all individuals. As we have 

discussed, the evaluation of measurement invariance has traditionally drawn on two 

alternative latent variable modeling approaches with opposing advantages and 

disadvantages, the MG model and the MIMIC model. The MG model provides full 

flexibility in evaluating the invariance of measurement model parameters but is limited with 

respect to the kinds of individual characteristics that may be considered, namely those that 

may be represented via a single grouping variable. The MIMIC model permits the 

assessment of MI/DIF with respect to both categorical and continuous individual difference 

variables, but permits only the factor means and item intercepts to depend upon these 

variables, thus limiting the kinds of MI/DIF that may be evaluated. In this paper we have 

endeavored to show that a more recent modeling approach, the MNLFA, offers the 

advantages of both approaches while overcoming their respective limitations. Specifically, 

with the MNLFA, one may assess MI/DIF across levels of both categorical and continuous 

variables, and can allow any parameter within the measurement model to differ as a function 

of these variables (see Table 1). Further, we demonstrated analytically and via demonstration 

that both the MIMIC model and a broad class of MG models represent restricted versions of 

the MNLFA. The MNLFA thus offers a more flexible approach for evaluating MI/DIF for 

multiple-item scales and thereby for establishing the validity and comparability of our 

measurements across individuals.

Increased flexibility comes with increased complexity, and the chief challenge in conducting 

an MNLFA analysis is that one must contend with this complexity both in model 

specification and in the interpretation of results. Regarding specification, one set of choices 

concerns the moderation functions implemented for the model parameters. Here we have 

suggested the use of linear functions for item intercepts, factor loadings, and factor means, 

log-linear functions for residual and factor variances, and Fisher’s z for modeling factor 

4To some extent, the reduction in magnitude of item parameter estimates in Tables 6 and 7 relative to Table 4 may reflect differences 
in the scaling of the latent factors. In the MIMIC models each marginal factor variance is set to one, whereas in MNLFA models it is 
the conditional variance that is set to one when all covariates are zero (in this case, representing 15-year old girls).
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covariances. So parameterized, the MNLFA can be viewed as a MIMIC-type model in which 

the factor loadings and variance-covariance parameters are subject to nonlinear constraints 

as a function of the predictors. Further, depending on the software program, this way to 

specify the model may be both convenient and computationally most efficient. Using Mplus, 

for instance, we used the MIMIC-type specification when fitting MNLFAs to the delinquent 

behavior data (see online Supplemental Material associated with this article). In contrast, in 

earlier implementations of the MNLFA within the NLMIXED procedure of SAS we 

explicitly specified each moderation function (see Bauer & Hussong, 2009, Supplemental 

Materials5). The latter specification approach could also be taken in Mplus to implement 

nonlinear moderation functions for the item intercepts and factor means, if desired, but with 

a potential increase in the computational time needed to fit the model.

How best to triangulate on an optimal MNLFA specification for a given set of data is another 

question without a clear, uniform answer. Curran et al. (2014) demonstrated one sensible 

approach to model building, with a particular focus on unidimensional models fit within an 

integrative data analysis context. Here, grappling with a two-factor model, we adopted a 

somewhat different model building approach (outlined in Table 2). Useful model building 

approaches may well vary from application to application to accommodate the varied 

demands of different analyses.

Interpretation of MNLFA results can also be somewhat daunting. One way to enhance 

interpretation is to suitably scale the predictor variables so that the baseline estimates are 

sensible. For instance, in our demonstration, male and age were scored zero for females and 

15-year-olds, respectively. As such, the baseline estimates reported in Table 4 reference 15-

year-old girls, and all other estimates reflect differences relative to this reference point. 

Additionally, the interpretation of the model results is greatly aided by transforming and 

plotting the model-implied parameter values into more easily understood metrics. For 

instance, rather than interpret age-related changes in Fisher’s z values, we chose to 

transform these to the model-implied correlations displayed in Figure 5. Transformations 

and plots can also be valuable for interpreting and visualizing DIF (see Curran et al., 2014, 

for examples).

Given its relative novelty, much additional research is needed on the MNLFA model. 

Although we can draw on the broader literature on MI, the MNLFA prompts many new 

questions. Some such questions are fairly amenable to empirical analysis. For instance, it 

will be important to determine the best way to model covariance parameters. We chose to 

model the covariance between the two factors in our empirical demonstration indirectly, 

though a linear moderation function for the Fisher z-transformed correlation. Although this 

approach has some appealing features and is (relatively) intuitive, it also has limitations, 

particularly for models involving multiple covariance parameters, as discussed in the 

Appendix. It will be important to consider other options for modeling covariances in 

multidimensional models and to compare the finite-sample performance of these options via 

simulation studies. Another issue worthy of further investigation is the best way to conduct a 

specification search to identify DIF in a MNLFA so as to minimize Type I errors while 

5Available at http://supp.apa.org/psycarticles/supplemental/met_14_2_101/met_bauer0079_supp.pdf
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maintaining adequate power. Many procedures have been developed in the MG context but 

their applicability to the MNLFA is made unclear by the need to assess DIF across multiple 

predictors simultaneously. Other questions are more conceptual in nature. For instance, in a 

standard MG analysis, partial invariance is often tolerated to the degree that the majority of 

items display no DIF. When evaluating DIF in a multidimensional context, however, it is 

unclear whether the majority of items should display no DIF with respect to any given 
predictor or with respect to all predictors. For instance, in our empirical application, non-

violent delinquent behavior was measured by eight items. Half of these items displayed DIF 

of one kind or another, but less than half displayed DIF by age and less than half displayed 

DIF by sex. Which is the more important consideration?

Further, it will be important to consider the features of the MNLFA relative to other possible 

approaches for modeling parameter moderation. For instance, Merkle and Zeileis (2013) 

proposed a technique for identifying subgroups with different model parameters by dividing 

continuous covariates at empirically determined thresholds. An advantage of their approach 

is that it obviates the need to implement specific moderation functions for the measurement 

parameters. The corresponding disadvantage, however, is that inductively discretizing the 

continuous variables precludes modeling their effects as smooth functions as is done in the 

MNLFA. Also conceptually related to the MNLFA is the heteroscedastic latent trait model 

(Molenaar et al., 2012; Molenaar, 2015), which permits moderation of the residual variances 

of the items by the values of a continuous latent factor. In contrast, the MNLFA permits 

moderation only by observed variables.

Overall, we believe the MNLFA offers new opportunities to investigate the validity of our 

measures and their comparability across individuals. Additionally, the MNLFA prompts us 

to look anew at the task of evaluating MI/DIF, opening up many avenues of potential 

methodological research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Details on the Moderation of Variance and Covariance 

Parameters

For variance and covariance parameters, the specification of moderation functions in 

MNLFA models requires care to minimize the possibility of obtaining improper estimates. 

Improper estimates include negative variances or correlations exceeding one in absolute 

magnitude. Additionally, even if no one element of a correlation or covariance matrix is out 

of bounds, the matrix as a whole may nevertheless be non-positive definite. Improper 

estimates can also arise in MG or MIMIC models, or even in a standard factor analysis (e.g., 

“Heywood cases”). In these contexts, improper estimates are often taken to indicate a 

misspecified model; however, they can also arise due to sampling variability (Chen et al., 

2001). For the MNLFA, it is also possible that improper estimates could arise due to 

selection of a poor moderation function. Here, we focus on how to optimally specify 

moderation of Ψi, the covariance matrix for the latent factors, while also noting any unique 

considerations that arise when specifying moderation of Σi.

To begin, we can rewrite the covariance matrix for the latent factors as follows

(30)

where Pi is a correlation matrix and Δi is a diagonal matrix consisting of standard deviations, 

i.e., . Rewriting the covariance matrix in this way 

permits us to specify different moderation functions for variance parameters versus 

correlations.

Moderation of Variance Parameters

For modeling variance parameters, such as those within Δi, we followed earlier literature in 

specifiying a long-linear function (Aitkin, 1987; Bauer & Hussong, 2009; Harvey, 1976; 

Hedeker, Mermelstein & Demirtas, 2008; Hessen & Dolan, 2009; although see Molenaar et 

al., 2012, Equation 9, and Molenaar, 2015). For a given factor a, one way to write this 

function is as
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(31)

A virtue of this specification is that, as long as ψ(aa)0 is positive, the conditional variance 

ψ(aa)i will also be positive at all values of xi. While with Equation (31) it is theoretically 

possible that one could obtain a negative estimate for the baseline variance, this would in 

turn imply negative conditional variances at all levels of xi and it seems unlikely that such a 

solution would yield the maximum likelihood for the data. To exclude the possibility of 

negative baseline variance estimates one could use the alternative parameterization

(32)

in which the baseline variance, ψ00i = exp(β(aa)0), must be positive.

Moderation of Correlations/Covariances

When predicting correlations, such as those within Pi, it is often recommended to implement 

Fisher’s z-transformation (see Cohen, Cohen, West and Aiken, 2003, p. 240). This 

transformation serves both to linearize relationships with predictors and to impose bounds of 

−1 and 1 on the implied correlations. For example, suppose we wish to model the correlation 

between factors a and b, designated ρ(ab)i. We would specify that the corresponding Fisher-

transformed value, ζ(ab)i, is a linear function of xi:

(33)

Equation (33), in turn, implies a nonlinear moderation function for the correlation (obtained 

by inverting Fisher’s z-transformation), with asymptotes of −1 and 1:

(34)

Per Equation (30), the corresponding covariance is then

(35)

An expanded moderation equation for ψ(ab)i can be obtained by substitution.
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This elementwise approach has both advantages and disadvantages. A key advantage is that 

distinct moderation processes can be specified and tested for each correlation within Pi. The 

corresponding disadvantage, however, is that although no single estimated correlation will 

be improper, no restrictions ensure that the estimated matrix , as a whole, remains positive 

definite at all values of xi. There are at least two special cases in which  will always be 

positive definite. The first case is when  is a 2 × 2 matrix (e.g., our empirical 

demonstration), since there is only one correlation that is moderated and the value is 

restricted to be within bounds. The second case follows from the first. A matrix composed of 

blocks that are all positive definite is itself positive definite, therefore  will be positive 

definite if it can be arranged as a block diagonal matrix in which no block is larger than 2 × 

2. In the more general case, however, elementwise moderation of Pi runs the risk that 

could be non-positive definite for some values of xi. Empirically, one could check for this 

possibility by seeing whether the determinant associated with  is negative for any of the 

observed data vectors xi.

In some cases one may wish to consider alternative model specifications that enforce 

positive definiteness of . For instance, one could move from a factor analysis model to a 

structural equation model, replacing covariances between factors with directional paths 

(regression slopes) and then specifying linear moderation functions for these paths. Another 

possibility would be to specify a higher-order factor model. For instance, the covariances 

between three factors could be re-expressed in terms of the factor loadings of a single 

higher-order factor. One could then specify a linear moderation function for the factor 

loadings. Still another possibility would be to retain the original model structure but perform 

a decomposition of the covariance or correlation matrix (e.g., an eigenvalue decomposition 

or Cholesky decomposition) through which it might be easier to enforce positive definiteness 

of .

Although all of these approaches have potential merits, we chose to present and implement 

the elementwise Fisher-transformed correlation approach in our analysis of the delinquency 

data both because this approach provides relatively straightforward interpretations and 

because it is sufficient to ensure positive definiteness when considering a model with only 

two correlated factors.
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Figure 1. 
Number of publications by year that include the topics of measurement invariance (MI) and 

differential item functioning (DIF).
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Figure 2. 
Example conceptual diagram for a multiple groups linear confirmatory factor analysis with 

two groups and the same underlying factor structure in each group. Any of the non-zero 

model parameters could differ in value across groups (subject to identification restrictions).
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Figure 3. 
Example conceptual diagram showing a multiple-indicators, multiple causes (MIMIC) 

model in which item y5 shows differential item functioning by characteristic x.
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Figure 4. 
Example conceptual diagram showing a moderated nonlinear factor analysis (MNLFA) 

model. The arrow pointing to the dashed ellipse is meant to convey that the values any of the 

model parameters can be specified to be a function of x (subject to identification 

restrictions).
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Figure 5. 
Model-implied age and sex differences in the factor means, standard deviations, and 

correlation.
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Table 1

Comparison of types of predictors for which parameter values may differ over individuals in multiple groups 

(MG), multiple-indicator multiple-cause (MIMIC), MIMIC-interaction, and moderated nonlinear factor 

analysis (MNFLA) models.

Parameters

Model

MG* MIMIC MIMIC-Interaction MNLFA

α Categorical Categorical and Continuous Categorical and Continuous Categorical and Continuous

Ψ Categorical - - Categorical and Continuous

ν Categorical Categorical and Continuous Categorical and Continuous Categorical and Continuous

Λ Categorical - Categorical and Continuous Categorical and Continuous

Σ Categorical - - Categorical and Continuous

Note: α = factor means; Ψ = variance-covariance matrix of latent factors; ν = item intercepts; Λ = factor loadings; Σ = variance-covariance matrix 
of item residuals.

*
MG model also allows for the possibility of distinct factor structures in each group, permitting tests of configural invariance.
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Table 3

Description of items included in analyses

Item Label and Stem (Abbreviated) Marginal % Endorsement

Involvement in Non-Violent Delinquent Behavior

DS1. Paint graffiti/signs on someone else’s property or in a public space 8.2

DS2. Deliberately damage property that did not belong to you 17.9

DS3. Lie to parents/guardians about where you had been or whom with 53.2

DS8. Drive a car without it’s owner’s permission 8.8

DS9. Steal something worth more than $50 4.3

DS10. Go into a house or building to steal something 4.7

DS13. Steal something worth less than $50 18.6

DS15. Were loud, rowdy, or unruly in a public place 48.2

Involvement in Violent Behavior

FV1. Saw someone shoot or stab another person 10.2

FV2. Someone pulled a knife or gun on you 11.2

FV3. Someone shot you 1.1

FV4. Someone cut or stabbed you 3.7

FV5. You got into a physical fight 29.7

FV6. You were jumped 9.6

FV7. You pulled a knife or gun on someone 4.0

FV8. You shot or stabbed someone 1.5

DS6. Hurt someone badly enough to need bandages or care from doctor/nurse 16.2

DS14. Take part in a fight where a group of your friends was against another group 17.8

Note: DS = Delinquency Scale; FV = Fighting and Violence scale
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Table 5

Multiple Groups (MG) model estimates versus corresponding Moderated Nonlinear Factor Analysis (MNLFA) 

estimates for parameters that differ in value across groups

Reference Parameter

MG Model MNLFA Model

Girls Boys Baseline Male Effect

Non-Violent Factor

 Mean 0.00a 0.35 (.06) 0.00a 0.35 (.06)

 Variance 1.00a 1.00 (.07) 1.00a −0.01 (.07)

Violent Factor

 Mean 0.00a 0.77 (.05) 0.00a 0.77 (.05)

 Variance 1.00a 0.74 (.07) 1.00a −0.30 (.10)

Factor Covariance

 Covariance 0.65 (.03) 0.50 (.04) – –

 Fisher’s z – – 0.77 (.05) −0.11 (.07)

DS2. Property Damage

 Intercept −3.12 (.18) −3.54 (.30) −3.12 (.18) −0.42 (.33)

 Loading 2.11 (.17) 2.98 (.25) 2.11 (.17) 0.87 (.28)

DS3. Lie Parents

 Intercept 0.29 (.08) −0.44 (.10) 0.29 (.08) −0.73 (.10)

FV1. Saw Shoot/Stab

 Intercept −3.62 (.20) −4.48 (.24) −3.62 (.20) −0.85 (.12)

DS6. Hurt Other Badly

 Intercept −3.75 (.17) −3.58 (.20) −3.75 (.17) 0.16 (.12)

DS14. Group Fight

 Intercept −2.75 (.15) −4.18 (.32) −2.75 (.15) −1.44 (.35)

 Loading 1.86 (.15) 2.60 (.25) 1.86 (.15) 0.74 (.29)

Note: See Table 1 for full descriptions of items.

a
Indicates that the value of the parameter was fixed (not estimated) to identify the model and set the scale of the latent variables.
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