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Because of the tractability of large-scale RNA mea-
surements compared with protein studies, the first
application of genomics in many organisms is to
catalog and then measure transcriptional activity. Sub-
stantial investment in the US and abroad has led to
dramatic growth in the availability of gene sequences
for many plant species. With these sequences in hand,
many molecular biologists are building the resources
and technologies to enable large-scale transcriptional
analyses for different plant species. The availability of
the complete genome sequence of Arabidopsis made
this the first plant for which transcriptional profiling
platforms were developed. The experience gained
from the applications of these technologies in Arabi-
dopsis will shape the direction of similar experiments
performed in other plant species.
The ability to simultaneously measure the expres-

sion of thousands of genes is a powerful analytical
system, and the availability of technologies for this has
presented scientists with many new opportunities. In
most plant species, these experiments are being con-
ducted largely with microarrays, although there are
a growing number of alternative technologies. Some of
these alternative technologies generate data that are
distinct from and complementary to microarray data.
The massive datasets generated by gene expression
technologies present novel statistical and analytical
problems, resulting in a convergence of biology, math-
ematics, and computer science. Users have developed
a broad range of applications for the platforms, so that
the use of microarrays has gone beyond simple mea-
surements of relative transcript abundance to include
genotyping, tissue classification, and pathway studies.
Competition is intense among commercial microarray
vendors vying in the plant market, and new compa-
nies join the fray on a regular basis. For laboratories
working in plant species other than Arabidopsis, or for
students and teachers of plant molecular biology, the
question arises of what lessons to take away from the
experience of this model plant, and how to best apply

these technologies and approaches without squander-
ing limited resources.

TECHNOLOGIES FOR MEASURING
GENE EXPRESSION

The last decade has seen major advances in tech-
nologies for measuring gene expression. However, no
method is without serious limitations, so many more
advances will be required before we have achieved the
necessary sensitivity and scope. The forerunner of
many of the current methods is the RNA gel blot
(northern), in which a labeled probe is hybridized to
an RNA target, and the resulting band size and signal
intensity is used to confirm and quantify expression.
Advances in genomic technologies now permit the
simultaneous analysis of thousands of genes, although
many are based on the same concept of specific probe-
target hybridization. Thesemethods, described inmore
detail in this section, most prominently include DNA
microarrays. However, sequencing-based methods
are an alternative; these methods started with the
use of expressed sequence tags (ESTs), and now in-
clude methods based on short tags, such as serial
analysis of gene expression (SAGE) and massively
parallel signature sequencing (MPSS). Differential
display techniques provide yet another means of
analyzing gene expression; this family of techniques
is based on random amplification of cDNA fragments
generated by restriction digestion, and bands that
differ between two tissues identify cDNAs of interest.
With a well-characterized genome, it is possible to
match fragments to specific genes (Shimkets et al.,
1999). Most differential display techniques require
a large number of reactions to achieve maximal
coverage of all active transcripts, and it is difficult to
sample every transcript. Differential display-like ap-
proaches have been reviewed elsewhere (Green et al.,
2001) and will not be discussed in detail in this review.
All of these transcriptional profiling technologies
permit the analysis of complex mRNA populations
from selected cells or tissues, producing large-scale
measurements of gene expression, but different tech-
nologies provide data with different uses. In fact, none
of the existing technologies address all experimental
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needs, and there are advantages and disadvantages to
each. These differences make the technologies com-
plementary; in addition to good experimental design
and analysis, the validation of apparent quantitative
differences in mRNA levels by using several of these
complementary approaches is critically important.

Single Gene Measurements

Although measurements of single genes have ad-
vanced well beyond northern blots, northern blot data
are still considered to be the gold standard. The basis
for this confidence may be based more on historical
reasons than on any data that indicate northerns are
more reliable than other methods. In situ hybridiza-
tions can provide both a qualitative and quantitative
assessment of gene expression in specific tissues. In
recent years, quantitative real-time PCR (QRT-PCR)
has been demonstrated to generate robust, quantita-
tive expression data for a single gene; this method also
offers rapid and reproducible results and a large
dynamic range (Hayward-Lester et al., 1995; Bustin,
2002; Ginzinger, 2002; Klein, 2002). Fluorescence sig-
nals are generated by dyes that are specific to double-
stranded DNA (dsDNA) or by sequence-specific
fluorescently-labeled oligonucleotide primers. The sig-
nal is proportional to the amount of PCR product, and
special PCR machines are designed to monitor the
process of amplification in real time. The amplification
curve is used to quantify the initial concentration of
a specific transcript in a template mixture. One of the
major advantages of QRT-PCR is a broad dynamic
range that can precisely quantify transcript concen-
trations over more than eight orders of magnitude
(Heid et al., 1996). QRT-PCR can be performed using
a dye like SYBR Green and unlabeled primers, with
one amplification target per tube and control reactions
performed in parallel. Alternatively, a pair of gene-
specific primers is synthesized, one of which is fluo-
rescently labeled; several pairs of control primers are
added to the sample and each primer pair labeled with
a different fluorochrome to allow specific detection.
The former method using SYBR Green is less expen-
sive than the latter; in both cases, reactions are repli-
cated and the results are averaged.

One of the more intriguing new methods for the
measurement of single genes uses so-called polonies,
which stands for polymerase-colonies (Mitra and
Church, 1999; Mitra et al., 2003). While still in its
infancy, this intriguing technology is based on the in
situ amplification of DNA or cDNA in a thin-layer
acrylamide gel on a microscope slide. Because the PCR
products are essentially immobilized, the result of the
amplification is large numbers of polonies distributed
across the slide that are spherical colonies of DNA.
Each polony is derived from a single template mole-
cule, and specific genes or transcripts can be detected
by hybridizing labeled probes, similar to a classic
colony lift blot. By counting the proportion of polonies
derived from a specific transcript compared to the

total (detected by a nonspecific stain, for example),
a quantitative estimate of gene expression can be
obtained (Mitra and Church, 1999; Mikkilineni et al.,
2004). Modifications of this technology may go beyond
expression analysis to monitor RNA splicing (Zhu
et al., 2003) or other applications.

The analysis of expression of single genes or small
sets of genes will further advance with the increased
availability of well-curated expression data in public
repositories. Using these preexisting data sets, it may
be possible to measure gene expression using only
a computer and internet access. Such analyses consti-
tute electronic or virtual northern blots. Several
groups, including our own, have made plant gene
expression data accessible from easy-to-use Web in-
terfaces (see http://mpss.udel.edu or the gene expres-
sion section of http://www.arabidopsis.org). A more
limited set of plant data are available as part of
the Gene Expression Omnibus section of GenBank
(http://www.ncbi.nlm.nih.gov/geo/); their SAGE-
map Web page performs differential expression anal-
yses and provides a limited ability to measure single
genes (Lash et al., 2000). However, this site is primarily
a repository for published SAGE data (described
below), and by design it is not optimized for any
particular organism. These resources provide starting
points for researchers interested in specific genes or
gene families.

DNA Microarrays

The DNA microarray has produced a revolution in
expression analysis. These chips simultaneously de-
termine expression levels for thousands of genes. Data
are then analyzed for patterns of expression that
change over various treatments or time points. Micro-
arrays may be comprised of short oligonucleotides or
complete cDNA clones and provide a rapid and
relatively inexpensive way to monitor in parallel the
expression of thousands of transcripts. Because micro-
arrays have now been used in hundreds of publica-
tions and the technology has been discussed in scores
of review articles, the reader is directed elsewhere for
in-depth discussions and technical details.

Early microarrays were built of cDNA fragments
robotically gridded and immobilized on microscope
slides (Schena et al., 1995), much as if the probes for
a northern blot were laid down in a dense pattern. This
approach, though still widely used, requires the main-
tenance and handling of microtiter dishes, validation
of clones, and large scale PCR reactions. A competing
approach that has become the dominant system is
based on short DNA oligonucleotides that serve as
probes. There are several reasons for the dominance of
these oligo arrays; one reason is that oligos can be
synthesized either in plates or directly on solid sur-
faces (in situ synthesis), making it easier to obtain
reliable amounts of material than for cDNA clones. In
addition, even for a well-characterized plant like
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Arabidopsis, cDNA clones may represent less than
60% of the predicted genes (Wortman et al., 2003).
Oligo-based approaches can effectively target selected
regions starting from only the DNA sequence, such as
anonymous open reading frames found in genomic
sequence. With any of these microarray technologies,
one of the most serious problems is ensuring that
cDNA or oligonucleotide sequences are correctly as-
signed to their source. This is a particular problem if
any sort of spotting or gridding is used to build the
microarray, because a small proportion of microtiter
dishes and tubes inevitably are mishandled. A differ-
ent concern for commercially manufactured arrays can
be validating the identity or genomic location of
a specific probe, as these probe sequences are often
not available. The assumption that microarrays are
manufactured without errors can lead to misinterpre-
tations or delays in understanding data that result
from poor sample tracking, informatics errors, or
contamination.
For plant research, the tractability and genomic

resources of Arabidopsis have made it an attractive
system in which to develop or commercialize micro-
arrays. Because development costs were high in the
early days of microarrays, and because resources for
plant research are limited, several academic groups
formed a consortium (the Arabidopsis Functional
Genomics Consortium, or AFGC) to produce and
make publicly available the first Arabidopsis arrays
(Wisman andOhlrogge, 2000). While these arrays were
used by many academic laboratories, commercial
arrays such as those produced by Affymetrix (Santa
Clara, CA) were quickly adopted as well. The AFGC
ended on December 31, 2002 and its public microarray
project was discontinued; some public groups still
produce Arabidopsis arrays, representing the model
that was an impetus for the development of core
microarray facilities at many institutions. However,
some of these core facilities are now gathering dust
due to the centralization of microarray production and
competition from commercial operations. In general,
this has proven to be a positive step because it relieves
research scientists of relatively mundane manufactur-
ing responsibilities. For example, one of the most
critical steps in array construction is quality control
to ensure minimal variation from array to array.
Companies or public groups focused solely on array
production can afford to spend considerable effort to
ensure quality control, and a competitive pressure for
quality works to the benefit of the researcher. Compa-
nies were quick to recognize the commercial potential
for Arabidopsis arrays and have aggressively pursued
the production of Arabidopsis microarrays. The draw-
back of commercial production is that the high costs of
overhead, labor, and development are included in the
arrays, whereas these costs are often absorbed in
academically-produced arrays. Another drawback to
removing microarray production from the hands of
researchers can be the loss of control over the content
and format.

Competition is heating up among companies that
can or do produce Arabidopsis microarrays. The
popular Affymetrix GeneChip arrays are comprised
of sets of 25-base oligonucleotides synthesized in situ
via a photolithographic process (Lockhart et al., 1996);
the original array design that includedmore than 8,000
genes was the first commercial Arabidopsis array on
the market (Zhu and Wang, 2000). The most recent
design that is often called the whole genome array
(WGA) includesmore than 24,000 genes (http://www.
affymetrix.com). Rosetta Inpharmatics (Kirkland,
WA) developed the process of ink-jet ‘‘printing’’ of
60-base probes (Hughes et al., 2001). The Arabidop-
sis array based on this technology is produced by
Agilent Technologies (Palo Alto, CA) and includes
21,500 genes; later in 2004, this array will contain
approximately 44,000 features. In addition to arrays
produced by Agilent, other companies are now
marketing so-called long oligo microarrays. These
arrays typically are comprised of a single oligonu-
cleotide primer of 50 to 70 nucleotides for each gene,
and the oligos are synthesized in situ or synthesized
using conventional methods and then spotted on the
arrays (Barczak et al., 2003). Spotted oligo arrays
offer several advantages, such as a low manufactur-
ing cost and flexibility, but usually require a sub-
stantial commitment by a company to presynthesize
the 20,0001 long oligos that are spotted on these
arrays. However, once the oligos have been synthe-
sized, the materials can be distributed to individual
labs for use with conventional gridding robots. For
example, Operon (a subsidiary of Qiagen) produces
oligo sets for three plant species (http://oligos.qia-
gen.com/), and at least one academic group grids
and distributes arrays based on these oligos (http://
www.ag.arizona.edu/microarray/). Customized or
whole-genome Arabidopsis arrays may potentially
be made using any of the platforms based on rapid
and flexible in situ synthesis. This includes platforms
developed by NimbleGen Systems (Madison, WI;
Nuwaysir et al., 2002) and febit ag (Mannheim,
Germany; Baum et al., 2003). Nimblegen uses a flex-
ible photolithographic process capable of synthesiz-
ing high-density arrays with oligos of 24 to 90 bases;
febit produces a benchtop machine capable of pro-
ducing arrays of up to 48,000 features per slide with
an oligo length of approximately 30 nucleotides.
Because of ongoing changes in the technologies and
commercial competitors, it is impossible to provide
a comprehensive list of microarray platforms. How-
ever, there are now many commercial microarray
options now available to Arabidopsis researchers.

Microarrays are now becoming available for addi-
tional plant species. Rice (Oryza sativa) is a widely-
studied organism for which the complete genome
sequence is anticipated by end of 2004. As with
Arabidopsis, early rice microarray experiments were
based on limited sets of ESTs (Kawasaki et al., 2001).
With more sequence data now available, Agilent has
announced the release of a rice long-oligo microarray
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that includes approximately 60% of the estimated
50,000 rice transcripts (http://www.chem.agilent.
com/). As with Arabidopsis, other companies are
entering the business (for example, GreenGene Bio-
tech; http://www.ggbio.com), heating up competition
with a recently funded public rice array project
(http://www.ricearray.org/). Despite a lack of geno-
mic sequence data, other plant species have not been
left without microarray resources. Academic collabo-
rations have led to the development of microarrays for
barley (Hordeum vulgare), cotton (Gossypium hirsutum),
cabbage (Brassica capitata), maize (Zea mays), potato
(Solanum tuberosum), tomato (Lycopersicon esculentum),
and wheat (Triticum aestivum); commercial interest in
developing arrays for these and other plant species is
growing. As in the case of Arabidopsis, the release of
commercial microarray products can drive some aca-
demics out of the array manufacturing business.
However, because the primary motivation for some
academic labs to fabricate microarrays is to generate
the resources they need for experimentation, the
entrance of a commercial competitor may be wel-
comed.

Despite the broad adoption of microarrays as a re-
search tool, there are several technical issues with the
technology, some of which are better understood than
others. Most of these limitations result from the
principle of hybridization that is at the core of the
technology. For example, cross-hybridization, the hy-
bridization of multiple targets to single probes, re-
mains poorly characterized. Genome duplications
impede the design of oligos that distinguish between
closely related sequences (Ishii et al., 2000). In many
plant species, genome duplications resulting in cross-
hybridization may be a limitation for determining the
expression of any single gene; in Arabidopsis, one of
the most simple genomes, approximately 60% of the
genome is duplicated and 17% of the genes are present
in tandem arrays (Blanc et al., 2000; Grant et al., 2000;
Vision et al., 2000; Simillion et al., 2002). The general
migration from cDNA to oligo arrays means that
probes can be selected based on regions of dissimilar-
ity among generally similar genes, improving speci-
ficity (Talla et al., 2003). Hybridization and washing
conditions are a critical issue for any array platform;
these conditions are influenced by variations in tem-
perature, ionic strength, or pH. The limit of detec-
tion for Affymetrix chips is approximately 1/100,000
transcripts (http://www.affymetrix.com); changes in
genes expressed near this level are difficult to detect
with statistical significance (Ishii et al., 2000). Back-
ground signal intensities at this level are similar to
signals of many weakly expressed transcripts (Duggan
et al., 1999). Spotted microarrays built from presyn-
thesized components have several potential sources of
variation that differ from those of arrays manufac-
tured by in situ synthesis. Spotted microarrays are
subject to variation in the pin geometry, variations in
spot geometry, and differences in the amount of
material deposited onto and subsequently bound to

the slide surface. The method of preparation of the
RNA and labeled cDNA targets used in any micro-
array experiment can also introduce variation, as there
are many methods for the processing, isolation, and
labeling of RNA samples, and factors such as the
degradation rate of transcripts may also affect the final
data (Auer et al., 2003). Sequence-specific differences
in the efficiency of dye incorporation may also pro-
duce variation for biologically-irrelevant reasons. In
the use of microarrays, the source of variation,
whether technical or biological, should be identified
and quantitatively estimated by replicating experi-
ments at two levels—technical replications that are
separate preparations and arrays run for the same
RNA sample, and biological replications that are RNA
samples extracted from separate but identically
treated biological materials (Lee et al., 2000). It is im-
portant to note that technical variation appears much
lower for in situ synthesized and spotted oligo arrays
than for those produced from PCR amplicons, and this
consistency decreases the relative importance of tech-
nical replicates to the point at which these may be
eliminated while retaining biological replications (Zhu
and Wang, 2000).

An involvement of statistics is inevitable given the
large numbers of simultaneous measurements that can
be made using microarrays, and these large numbers
raise problems that are not normally encountered in
molecular biology. For example, an alpha value of 0.05
would be viewed as highly satisfactory for most
biological measurements, where the a value is the
accepted probability of detecting a false positive for
a single event (a Type I error). However, when making
independent measurements of 26,000 genes (events)
on a typical Arabidopsis whole-genome microarray,
this a value allows 1,300 false positives for the exper-
iment. Since downstream procedures, which are more
labor intensive, less high throughput, and more ex-
pensive per unit of information, cannot reasonably
accommodate this proportion of false leads, the im-
portance of achieving more restrictive a values is
readily apparent. This is possible through replication
of the microarray experiments and requires greater
numbers of microarrays as well as an appropriate
statistical design. A particularly accessible review of
this area has been provided by Draghici (2002).
Among statistical treatments, the application of mixed
model ANOVA methods to microarray data has con-
siderable promise for both spotted and in situ synthe-
sized microarrays (Kerr et al., 2000; Wolfinger et al.,
2001). General agreement has not yet been reached on
the optimal statistical treatment for the sets of 10 or
more probes designed for each gene represented on
the Affymetrix microarrays (probe level expression
data). There are advantages to using existing statistical
methodologies instead of the standard Affymetrix
software; better accuracy and sensitivity are provided
by the use of various types of models or probe level
data (Li and Wong, 2001a, 2001b), ANOVA analyses
(Chu et al., 2002), or analyses of inherent noise (Naef
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et al., 2002; Draghici et al., 2003). Identification of the
sources of variance in expression data is essential to
enable the detection of small but biologically relevant
differences in transcriptional profiles (Jin et al., 2001).
It has been clearly demonstrated that the failure to
apply appropriate statistical analyses to microarray
data can result in misleading conclusions (Hsieh et al.,
2003).

Tag-Based Methods

Exhaustive sequencing of ESTs is a common method
for gene expression profiling, although the primary
purpose of ESTsequencing is usually to generate genic
sequence data. EST data are generated by large-scale,
single-pass, partial sequencing of cDNA clones (ap-
proximately 500 bp), usually from a large number of
libraries representing diverse tissues (Adams et al.,
1995). Comparisons of EST frequencies in different
libraries can expose differential gene expression on
a broad basis (Okubo et al., 1992, 1995; Matsubara and
Okubo, 1993; Ewing et al., 1999). In theory, the abun-
dance of an EST is an exact digital representation of the
number of copies of a transcript in the tissue. Large
numbers of ESTs derived from diverse tissues produce
quantitative estimates of gene expression, but ESTs are
relatively slow and costly to generate, making it
difficult to achieve saturation of a library. Theoreti-
cally, expression profiles could be derived for very
weakly expressed genes if ESTs were sequenced in
sufficient number. This has been performed with
human EST libraries that contain tens of thousands
of sequences (Okubo et al., 1992, 1995; Matsubara and
Okubo, 1993; Adams et al., 1995; Okubo et al., 1995;
Kawamoto et al., 2000). In plants, Ewing et al. (1999)
compared and analyzed 10 rice libraries containing
between 1,000 and 5,000 ESTs and were able to identify
statistically significant patterns of gene expression
among several rice tissues. However, public plant
EST libraries are in general too small or from too
many sources for accurate quantitative expression
analyses, although private companies have amassed
databases of more than a million plant ESTs (Mazur
et al., 1999). For Arabidopsis, there are currently
196,988 ESTs or cDNAs in GenBank (as of January,
2004; http://www.ncbi.nlm.nih.gov/dbEST), but be-
causemost of these were generated either from a single
library of mixed tissues or were selected from nor-
malized libraries (Newman et al., 1994; Delseny et al.,
1997), the Arabidopsis EST abundance does not accu-
rately reflect expression levels. In general, the low total
number of EST sequences for a given organism con-
founds accurate estimates of gene expression levels.
SAGE, like EST sequencing, is a quantitative or

digital method of gene expression analysis. Unlike
EST sequencing, SAGE extracts only a 10- to 14-base
tag from a unique position within each species of
mRNA (Velculescu et al., 1995; Zhang et al., 1997).
These short SAGE tags are derived from a position
directly 3#-adjacent to the 3#-most recognition site for

a particular restriction enzyme, such as NlaIII. The tag
sequence and position are important for the identifi-
cation of the gene from which the tag was derived.
Whereas ESTs each require a single sequencing read,
SAGE tags are released from cDNAs by restriction
enzymes, ligated together, amplified by PCR, and
sequenced as concatamers. This results in a higher
throughput and lower cost for SAGE than ESTs. A
number of modifications to the original protocol have
been reported. Modifications that increase the length
of the tag include the LongSAGE method (Saha et al.,
2002) that produces 21- or 22-base tags, and the
SuperSAGE method that produces 26-base tags
(Matsumura et al., 2003); a recent report describes
modifications that dramatically improve the efficiency
of LongSAGE library construction (Gowda et al.,
2004). The primary limitation of SAGE or its variants
is the cost of sequencing reactions; even at $1 per read,
SAGE tags cost roughly $0.04 each and a library of
100,000 tags would cost $4,000. Sampling error has
also been a source of bias in SAGE (Stollberg et al.,
2000), although increasing the number of available
tags addresses this problem.

A recent advance in tag-based gene expression
analysis is MPSS, developed and commercialized
by Lynx Therapeutics (Hayward, CA). MPSS is based
on methods to clone individual cDNA molecules on
microbeads and sequence, in parallel, short tags or
signatures from these cDNAs (Brenner et al., 2000a,
2000b). A complex mix of cDNAs, such as those
derived from a particular plant tissue, is cloned onto
microbeads, with the representation of molecules on
the beads identical to that in the original sample (e.g.
one cDNA per bead). Using an unconventional but
ingenious method of sequencing, large numbers of
beads are sequenced in parallel. A series of digestion,
ligation, and hybridization reactions are performed in
consecutive steps while the beads are immobilized in
a flow-cell underneath a high-power microscope so
that the reagents flow over and around the beads, and
there are no gels or capillaries (Brenner et al., 2000a).
The final output of MPSS is a set of abundances for
thousands of distinct 17- or 20-base signatures, most of
which uniquely identify a particular transcript. The
parallel sequencing method produces millions of
MPSS signatures in only a few weeks; however, the
technology is sufficiently complex that unlike SAGE, it
cannot be performed in individual laboratories. On
a per-tag basis, MPSS is currently less than half the cost
of SAGE.

The sequence-based expression data from ESTs,
SAGE, or MPSS experiments have many uses. The
availability of complete genome sequences permits the
direct comparison of tags to genomic sequence and
further extends the utility of the data (Meyers et al.,
2004b). The identification of transcribed regions is
performed by aligning the signatures to genomic
sequence. The expression levels of nearly all polyade-
nylated transcripts can be quantitatively determined,
and the abundance of a given tag for a specific library
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is representative of the expression level of the corre-
sponding gene. The approximate location of the poly-
adenylation site for each transcript is known because
both SAGE and MPSS tags are derived from defined
restriction sites in the 3# end of a transcript. Several
distinct SAGE or MPSS tags matching different sites
within a single gene indicate alternative polyadenyla-
tion or 3# splicing. Expressed tags that uniquely match
to unannotated regions of the genome provide experi-
mental evidence for novel transcripts (Meyers et al.,
2004c). Quantitative methods for the analysis of tag
frequencies and detection of differences among librar-
ies have been published (Audic and Claverie, 1997;
Greller and Tobin, 1999; Lash et al., 2000; Stekel et al.,
2000).

Genome duplications complicate the unique assign-
ment of short tags to specific genes, particularly when
members of a gene family have a high degree of
similarity. Issues of genome duplications are likely to
be particularly relevant to many plant species that
have polyploid origins and show evidence of large-
scale segmental duplications. The short length of
SAGE tags (usually 14 bases) complicates the assign-
ment of tags to distinct genes in even minimally com-
plex genomes (a tag-to-gene ambiguity; Lash et al.,
2000; Stollberg et al., 2000). Tag-to-gene ambiguities
may be avoided by using longer tag sequences, such
as 20-base MPSS signatures, 21-base LongSAGE tags
(Saha et al., 2002), or the 26-base SuperSAGE tags
(Matsumura et al., 2003). An analysis of potential
MPSS signatures in the Arabidopsis genome demon-
strates that 18.1% of 17-base tags and 12.5% of 20-base
tags are duplicated (Meyers et al., 2004b). Analyses
using the Arabidopsis genome indicate that there is
a diminishing return for tag lengths beyond 20 bases,
such that it may be more economical to sacrifice some
specificity to obtain a greater number of tags of
approximately 20 bases and sort out differential ex-
pression among nearly identical gene family members
using different techniques (C.D. Haudenschild and
B.C. Meyers, unpublished data). A gene may also have
more than one unique tag as a result of alternative
termination of some transcripts, creating a gene-to-tag
ambiguity (Lash et al., 2000; Meyers et al., 2004b).

Methods like SAGE have not been applied exten-
sively to plant species, but more and more examples
can be found in the literature (Matsumura et al., 1999;
Chakravarthy et al., 2003; Jung et al., 2003; Lee and
Lee, 2003; Fizames et al., 2004). Early applications in
nonplant species used SAGE to characterize transcrip-
tomes (Velculescu et al., 1995, 1997), to study the
differences between them (Zhang et al., 1997), to
annotate genomic sequences (Saha et al., 2002), and
for whole-genome studies of transcriptional activity
(Caron et al., 2001). In our laboratory, we have been
using MPSS to analyze gene expression in Arabidop-
sis, and we have developed a Web site for public
access to these data (Meyers et al., 2004a, 2004b). For
reasons that are not entirely clear, MPSS has been more
rapidly adopted in the plant community than in

animal species, although there are only a few pub-
lished studies outside of our own laboratory (e.g. Hoth
et al., 2002, 2003; Christensen et al., 2003). One limita-
tion for all of the tag-based methods compared to
microarrays is that the cost of biological or technical
replications is prohibitive, so estimates of variance for
the tag-based methods are incomplete or poorly char-
acterized.

THE DANGERS OF PROLIFERATING
TECHNOLOGIES

There are both advantages and disadvantages to the
growing number of competing technologies and tech-
nology platforms for the measurement of gene expres-
sion. Some comparisons are not entirely fair; for
example, the two broad categories that we describe
above, tag-based systems and microarrays, have dif-
ferent and complementary uses (see below), so these
are not directly competing technologies. Competition
among microarray platforms has led to lower costs,
improved quality control, and increased numbers of
genes per array, at least in the case of Arabidopsis. The
disadvantage of having a proliferation of array plat-
forms is that it can create orphan data. In other words,
experiments performed with an older generation or
different type of a microarray may be difficult to
compare to data derived from the latest microarray
format. This may necessitate the repetition of experi-
ments to directly confirm other laboratory’s findings.

The prospect of comparing data across experiments
raises the question of whether the measurements from
gene expression technologies are directly comparable
and how good the correlations are. While no definitive
answer yet exists, several groups have or currently are
addressing this question. In a comparison of SAGE
with the Affymetrix oligonucleotide microarrays, the
two approaches correlate for genes expressed at high
levels, and SAGE is more accurate than for genes
expressed at low levels (Ishii et al., 2000). We are
currently conducting comparisons of MPSS andmicro-
array analyses. Among microarray platforms, several
comparisons have been published. Tan et al. (2003)
compared gene expression measurements generated
from identical human RNA samples using the Affy-
metrix (25-mer), Agilent (60-mer), and Amersham
(30-mer; Piscataway, NJ) microarray platforms. A
total of five arrays were used for each time point in
their analysis, including technical and biological rep-
licates. Their results demonstrated considerable vari-
ation for comparisons of significant gene expression
changes, and correlations in gene expression levels
across the different platforms were modest (Pearson’s
correlation coefficient average of 0.53, range of 0.48–
0.60). In addition, although many of the genes present
on each microarray platforms were the same, the
differentially expressed genes identified by each tech-
nology were not substantially overlapping. Other
studies have compared spotted cDNA microarrays
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with Affymetrix GeneChip arrays and found a poor
correlation between these disparate array types (Kuo
et al., 2002; Yuen et al., 2002), although the level of
experimental replication in these studies was not clear.
Poor statistical designs or a lack of replications could
also generate low correlations. In general, published
cross-platform analyses suggest that the conclusions
derived from a microarray analysis may be largely
dependent upon the type of platform used in the
experiment. This is not encouraging news, and sug-
gests that a great deal remains to be learned about
factors intrinsic to different microarray platforms that
can affect the data.
Incongruous data or conclusions from gene expres-

sion measurements performed using different tech-
nology platforms may result from several sources of
variation. A very simple example is that the set of
genes represented in the arrays may not be identical;
the Agilent, Affymetrix, and Qiagen/Operon probe
sets for Arabidopsis microarrays each represent 21,500
to 24,197 genes, but only 17,149 genes are shared
among the three platforms. However, there are addi-
tional issues in such a comparison, because oligo
lengths, positions, and numbers per gene vary among
manufacturers. It is possible that some genes are better
measured by the probes on different microarray plat-
forms, and no single type of array accurately measures
every gene. It may take many years of empirical
studies before we achieve optimal designs and
understand the impact of the sequence and position
of the oligo on the signal strength. The process
of correlating design features with expression data
would be facilitated if all manufacturers released
the sequence of the probes on their arrays. Probe se-
quences are considered proprietary information by
some companies because of a fear that competitors
will market arrays based on identical probes or use the
information to decipher design algorithms. With some
exceptions, complete sets of probe sequences can be
hard to obtain except via nondisclosure agreements
with manufacturers. In fact, oligo design software is
still rapidly developing (e.g. Mei et al., 2003; Nielsen
et al., 2003; Talla et al., 2003), so it is highly unlikely
that any existing microarrays contain a complete set of
optimally-designed probes. It may also be desirable
(although perhaps not plausible) for arraymanufactur-
ers to agree on a set of standard template sequences;
if different splice variants or models of a gene are used
for probe design, it is possible that probes with the
same gene identifier may be measuring different tran-
scripts. Standardization of experimental design and
methods would also facilitate comparisons of array
data produced by different labs. One of the first steps
in this direction was the development of a standard set
of technical details that should be reported for every
microarray experiment. The minimal information
about a microarray experiment (MIAME) protocol
requires the reporting of enough details to ensure that
the results of a microarray experiment could be
interpreted or repeated independently (Brazma et al.,

2001). These basic data should be sufficient to store the
data in public repositories such as GenBank and
enable the use of standardized data analysis tools.

In the coming years and as sequence databases are
populated with ESTs and genomic data for diverse
plant species, the research community working in each
of these organisms may face the question of which
gene expression platform to choose. This may be an
issue if it comes down to a choice among commercial
platforms, because several of the major microarray
production companies charge significant set-up fees
(although for a large-enoughmarket, these fees may be
waived and absorbed into the sales of the arrays). The
barley GeneChip microarray is an example of an
organized and united approach taken by a consortium
of plant researchers to build resources for expression
profiling in a crop species that had not attracted the
interest of commercial microarray manufacturers
(Close et al., 2004). An international group of labora-
tories focused and coordinated their efforts to develop
a single microarray platform for transcriptional pro-
filing. A public data storage site, BarleyBase (http://
barleybase.org/), was constructed as part of this pro-
ject to integrate expression profiling data from all
researchers using the platform. This creates a synergis-
tic effect because all array data generated for barley
will be directly and easily comparable. BarleyBase is
also incorporating controlled vocabularies to facilitate
cross-species comparisons (Close et al., 2004). The
coordinated development of the barley microarray
may represent a paradigm for other plant species in
which too many technology platforms could diminish
the utility of individual data sets and fragment the
research community.

OPEN VERSUS CLOSED TECHNOLOGIES AND THE
IDENTIFICATION OF NOVEL TRANSCRIPTS

Technologies such as ESTs, SAGE, or MPSS require
no prior knowledge of the sequences of the transcripts
and can discover previously unknown transcripts.
This feature defines an open architecture for these
expression technologies. In contrast, closed architec-
tures, like most microarrays, are based on existing
knowledge of genes, with probe sets designed to
match known or predicted transcripts. The data de-
rived from the open technologies can be used to
annotate genomic sequence, whereas data from closed
technologies is often cheaper to obtain and can more
easily be used for focused experiments. However, one
of the more interesting applications of the microarray
is the development of a hybrid approach. In different
organisms, several groups have constructed true
WGAs containing tiled probe sets that include nearly
every nucleotide in the genome (Kapranov et al., 2002;
Yamada et al., 2003). WGAs have extended the poten-
tial of microarrays by creating an open system on
a platform generally characterized as closed. Such
arrays have recently been applied to Arabidopsis and
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led to the identification of transcription from unanno-
tated regions of the genome (Yamada et al., 2003). In
addition, these tiled arrays uniquely offer the ability to
characterize, at the whole-genome level, transcrip-
tional variants that differ in the use of splice sites
and exons and to describe previously uncharacterized
5# or 3# untranslated regions.

In fact, transcriptional data from open technologies
suggest that automated annotations of genomic se-
quence fail to identify many transcripts. Through the
application of WGAs, MPSS, and targeted RACE
experiments, the Arabidopsis genome is still yielding
previously unknown transcripts, although the genome
was mostly completed and first annotated more than 3
years ago (Arabidopsis Genome Initiative, 2000; Xiao
et al., 2002; Yamada et al., 2003; Meyers et al., 2004b).
The WGA and MPSS data of Yamada et al. (2003) and
Meyers et al. (2004c) suggest that a comprehensive
annotation of transcripts encoded in a genome re-
quires significant experimental data beyond the com-
plete sequencing of chromosomal DNA.Many of these
RNA molecules may not encode proteins, but could
have independent functions as regulatory molecules.
Transcripts that do not encode proteins but can func-
tion directly as RNA molecules are called noncoding
RNAs (ncRNAs; Eddy, 2001). With the exception of
housekeeping RNAs, like tRNAs or small nucleolar
RNAs, relatively few potential regulatory ncRNAs
have been characterized from plants; those that have
been identified appear to be plant-specific (MacIntosh
et al., 2001). Nearly all of the 29,0001 predicted genes
in Arabidopsis encode proteins; very few ncRNAs are
annotated (MacIntosh et al., 2001; Wortman et al.,
2003).Natural anti-sense transcripts (NATs) overlapwith
transcribed coding regions and may be involved in
the regulation of gene expression (Vanhee-Brossollet
and Vaquero, 1998). These NATs and other ncRNAs
are a major component of the diversity of transcripts
produced in higher eukaryotes (Eddy, 2001; Numata
et al., 2003; Yelin et al., 2003). Some of the first experi-
ments using SAGE and MPSS in plant genomes have
identified a number of anti-sense transcripts (Gibbings
et al., 2003; Meyers et al., 2004b). Therefore, the
comprehensive use of open transcriptional profiling
approaches will add significant new information to
any sequenced genome by identification of ncRNAs,
NATs, or other transcripts that are poorly predicted.
Because the transcriptional complexity of sequenced
genomes has yet to be fully explored, microarray
designs should be flexible and facilitate the addition
of newly discovered transcripts.

There are additional transcripts missing from or in-
sufficientlymeasured by current technology platforms.
Methods also need to be developed for high-through-
put quantification of splice variants. Simultaneous
quantification of all splice variants of a single gene
is presently done on a gene-by-gene basis using
QRT-PCR (Renner and Pilger, 1999; Goel et al., 2001).
Large numbers of variants of known transcripts have
been found in Arabidopsis, generated by alternative

splicing or polyadenylation (Haas et al., 2003; Meyers
et al., 2004b). These variants may have novel functions.
Additionally, there are no systematic processes for
identification and quantification of microRNAs
(miRNAs), which have important biological roles in
plants and animals (Carrington and Ambros, 2003).
These small RNA molecules (approximately 21 nu-
cleotides) play regulatory roles in plant development
and are processed from longer noncoding transcripts
(Aukerman and Sakai, 2003; Palatnik et al., 2003).
However, it is not yet clear that all possible miRNAs
have been characterized from Arabidopsis. A technol-
ogy to measure these on a global scale would contrib-
ute greatly to our understanding and open the door to
novel experiments.

Future genomics projects will take advantage of the
advances in techniques and technologies to deliver
genomes at a fraction of previous costs. We anticipate
that high-throughput open technologies, such as
MPSS, will be important because the data can be used
to annotate genomic sequence. Ultimately, it may be
possible to estimate the extent of gaps in the genomic
sequence based on the percentage of unmatchedMPSS
signatures. Statistical approaches to estimating the
complete size and complexity of the human transcrip-
tome based on limited SAGE data were unsuccessful
(Stern et al., 2003), but it may be possible to estimate
the complexity of the Arabidopsis transcriptomes
using more extensive sets of MPSS data.

TISSUE ISSUES: MEASUREMENTS OF GENE
EXPRESSION IN SPECIFIC CELL TYPES

Multicellular eukaryotic organisms comprise com-
plex interspersions of different cell types. Higher
plants are no exception, and it is increasingly apparent
that methods are required to isolate specific cell types
when considering gene expression in the whole organ.
Typical experiments may utilize intact leaves, flowers,
or other organs that comprise multiple cell types and
utilize RNA that is isolated essentially from a popu-
lation or mixture of cells. For certain studies, this
homogenization of a heterogeneous starting material
may dilute, alter, or mask the true biological state of
individual cells. The averaging of a response across
millions of cells may produce a signal that is artificial
and accurately reflects none of the varied transcrip-
tional states found in individual cells. Signals that
emanate from a single plant cell (perhaps one under
attack from a pathogen) may be found in a gradient
that decreases with distance from the source, such that
the timing and magnitude of the transcriptional re-
sponse varies dramatically in cells that are further
from the source. However, until technologies are better
able to precisely measure the state of single cells, this
will remain speculation.

Several methods are being employed to allow sub-
sets of cells to be isolated and analyzed for gene
expression with the techniques described above. These
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methods are described in more detail below, but one
limitation that still exists is the large amount of RNA
required for an experiment. Standard microarray ex-
periments utilize fluorescent dyes that necessitate
microgram quantities; SAGE and MPSS library con-
struction requires similar quantities of starting mate-
rial. The use of radioactively-labeled targets requires
only nanogram quantities for accurate detection and
measurement, but methods employing radiation, such
as macroarrays (the larger cousin of microarrays with
probes gridded on nylon membranes), have been
predominantly supplanted due to relatively low
throughput. Amplification of small quantities of
RNA may provide a way around this requirement.
Methods and products for RNA amplification are
available, but amplification could bias the representa-
tion in the sample due to variation in the length or
sequence of the transcripts. Amplification methods are
complicated slightly for oligo-based microarrays; the
immobilized probe on these arrays consists of a single
strand of DNA, and to ensure strand specificity for
the RNA target, amplification methods must ensure
production of the complementary target. We have
developed accurate methods based on in vitro tran-
scription for the linear amplification of plant total
RNA that start from as little as 50 ng of material; we
have also developed methods for exponential ampli-
fication of picogram quantities of RNA (F.-C. Gong
and D. W. Galbraith, unpublished data).

Isolation of Cell-Specific RNA and Other

Macromolecules by Laser-Capture Microdissection

Several methods have been developed for the iso-
lation of macromolecules such as DNA, RNA, and
protein from selected cells. Some schemes rely on
tissue dissociation (e.g. tissue digestion and cell sort-
ing) and thus rely on the prior identification of cell-
specific markers (see below). Other techniques, such as
direct micropipetting of cell contents, are highly labor-
intensive or have limited access to internal tissues
(Karrer et al., 1995; Brandt et al., 2002). In contrast,
laser-capture microdissection (LCM) provides a rapid
means of isolating pure cellular preparations directly
from heterogeneous tissues, based on conventional
histological identification (Emmert-Buck et al., 1996).
Specific markers can assist with the identification
of the desired cells, including prestaining with b-
glucuronidase reporters (N. Gandotra and T. Nelson,
unpublished data) but this is not a requirement. The
LCM system can also incorporate immunological
identification of specific cells to assist the laser-harvest
step. Two studies to date have reported the use of laser
microdissected cells from plant tissues as the source of
RNA for profiling on microarrays (Asano et al., 2002;
Nakazono et al., 2003).
In the LCM version developed at the National

Institutes of Health (Emmert-Buck et al., 1996) and
commercially available as the Arcturus Pix-Cell sys-
tem (http://www.arctur.com), a HeNe laser beam is

used to fasten selected cells to a thermoplastic film
suspended above a tissue slice while it is viewed on an
inverted microscope. Cells harvested onto the film can
be subjected to high efficiency procedures for the
isolation and analysis of DNA, RNA, and protein.
The advantage of this version of LCM method is that
the low-power infrared laser dimples the adhesive
film onto individual cells (for review, see Roberts,
2002); the cells are not struck by the laser beam. Images
are obtained of samples before and after cell harvest,
as well as of the harvested cells. The harvest of
hundreds or thousands of individual cells is feasible,
using either a manual aim-and-fire method or a fully
automated method in which the desired cells are
marked on a screen for robotic harvest from the slide.
A variety of proof-of-concept and analytical studies
have demonstrated that the DNA, RNA, and protein
obtained from LCM-harvested cells can be suitable for
microarray-based RNA expression profiling, proteo-
mic protein profiling and genomic mutational analysis
(Banks et al., 1999; Jin et al., 1999; Luo et al., 1999;
Simone et al., 2000; Wong et al., 2000; Craven et al.,
2002; Ohyama et al., 2002; Nakazono et al., 2003).

Kerk et al. (2003) optimized LCM for use with
tissues from a variety of plants, including rice, maize,
Arabidopsis, radish (Raphanus sativus), and other spe-
cies. Their approach used conventional histological
methods, including paraffin-embedding; this method
provides high-resolution access to cells of all ages and
types, and is stable enough to permit archiving and
resampling of the tissue. RNA can be isolated from
paraffin-archived materials for at least several months
without degradation in quality. In addition, samples
can be taken from multiple sections onto the same
collecting film to pool cells that are rare, such as single
cells from a particular location. Using the paraffin
methodology, recoveries of 10 ng of RNA/50 LCM-
harvested cells are possible, sufficient for a strong
signal by single-round RT-PCR from a moderately ex-
pressed gene or to serve as a template for linear ampli-
fication into probes for microarrays (N. Gandotra,
T. Ceserani, S.L. Tausta, and T. Nelson, unpublished
data).

Flow Sorting of Cell-Type Specific Nuclei or Protoplasts

Specific cell types can be labeled with fluorescent
proteins and protoplasts prepared and purified using
flow cytometry and cell sorting. The sorted protoplasts
can then be subjected to gene expression analyses. The
green fluorescent protein (GFP) of Aequorea victoria is
the prototypic label; specific cell types can be tagged
by driving expression of such proteins with highly spe-
cific promoters. This approach was used by Birnbaum
et al. (2003) to create a gene expression map of the
developing Arabidopsis root. Groups of genes
with coordinated expression, as determined using
Affymetrix GeneChips, defined local expression do-
mains. Statistically significant overrepresentation of
genes of known functions within the local expression
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domains provided testable hypotheses about root
development. These hypotheses concerned the in-
fluences and involvement of signal transduction,
hormone responses, gene organization, and other
regulatory mechanisms. The map also provides a use-
ful resource for the design of further experimental and
computational strategies to explore gene regulation in
roots. One caveat is the possible influence of the
process of protoplast production on gene expression
patterns. For Arabidopsis roots, this influence appears
minor (Birnbaum et al., 2003), although subtle changes
in genes expressed at low levels may not have been
detected by the expression platform. For organ sys-
tems, the question also exists as to whether protoplasts
can be successfully isolated from all cell types that are
present within that organ.

The approach of GFP-based cell type-specific label-
ing can also be applied to subcellular organelles such
as nuclei (Galbraith, 2003). Flow sorting of GFP-tagged
nuclei from homogenates of transgenic plants allows
rapid purification of sources of primary transcripts.
Given that polyadenylation is essentially cotranscrip-
tional (Orphanides and Reinberg, 2002), this approach
should provide information about transcriptional reg-
ulation that is unaffected by the types of perturbation
of gene expression associated with protoplast produc-
tion. A further advantage is that plant homogenization
can be adapted more readily for high throughput
handling than can protoplast production.

APPLICATIONS OF TRANSCRIPTIONAL
PROFILING: AN EXPANDING RANGE
OF POSSIBILITIES

Dissection of Changes in Gene Expression Levels

One of the temptations of whole-genome expression
platforms is to simply generate data for discovery
purposes. While this may be a valid approach for open
technologies in which the data can be used for genome
annotation, it is harder to justify for microarrays and
other closed technology platforms. Despite the ease of
producing reams of data, it will be meaningless unless
experiments are properly designed with the appropri-
ate biological materials and replicates. The extraction
of meaningful data requires analytical strategies and
the interpretation depends on close interactions among
biologists, computer scientists, and statisticians.

The detection of differential expression among two
types of tissues differing by some experimental vari-
able is one of the most basic questions addressed with
transcriptional analysis. Typically, a user-defined cut-
off or threshold for the ratio of expression levels in the
two tissues is used to identify differentially expressed
genes. The underlying assumption is that genes with
differential expression are somehow involved in the
condition that distinguished the tissues. The statistical
methods for identifying such genes have been much
better developed in recent years (for review, see
Slonim, 2002), and are able now to identify up- or

down-regulated genes with statistical significance.
The end product is a list of candidate genes believed
to be involved in the phenotype of interest; these
genes must then be validated using much more
time-consuming functional studies. The integration
of pathway information could lead to the association
of pathways with a process when genes in that
pathway are overrepresented in the differentially ex-
pressed genes. Although for most organisms few data
are available describing the pathways and related
genes, such data may be generated empirically by
the application of pattern discovery methods. These
methods include the numerous clustering techniques
designed to construct groups of genes with related
patterns within the dataset. This simplifies and struc-
tures the data based on inherent patterns rather than
imposing assumptions made a priori. Ultimately, it
may be possible to reconstruct or model complex
signaling pathways by combining interferences made
from transcriptional profiling data with biochemical
and metabolic data.

Categorization of Tissues Based on Expression Patterns

Expression profiling provides a comprehensive ap-
proach for the molecular characterization of tissues,
treatments, or cell types. The state of the transcriptome
represents a phenotype that provides a clear physio-
logical picture of cellular activity (Hughes et al., 2000).
Class prediction methods are statistical techniques
that can be used to classify expression profiles from
different samples into known groups (for review, see
Slonim, 2002). The use of microarray phenotypes for
tissue classification is most widely and successfully
used in cancer research; the molecular data can dis-
tinguish tumors more reliably than other approaches,
resulting in more accurate disease diagnoses (Russo
et al., 2003). Comparisons among different samples of
the same cancer type reveal distinct subgroups, pro-
vide a molecular classification of the cancer type, and
can determine the stages of progression of the disease
(Russo et al., 2003). Hierarchical clustering analysis of
the array data is used to sort specimens. These studies
have defined candidate marker genes that can dis-
criminate between normal and diseased tissues. The
combined sets of diagnostic marker genes may be used
to develop specialized or customized arrays that
contain only the diagnostic genes of specific interest.
However, while the idea of customized arrays was
pertinent when array densities were low and most
arrays were homemade, this strategy may be less
important as costs decrease for high-density commer-
cial arrays for which uninformative genes can be
ignored.

In plants, this type of classification based on tran-
scriptional profiles could be applied to the sorting of
mutants based on perturbations in distinct signaling
pathways. This strategy does not require optimal
microarray probe design or even that the probes
identify known genes. The microarray elements must
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serve as molecular markers, providing detectable
signals and behaving independently. Moreover, com-
plete coverage of all genes by the technology is not
critical, as long as the genes that are represented
provide enough resolution for diagnosis or identifica-
tion. Every informative array element or probe will
provide an additional dimension for the analysis and
for maximum resolution and significance; these probes
should outnumber the distinct pathways or mutants
under analysis.

Application of Technologies to Diverse Genotypes

Natural variation in gene expression levels between
closely related plant varieties can be treated as a ge-
netic polymorphism. Microarrays or other methods
can be used to describe patterns of gene expression
among individuals in a mapping population. Each
pattern constitutes a molecular phenotype. Transcript
abundance levels differing in the parents of a mapping
population and segregating among the progeny can be
mapped and characterized as quantitative traits (for
review, see Cheung and Spielman, 2002). These ex-
pression profiles may be more easily interpreted or
quantified than some visible phenotypes. Differences
in expression of a given gene may result either from
allelic differences in its promoter or from effects of
distal regulatory loci. In both cases, the variation is due
to genetic differences that can be subjected to genetic
analysis. In parallel, the individuals in the population
can be genotyped using standard molecular tech-
niques. With molecular phenotypic and genotypic
data, expression level differences can be mapped
using approaches based on quantitative traits, and
with these data, quantitative phenotypic measure-
ments may be associated with genetic markers (Jansen
and Nap, 2001). Accessions of Arabidopsis are rich in
genetic variation for many traits (Alonso-Blanco and
Koornneef, 2000), and the analysis of this natural
variation using quantitative methods may provide
more insight into plant signaling and gene function
than classical mutagenesis studies. This is because of
the complexity of variation found between ecotypes
and because variation in the genetic background may
increase the penetrance of certain weak alleles or
promote novel phenotypes resulting from gene inter-
actions. Another important point is that alterations in
the transcriptional activity of a gene may have more
significant effects than polymorphisms that alter the
protein sequence. Substantial variation in gene expres-
sion has been demonstrated between primate species
and among fish populations (Enard et al., 2002;
Oleksiak et al., 2002), suggesting that natural selection
may act as, or more, effectively on transcriptional than
translational differences. In plants, most such studies
will first be carried out in Arabidopsis due to the
experimental advantages of this model plant; there is
little doubt that gene expression analysis ultimately
will be used to characterize and to map complex
phenotypes in many plant species.

Which technology platforms will be used for studies
of natural variation in gene expression? All of the
platforms described above will measure variation in
expression, but some will also be sensitive to geno-
typic differences that could interfere with measure-
ments of expression. For example, the oligos used in
some microarray platforms are short enough to be
sensitive to sequence polymorphisms within the ho-
mologous region of the transcript. The short probes
(25-base oligos) used on Affymetrix arrays will be
most sensitive to single nucleotide polymorphisms
(SNPs); one base difference in the length of the oligo is
enough to substantially diminish hybridization. Be-
cause Affymetrix uses 10 or more probes for each gene,
differences in hybridization intensity among the
probes may be attributed to genomic polymorphisms.
In fact, some research groups have exploited this
property using labeled genomic DNA to identify SNPs
or insertion/deletion events. An early and elegant
study demonstrated polymorphic hybridization to
Affymetrix microarrays due to strain-specific differ-
ences in yeast (Saccharomyces cerevisiae; Winzeler et al.,
1998). Borevitz et al. (2003) used Affymetrix arrays to
assess the polymorphisms in the Landsberg ecotype of
Arabidopsis by hybridization of genomic DNA to the
array designed from the Columbia genome. In contrast
to the 25-mer oligos, long oligos (70-mers) are more
tolerant to polymorphisms, presumably because the
additional nucleotides provide greater stability. This
has been demonstrated in experiments using RNA
from Arabidopsis thaliana, Arabidopsis arenosa, and Bras-
sica oleracea (Lee et al., 2004). Whole-genome long-
oligo arrays could be used to analyze gene expression
in a wide variety of related species with smaller
genotypic effects on hybridization. This reduced sen-
sitivity to SNPs means that long-oligo microarrays will
not be useful for distinguishing expression levels of
alleles or closely related gene families.

Measurement of Allele-Specific Differences

Beyond simply measuring expression level differ-
ences among homozygous inbred lines, an additional
challenge for gene expression technologies will be to
characterize and quantify subtle allele-specific differ-
ences in expression at heterozygous loci. Hybrid vigor
is a well-characterized but poorly understood trait that
is important to modern agriculture; one possible
explanation for hybrid vigor is transgressive variation
in expression. Expression differences for a particular
allele in a hybrid compared with the parental lines
result either from imprinting (Oakey and Beechey,
2002; a cis effect) or trans-acting regulatory elements
encoded in the two genomes. Imprinting is generally
associated with monoallelic expression (Oakey and
Beechey, 2002), so biallelic nonparental expression is
indicative of trans-acting regulation of expression. To
put it differently, the promoter and other adjacent
regulatory elements for a given allele are identical in
the F1 hybrid and parental lines, so any differences in
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expression for a specific allele between an inbred
parent and the F1 hybrid must result from the in-
terchromosomal effects in the hybrid. Similar inter-
genome effects may alter gene expression patterns in
polyploids (Osborn et al., 2003). Draft sequences of rice
indica and japonica varieties have been published
(Goff et al., 2002; Yu et al., 2002), and these data create
a unique opportunity for large-scale measurements of
differential expression in closely related varieties and
hybrids, because the sequence of alleles from each
variety will be known and may be used for measure-
ments of allele-specific expression levels.

Sequence based-measurements of gene expression
such as LongSAGE or MPSS are sensitive to single
nucleotide polymorphisms and therefore could be
used to globally quantify allele-specific expression.
However, the sequence of both alleles must be known
to ensure a specific match for the tag. For microarrays,
a priori knowledge of SNP locations enables the use of
short oligonucleotides, such as those present on the
Affymetrix arrays, to measure differential expression
between alleles. This type of analysis was performed
using human genes and demonstrated that a signifi-
cant proportion of the alleles that were examined were
differentially expressed (Lo et al., 2003). Differential
display-type methods, which distinguish genes based
on restriction site polymorphisms, can be used to
screen for allele-specific expression (Hagiwara et al.,
1997); differential-display approaches are advanta-
geous when the sequence of one or both alleles is
unknown. This approach has been used to identify
allele-specific differences in expression for small num-
bers of maize genes (Guo et al., 2003). Whole-genome
analyses of allele-specific expression in plants will
require gene sequences from multiple varieties and
may require specialized microarrays that detect SNPs
to distinguish alleles.

FUTURE DIRECTIONS

Eventually it may be possible to perform global
expression profiling experiments on single plant cells.
Attempts have been made to do this for human cancer
cells (Klein et al., 2002). LCM can isolate RNA from
a single cell, which can then be amplified by a linear
method into sufficient probe for an array experiment.
Few technologies exist to precisely measure single cell
transcription without amplification. One recent report
used oligomer DNA probes tagged with fluorophores
to detect RNAs by fluorescence in situ hybridization
(Levsky et al., 2002). However, this analysis was
limited to 11 genes. These experiments suggested that
gene expression is stochastic and that a single sampled
cell may have properties highly divergent from the
average (Levsky et al., 2002; Levsky and Singer, 2003).
Studies of bacterial colonies also show substantial
stochasticity in gene expression, suggesting that for
biological reasons, substantial noise will be inherent in
any measure of gene expression (Elowitz et al., 2002).

This makes it important to pool cells of a type and to
compare multiple samples to understand their aver-
age or typical behavior. This could be done using LCM
or flow sorting, as described above; it is relatively easy
to collect samples of hundreds of cells of one type by
LCM, as long as the histological preparation makes
them visible and accessible.

Because existing transcriptional profiling methods
require the physical disruption of tissues and cells,
gene expression is measured only in discrete time
points. Ideally, future technologies should monitor
transcripts in situ and in real time for the duration of
a treatment or developmental phase. The technique
mentioned above using labeled DNA probes and FISH
permits this type of analysis (Levsky et al., 2002).
However, significant advances will be required to
make this more practical and to enable large-scale
measurements of transcriptional activity.

Intriguing advances in DNA and protein detection
are being made with nanoparticles. The laboratory of
Chad Mirkin (Northwestern University) has devel-
oped methods based on metal nanoparticles coated
with oligonucleotides and Raman-active dyes (Cao
et al., 2002; Nam et al., 2003). These nanoparticles serve
as probes that detect RNA, DNA, or protein targets;
these nanoparticles incorporate Raman dyes that can
have a wide range of nonoverlapping spectra proper-
ties. For the detection of nucleotides, these targets may
have first been captured on an underlying chip in
microarray format. The use of the Raman dyes permits
a large number of multiplexed reactions. The method
is also extremely sensitive, with a current unoptimized
detection limit of 20 femtomolar (10215; Cao et al.,
2002). A related approach applied to protein detection
has a sensitivity approximately a million times higher
than standard techniques (Nam et al., 2003). While
these types of advances may not generate practical,
high-throughput applications for plant biologists for
many years, they typify the technologies that will be
needed.

Integration of gene expression data with other data
sources will, in the future, become a more standard
way of molecular experimentation. However, a funda-
mental challenge remains the development of technol-
ogies and mathematical approaches to incorporate
disparate and complex data sets. As described above,
the full transcriptional complexity of plant genomes
is still being described, and it would be a big step
forward to measure all functional RNA transcripts,
including miRNAs, ncRNAs, and products of alterna-
tive splicing and polyadenylation. Such a step would
approach a truly global analysis of gene expression. In
addition, the methods that we have reviewed above
are nearly all based on poly(A) RNA. The concentra-
tion of cellular poly(A) RNA is a function of complex
processes of transcription, modification, nuclear ex-
port, and degradation. Future progress will require
devising novel methods and technologies to measure
and dissect posttranscriptional processes. Gene ex-
pression is also inextricably linked to translation, and
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measuring proteins and metabolites from the same
sample as transcriptional analyses will pose additional
challenges. The ability to integrate all of these data
over real time and for single cells will require tech-
nologies well beyond those that currently exist. The
noise that results from the stochastic nature of gene
expression will require substantial replication, and the
source and amount of variation in measurements due
to the technologies will need to be elucidated.
It has been proposed, due to similarities to the

semiconductor industry Moore’s law, it should be pos-
sible in the not too distant future to sequence a human
genome for $1000 (http://www.venterscience.org/
news.html). Assuming that these technologies are
equally applicable to any genome, this would have
tremendous implications for plant genetics. However,
if the $1000 genome is a goal for the future, we should
concurrently aim for a $10 global gene expression
measurement. Reduced prices would facilitate better
experimental design by eliminating financial restric-
tions on replication and would open the door to novel
types of experiments.
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