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Each year over 90 million units of blood are transfused
worldwide. Our dependence on this blood supply man-
dates optimized blood management and storage. During
storage, red blood cells undergo degenerative processes
resulting in altered metabolic characteristics which may
make blood less viable for transfusion. However, not all
stored blood spoils at the same rate, a difference that has
been attributed to variable rates of energy usage and
metabolism in red blood cells. Specific metabolite abun-
dances are heritable traits; however, the link between
heritability of energy metabolism and red blood cell stor-
age profiles is unclear. Herein we performed a compre-
hensive metabolomics and proteomics study of red blood
cells from 18 mono- and di-zygotic twin pairs to measure
heritability and identify correlations with ATP and other
molecular indices of energy metabolism. Without using
affinity-based hemoglobin depletion, our work afforded
the deepest multi-omic characterization of red blood cell
membranes to date (1280 membrane proteins and 330
metabolites), with 119 membrane protein and 148 metab-
olite concentrations found to be over 30% heritable. We
demonstrate a high degree of heritability in the concen-
tration of energy metabolism metabolites, especially gly-
colytic metabolites. In addition to being heritable, proteins
and metabolites involved in glycolysis and redox metab-
olism are highly correlated, suggesting that crucial energy
metabolism pathways are inherited en bloc at distinct
levels. We conclude that individuals can inherit a pheno-
type composed of higher or lower concentrations of these
proteins together. This can result in vastly different red
blood cells storage profiles which may need to be con-
sidered to develop precise and individualized storage
options. Beyond guiding proper blood storage, this inti-
mate link in heritability between energy and redox me-

tabolism pathways may someday prove useful in deter-
mining the predisposition of an individual toward
metabolic diseases. Molecular & Cellular Proteomics
15: 10.1074/mcp.M116.062349, 3614–3623, 2016.

The potency of harvested red blood cells (RBCs)1 depends
on their ability to survive and maintain function during storage.
RBC viability primarily depends on their ability to resist pro-
grammed cell death-related fragmentation and phagocytosis
by maintaining proper energetics and avoiding hemolysis, in
which they break down into microvesicles and toxic byprod-
ucts including iron, heme, hemoglobin, and oxidized lipids.
The released iron can feed bacterial infections and free he-
moglobin can interfere with nitric oxide signaling (1, 2). A
number of small and retrospective studies have suggested
that prolonged RBC storage is associated with negative clin-
ical outcomes; however, three larger randomized clinical trials
showed no negative effects of longer-stored RBCs (3–6). In
short, the viability of stored RBCs is variable and not fully
understood, but the accumulation of biophysical and meta-
bolic changes known as storage lesions are linked to the
ability to maintain flux through metabolic pathways during
storage (7, 8).

Poststorage RBC adenosine triphosphate (ATP) concentra-
tion is the single best predictor of RBC in vivo recovery in
autologous blood transfusions (9–12). Specifically, high ATP
concentrations are correlated with low levels of hemolysis and
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other storage lesions in RBCs. Interestingly, poststorage ATP
levels vary greatly between individuals but are consistent on
repeat measure within an individual. This observation sug-
gests that poststorage ATP, and thus stored RBC viability,
may be influenced and/or determined by inheritance (13–15).
In prior analyses of these samples and in additional studies of
mono- and di-zygotic twins, some metabolite concentrations
including glucose 6-phosphate, fructose 1,6-bisphosphate,
glutathione, and glutathione disulfide were determined to be
heritable in stored RBCs (13–16). The metabolite concentra-
tions of ribulose 5-phosphate, sorbitol, and xylulose 5-phos-
phate are heritable suggesting a genetic control of glucose
metabolism (14–16).

Because RBCs eject all organelles, including the nucleus
and mitochondria upon maturing, they have no ability to syn-
thesize proteins in response to environmental stimuli. The lack
of mitochondria in mature RBCs also leaves these cells un-
able to rely on oxidative phosphorylation; instead, RBCs are
reliant on glycolysis for energy production. These unique met-
abolic attributes of RBCs provide a highly instructive model
for unraveling how genetic regulation of metabolic pathways
can impact blood storage viability.

Herein, we describe a multi-omics analysis of genetic and
environmental factors dictating RBC variability. Our approach
involved an extensive proteomic and metabolomics analysis
of RBCs derived from a cohort of 18 mono- and di-zygotic
twin-pairs.

The primary challenge of performing proteomic analyses on
red blood cells is the wide dynamic range characterized by an
abundance of hemoglobin. This was surmounted by focusing
our analysis on the membrane fraction of red blood cells.
Although other studies have relied on time intensive affinity
enrichment, utilizing the membrane fraction granted us the
second greatest proteomic depth achieved in red blood cells
which allowed us to process a multitude of clinical samples.
Furthermore, much of the complexity and diversity in red
blood cells is associated with the membrane including many
energy metabolism components (17–19).

Despite the simplified composition of mature RBCs, i.e. no
nucleus or mitochondria, detection and quantification of the
RBC proteome presents a few challenges. First, RBCs must
be purified from other blood cells. During this process, typi-
cally differential centrifugation, care must be taken to limit
contamination, especially from the abundant plasma proteins.
The next, and most significant, obstacle is the large dynamic
range of protein abundance within the RBC (20, 21). Although
the actual dynamic range of the RBC proteome is not yet
known, the technical challenges are analogous to measuring
the proteome of plasma, which has a dynamic range ap-
proaching twelve orders of magnitude (22). Also, similar to the
plasma proteome, in which a single protein (albumin) consti-
tutes 55% of the total protein content, hemoglobin comprises
97%, by mass, of the RBC proteome, making protein deple-
tion a necessary consideration (23). Of the remaining 3%,

carbonic anhydrase accounts for 1/3, so that the remaining
2% of total protein mass is made up of several thousand
different proteins. Identifying these low abundance proteins
from the background presented by hemoglobin and carbonic
anhydrase, is challenging (24, 25). Several methods attempt
to counter this obstacle by use of various types of affinity or
ion exchange separation techniques (26–28). Even when em-
ploying these methods, most RBC proteome analyses yield
detection of less than 1000 proteins, with the exception of one
which identified 1,578 (29).

Most of these studies, especially those with the deepest
coverage, require extensive protein and/or peptide fraction-
ation which, in turn, yields considerable increases in analysis
time—both sample preparation and instrument acquisition.
Recent years have ushered in an era of proteomics where
advances in peptide separation and mass spectrometer per-
formance has accelerated the rate and depth of proteome
analysis (30). We reasoned that application of this technology,
combined with straightforward reversed-phase proteome
fractionation, could expedite sample preparation and afford
reasonably deep RBC proteomic analysis in short order, thus,
affording the throughput for quantitative comparison of clini-
cal RBC samples.

Using our method, we show that in RBCs the concentra-
tions of components in crucial energy metabolism pathways
are inherited en bloc at distinct levels. This results in different
RBC storage phenotypes which can be used to further un-
derstanding of changes during storage and develop improved
storage guidelines and methods. Furthermore, this rich data
set will provide a valuable resource for continuing studies of
RBCs and the heritability of disease.

EXPERIMENTAL PROCEDURES

Twin Subject Enrollment and Sample Collection—This report is a
continuation of twin studies reported previously and utilized the same
study subjects (14, 16, 31, 32). The study was approved by the
Human Subjects office of The University of Iowa Carver College of
Medicine. Written informed consent was obtained from all participat-
ing subjects. Subjects were qualified for participation by meeting
criteria for autologous blood donation according to standard operat-
ing procedures of The University of Iowa DeGowin Blood Center. Twin
pairs were not required to donate samples at the same time and each
individual donated a single blood unit. Standard health history and
demographic information were obtained at the time of enrollment and
informed consent. Reported height and weight were used to calculate
body mass index (BMI). BMI was derived from the formula: BMI �
weight (kg)/(height (m))2. Each subject donated one unit of whole
blood which were processed according to standard operating proce-
dures into a leukocyte-reduced RBC unit in CP2D/AS-3 extended
storage media (Hemonetics Corp, Braintree, MA). During processing,
integral leukocyte reduction filters were retained for extraction of
DNA.

Sample Preparation—Samples of AS-3 preserved RBC units were
prepared from the main unit on each day of sampling. The AS-3
preserved RBCs were sampled by sterile docking of tubing to the
RBC unit, back-filling the tubing with RBCs and sectioning into seg-
ments. This procedure was performed on the first day after donation
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(day 0), and every 14 days thereafter until day 56. This resulted in 5
time points at day 0, 14, 28, 42, and 56.

Segments were drained into 5 ml Eppendorf tubes; after mixing an
aliquot is removed for complete blood count (CBC) testing using a
hematology analyzer (Sysmex XE-2100™ Automated Hematology
System, Sysmex Corp, Kobe, Japan). The remaining sample was
centrifuged at 500 � g for 5 min, after which the storage media (AS-3)
was removed. Samples were further processed and used for meas-
urement of ATP, GSH, and GSSG in RBCs as previously described
(14, 16).

Whole venous blood (EDTA, Vacutainer® purple top blood collec-
tion tube, 8 ml) collected from participants prior to blood donation
was centrifuged at 500 � g for 5 min, followed by removal of the
plasma and buffy coat. RBCs were washed twice with cold isotonic
saline solution. After washing, a 30 �l aliquot of the packed red blood
cells (pRBCs) was removed for complete blood count (CBC) analysis
(Sysmex XE-2100™ Automated Hematology System, Sysmex Corp).
A 100 �l aliquot of pRBCs was lysed with 900 �l of nanopure water.
Samples were thoroughly mixed and stored at �80 °C prior to pro-
teomic and metabolomic analyses.

Zygosity Testing—DNA for zygosity testing was obtained from
leukocyte reduction filters by rinsing filters with 15 ml DPBS. The rinse
volume was centrifuged at 500 � g for 10 min and the cell pellet was
resuspended in 2 ml of DPBS. DNA was extracted from the cell pellet
using a nucleic acid extraction instrument (AutoGen QuickGene 610L,
AutoGen, Holliston, MA) and kit (Fuji QuickGene DNA Whole Blood
Kit, AutoGen).

Genotyping was performed using a previously developed panel of
24 single nucleotide polymorphisms (SNPs) (10). SNP genotyping was
performed using PCR assays (TaqMan, Applied Biosystems, Foster
City, CA) on a Genotyping System (EP1 SNP, Fluidigm, San Fran-
cisco, CA) with a Dynamic Array Integrated Fluidic Circuit (GT48.48,
Fluidigm). Monozygotic (MZ) twins were identified by 90% or greater
genotype concordance; all other twin pairs were identified as dizy-
gotic (DZ).

Global Metabolomics Profile Analyses—The untargeted metabolic
profiling method employed for this analysis combined three inde-
pendent platforms: ultrahigh performance liquid chromatography/
tandem mass spectrometry (UHPLC/MS/MS) optimized for basic
species, UHPLC/MS/MS optimized for acidic species, and gas chro-
matography/mass spectrometry (GC/MS). Samples were analyzed
using procedures described in van 't Erve et al. (14).

Sample Preparation for Proteomic Analysis—
Proteolytic Digestion—A 50 �l aliquot of red blood cells lysed in

500 �l DI water was centrifuged at 4 °C for 30 min at 5 G. The
supernatant was discarded and the pellet was resuspended in 100 �l
lysis buffer (8 M Urea, 100 mM Tris, 10 mM TCEP, 40 mM chloroacet-
amide). The samples were then diluted with 50 mM Tris pH 7.5 until
the pH reached 7.5 (� 1 ml). Trypsin digestion was performed over-
night at room temperature with trypsin (Promega, Madison, WI) added
at a 1:50 (w/w) enzyme to protein ratio with an estimated protein
quantity of 500 �g. A second trypsin digestion was performed the
following morning at 1:200 (w/w) enzyme to protein ratio for 1 h. Each
digest was quenched by the addition of TFA and desalted over tC18
Sep-Pak cartridges (Waters, Milford, MA).

High pH Fraction Collection—Samples were fractionated using
high pH reverse phase separation to increase proteomic depth. The
solvent system consisted of mobile phase A (20 mM ammonium
bicarbonate) and mobile phase B (20 mM ammonium bicarbonate
80% acetonitrile) which was run on an Ultimate 3000 UPLC system
(Dionex Sunnyvale, CA) with a reverse phase C18 column. Gradient
elution was performed at 400 �l min�1 with the gradient increased
from 0 to 6% B over 5 min followed by an increase to 80% B until 24
min and a wash at 100% B for 3 min. Eight fractions were collected

from each sample which were subsequently pooled resulting in four
total fractions per sample.

nLC-MS/MS Analysis—Samples were analyzed using a LC/MS
instrument comprising an Orbitrap Elite hybrid mass spectrometer
(Thermo Fisher Scientific). Reverse phase columns were prepared in
house using a 75–360 �m inner-outer diameter bare-fused silica
capillary with laser pulled tip. The column was packed with 1.7 �m
diameter, 130 Å pore size, Bridged Ethylene Hybrid C18 particles
(Waters) to a final length of 35 cm. The column was installed on a
Dionex Ultimate 3000 UPLC system and heated to 60 °C using an in
house designed column heater for all runs (33, 34). Mobile phase
buffer A was composed of water, 0.2% formic acid, and 5% DMSO.
Mobile phase B was composed of acetonitrile, 0.2% formic acid, and
5% DMSO. 1 �g of sample was injected as determined by quantita-
tive colorimetric peptide assay (Pierce, Rockford, IL). Gradient elution
was performed at 300 nL min�1 with the gradient increased linearly
from 0 to 60% B over 103 min followed by a linear increase to 100%
B until 106 min and a wash at 100% B for 4 min. Survey scans of
peptide precursors were collected from 300–1500 Th with an AGC
target of 1,000,000 and a resolution of 60,000 followed by data
dependent CID MS/MS scans of the 20 most intense peaks in the
quadrupole linear ion trap mass analyzer. Precursors with charge
states equal to 1 or unassigned were rejected and a 45 s dynamic
exclusion was set to expedite identifications.

Data Analysis—Label free quantification was performed using Max-
quant software version 1.5.2.8 (35) and the Andromeda search engine
(36). The results were searched against a Homo sapiens database
containing 90,482 reviewed proteins plus isoforms downloaded from
Uniprot on June 23, 2015. Enzyme specificity was set to fully tryptic
with up to two missed cleavages and carbamidomethylation of cys-
teines as a fixed modification. Oxidation of methionines and protein
N-terminal acetylation were set as variable modifications. The match
between runs feature was utilized to decrease missing data values
within the data set (35). Precursor mass tolerance was 20 ppm and
product ions were searched at 0.5 Da tolerances. Peptides were
filtered to a 1% FDR and combined to protein groups based on the
rules of parsimony, with at least two peptides per protein. Pearson
correlations were calculated between each protein and metabolite
detected using Perseus software (37–38).

Experimental Design and Statistical Rationale—Five di-zygotic twin
pairs and thirteen mono-zygotic twin pairs were used in the study. No
biological replicates were available because each individual was only
required to donate blood at one time. Proteome and metabolome
analyses were performed in randomized order to eliminate systematic
biases.

Heritability Calculations—Heritability estimates were calculated for
each protein and metabolite concentration measured, and for each
measured time point when applicable. The first step to calculating
heritability is using the one-way model of intraclass correlation coef-
ficient (ICC) to determine the similarity of a measure in a twin pair:
ICC � (MSbetween - MSwithin)/(MSbetween � MSwithin), where MSbetween

is the estimate of the mean-square variance between all twin-pairs
and MSwithin is the estimate of the mean-square variance within the
sets of pairs in that group (13). The ICC is used to compare the
variation within specific pairs to that of the population as a whole, and
falls on a scale of �1 to �1. Higher positive values indicate that there
is less variation within the pairs of subjects than there would be within
randomly paired subjects. Positive values approaching 0, as well as
negative ICC values, indicate that the variation within pairs of subjects
is similar to the variation expected within random pairs. A highly
heritable trait between MZ twins would be expected to have an
intraclass correlation coefficient near �1. Once ICC values were
calculated, heritability was estimated using the method derived by
Newman et al., h2 � (ICCMZ - ICCDZ)/(1 - ICCDZ) (39).
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RESULTS

To rapidly remove hemoglobin from RBCs, we separated
RBCs obtained from whole blood via differential centrifuga-
tion. Samples were then centrifuged again, to isolate the
membrane fraction, which was kept for further proteomic
analysis while the supernatant (containing predominantly he-
moglobin) was discarded (40). Although enriching for the
membrane fraction will bias our analyses toward the detection
of membrane bound proteins, many proteins of interest in red
blood cells are associated with the membrane including some
glycolytic proteins (18, 19, 41). Following this extraction, pro-
teins were digested with trypsin, and the resultant peptides
separated into eight fractionations via high pH reversed-
phase liquid chromatography (RPLC). These fractions were
recombined, generating four fractions per sample. Each frac-
tion was then analyzed using a 120 min nanoLC-MS/MS
method. In total, each sample required eight hours of mass
spectrometer analysis, yielding an average of 3678 peptide
spectral matches (PSMs), 2357 unique peptides, and 606
proteins per RBC sample.

Once the challenging problem of depleting hemoglobin had
been overcome, we turned our attention to clinical RBC sam-
ples from 36 individuals including five di-zygotic and 13
mono-zygotic twin pairs. Twins were permitted to donate
blood at separate times under separate conditions which
serves to strengthen our confidence in heritability calcula-
tions. A 50 �l aliquot of washed, lysed RBCs from each
patient was analyzed as described above. Across all 36 pa-
tients we detected 1280 proteins with an FDR less than 1%.
Of these, 105 proteins were detected in all patients. However,
of the proteins in our model (CA1, BPGM, and PFK) all were
present in at least 27 individuals. No missing value imputation
was utilized as this was found to alter our correlation analyses.
The large majority (92%) of these proteins were identified with
at least two peptides uniquely mapping to their sequence. Our

data shows significant overlap with previous results—among
our 1280 identified proteins, 941 have previously been ob-
served in RBCs (73%). When performing heritability calcula-
tions, protein measurements were required to be present for
all five dizygotic twin samples and 10 out of 13 monozygotic
samples.

Metabolomic Analysis—As a relative newcomer in the “om-
ics” era, metabolomics lags behind proteomics in the robust
quantification of thousands of compounds. Discovery meta-
bolomics aims to identify the entire metabolome present in cells;
however, the greatest hurdle is the identification of unknown
features. Using such discovery metabolomics assay � 300
unique metabolites were quantified from these same samples.

Briefly, the discovery metabolic profiling method combined
three independent platforms: ultrahigh performance liquid
chromatography/tandem mass spectrometry (UHPLC/MS/
MS) optimized for basic species, UHPLC/MS/MS optimized
for acidic species, and gas chromatography/mass spectrom-
etry (GC/MS). This method resulted in the quantification of
328 metabolites including lipids, xenobiotics, dipeptides, and
many metabolites from prominent energy pathways (supple-
mental Table S4). Together, our proteomic and metabolomic
data sets comprise the largest multiomic data set of red blood
cells.

Correlation Analysis—To identify potentially coregulated
proteins and metabolites Pearson correlation analysis and
hierarchical clustering were performed between all proteins
and metabolites yielding 58,000 correlations either greater
than 0.75 or less than �0.75 which corresponds to 5% of the
total correlations measured.

These clusters were found to contain unique protein groups
containing proteosomal, fatty acid metabolism, or energy me-
tabolism proteins. Of particular interest is a cluster containing
numerous proteosomal proteins as well as those involved in
glutathione metabolism and glycolysis (Fig. 1). We also ob-

Protein and Metabolite Pearson Correlation

-log(p-value)
2 40

Glutathione Metabolism

Pyruvate Metabolism
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0 10 20

Alzheimer’s Disease
Focal adhesion

Complement cascade

0 2 4

Fatty acid metabolism
Adipocytokine signaling pathway

Leukocyte transendothelial migration

0 10 20
Proteasome

Glutathione Metabolism

Glycolysis/Gluconeogenesis

0 1-1FIG. 1. Red blood cell proteins
and metabolites show clusters of
high correlation. Pearson correla-
tion values were calculated between
every combination of proteins and
metabolites and plotted using Per-
seus. ™KEGG pathway enrichment
of various clusters was measured
using enrichr and the negative log of
the p value for pathways of interest
is reported in the bar charts to the
right, where the color of the bars
corresponds to the section of the
dendrogram where the pathways are
enriched. See supplemental infor-
mation for complete KEGG enrich-
ment results.
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serve glycolytic and glutathione metabolism proteins cluster-
ing with pyruvate metabolism and carbon fixation. All of these
pathways were significantly enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms using the online software
enrichr (42).

Glycolytic protein and metabolite levels were normalized
using feature scaling to examine variation within glycolysis. By
comparing normalized protein or metabolite levels in glycol-
ysis we note that variation within the glycolytic pathway
occurs en bloc at various levels (Fig. 2). The distribution of
variation within glycolytic proteins and metabolites indi-
cates that metabolites are more tightly conserved than pro-
teins (Fig. 2C, 2D). Glycolytic proteins and metabolites each
cluster together and display a high number of positive cor-
relations supporting our conclusion that variation in glycol-
ysis occurs en bloc.

Heritability—Among 18 twin pairs, zygosity testing identi-
fied 13 MZ and 5 DZ twin pairs. The means of age, weight, and
BMI were not significantly different between MZ and DZ twin
groups (Table I). As previously reported, a high degree of
estimated heritability for height (96%), weight (97%), and BMI
(63%) was observed in this study population (31). The simi-
larity of these results to estimates in a previous report study-
ing 30,111 twin pairs in eight countries supports the validity of
the sample population for determination of heritable traits
(43).

Of the proteins and metabolites measured, 119 protein and
148 metabolite concentrations were found to be over 30%
heritable, and 73 and 104 were greater than 50% heritable
respectively (Fig. 3) (supplemental Table S3). Previous studies
using this twin cohort have used 30% heritability as a limit for
consideration (14, 14, 31, 32). In particular, we noted that the
concentration of the key regulatory enzyme liver type phos-
phofructokinase (PFK) is 57% heritable as well as the con-
centration of phosphoglycerate mutase which is 29% herita-
ble. Muscle and platelet PFK isoforms were also detected in
our data set, but were not detected in sufficient samples to
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FIG. 2. Relative abundance of gly-
colytic proteins and glycolytic me-
tabolites is conserved among twin
pairs. The average protein (A) and me-
tabolite level (B) in three representative
monozygotic twin pairs show variation
in glycolytic activity within the popula-
tion, indicating abundances of these
proteins are influenced en bloc. All pro-
tein and metabolite levels were normal-
ized to the percentage of maximum
protein and metabolite level (see exam-
ple calculation) using feature scaling.
Pyruvate was excluded from the me-
tabolites as it was found to not corre-
late with the other members. The differ-
ence between each protein (C) and
metabolite (D) is reported in a histo-
gram. Sequential proteins and metabo-
lites in glycolysis were subtracted to
give a scaled difference components of
the pathway. The peak is centered at
zero for proteins and metabolites indi-
cating that individuals inherit high or
low levels of glycolytic compounds to-
gether. Glycolytic metabolites appear
to be more tightly conserved than
protein.

TABLE I
Comparison between the mono- and di-zygotic twin populations in

this study

Trait
Monozygotic

(MZ)b
Dizygotic

(DZ)b
p

valuea

Female pairs 11 2
Male pairs 2 2
Male/female pairs � 1
Total pairs 13 5
Age/Years 25 � 7 26 � 9 0.7
Weight/kg 68 � 14 66 � 8.6 0.6
Height/m 1.68 � 0.07 1.74 � 0.06 0.2
BMI 24 � 4.3 22 � 2.7 0.11

a One way ANOVA DZ versus MZ.
b Mean � S.E.
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determine heritability. Additionally, the concentration of bis-
phosphoglycerate mutase (BPGM), a key enzyme for regulat-
ing the oxygen loading capacity of hemoglobin in red blood
cells was 50% heritable. No other glycolytic proteins were
found to be heritable; however, we were interested to observe
that heritable proteins were found at important regulatory
steps and branch points in the pathway. The heritability of
glycolysis is further supported by high heritability estimates of
the metabolites fructose 1,6-bisphosphate, 3-phosphoglycer-
ate, DHAP, 2,3-DPG, phosphoenolpyruvate, and pyruvate.
Within glutathione metabolism, GST, GCLC, GPx4, and sev-
eral hemoglobin subunits were found to be heritable as well
as many metabolites including glutamate, cysteinylglycine,
GSSG, GSH, and ribose-5-phosphate (Fig. 3).

High levels of heritability are similarly observed within glu-
tathione metabolism and the pentose phosphate pathway.
For example, concentrations of the proteins glutathione per-
oxidase, glutathione S-transferase, and glutamate cysteine
ligase were heritable as well as the metabolite concentrations
of ribose-5-phosphate, glutathione, and glutathione disulfide.
These heritable metabolite concentrations are in accordance
with those detected in previous red blood cell studies (16).

Many of the proteins and metabolites implicated in gluta-
thione metabolism are also correlated and cluster with those
discussed previously in glycolysis. This is not surprising, as
maintaining redox balance is of key importance to red blood
cells and helps preserve sufficient NAD concentration to con-
tinue glycolysis. Glycolysis and glutathione metabolism are
highly correlated and contain heritable concentrations of pro-

teins and metabolites, implying they are inherited together at
varying degrees (Fig. 4).

The best marker for 42 days poststorage ATP concentration
in glycolysis and glutathione metabolism is carbonic anhy-
drase 1 (CA1) which has a �0.56 correlation with ATP. This
correlation strengthens with increased time in storage: �0.10
at day 0, �0.22 at day 14, �0.25 at day 28, and �0.56 at day
42. CA1 catalyzes the conversion of CO2 and H2O to produce
carbonic acid, which is de-protonated at neutral pH, gener-
ating a proton and lowering the pH of stored blood.

The acidification of blood during storage is a well-charac-
terized phenomenon and the resulting decreased pH inhibits
PFK. (44) PFK inhibition caused by acidic conditions resulting
from CA1 may explain the correlation we observe between
higher CA1 concentrations and lower poststorage ATP. The
newest blood storage solution, AS-7, buffers blood acidifica-
tion with the addition of bicarbonate to increase poststorage
ATP concentration and in vivo recovery (44–46). Maintaining
a high pH during storage is thus imperative for ATP produc-
tion, and supported by the correlation we have shown be-
tween CA1 and poststorage ATP.

Model of Poststorage ATP—An important goal of transfu-
sion medicine is to improve poststorage ATP levels in blood,
as RBC ATP concentrations correlate positively with trans-
fused RBC recovery (47, 48). Using our large-scale data set
we considered two potential phenotypes of high or low con-
centrations of ATP at day 42 of storage (Supplemental Fig. 1).
The “high” and “low” poststorage ATP phenotypes can be
correlated with proteins known to effect ATP concentrations
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FIG. 3. (A) A total of 1,280 proteins
and (B) 330 metabolites were de-
tected in red blood cells. Of these,
119 and 148 were found to be over
30% heritable, respectively. To calcu-
late heritability in proteins, measure-
ments were required to be present in all
three out of five dizygotic twin pairs and
10 out of 13 dizygotic twin pairs. C,
Proteins and metabolites greater than
30% heritable from glycolysis and glu-
tathione metabolism are reported.
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and generate a model to understand poststorage ATP levels.
We include five key parameters in this model including PFK,
CA1, band 3, BPGM, and pH. Strikingly, concentrations of all
protein components of this model were found to be at least
45% heritable. Band 3, BPGM, and CA1 correlate negatively
with day 42 poststorage ATP levels (-0.41, �0.39, �0.56) and
together may shuttle flux away from glycolysis and ATP pro-
duction. We also observe positive correlations between pH
and ATP early in storage as discussed previously (Fig. 5)
which appears to weaken over time. Day 0 ATP correlates
positively with pH at day 7, day 14, and day 28 (0.48, 0.80,
0.51) whereas day 42 ATP correlates positively with pH at day
7 and day 14(0.56, 0.57). No positive correlations between pH
and ATP are observed at day 42 or 56. However, PFK con-
centrations correlate positively with pH later in storage at day
42 and 56 (0.45, 0.42) and are associated with increased ATP
generation in glycolysis.

DISCUSSION

Our approach to RBC proteome characterization provided
an expedient and robust analysis of low abundance RBC
membrane proteins, and produced the most thorough analy-
sis of the RBC membrane proteome to-date without the use of
affinity based depletion strategies. We expect that further
efforts to deplete hemoglobin would result in increased iden-
tification of low abundance proteins, but this would also in-
crease processing time per sample. Using a unique data set
of twin samples we determined heritability of over 700 pro-
teins and metabolite concentrations.

Within our data set we took particular interest in the inter-
actions between energy and glutathione metabolism. Forty-
nine correlations greater than 0.5 are present between the
proteins and metabolites of these pathways along with only
five negative correlations. The negative correlations included
three correlations between pyruvate kinase and other glyco-
lytic proteins, between poststorage ATP and CA1, and be-
tween G6P and the delta subunit of hemoglobin. The hemo-

globin subunits were included with glutathione metabolism
because of their role in oxygen binding and ability to generate
superoxide and hydrogen peroxide through hemoglobin (49).
Similarly, the anion transport protein band 3 was included
with glycolytic proteins and metabolites because of its role
binding glycolytic proteins in an oxygen dependent manner
(19, 50). We thus propose that glutathione metabolism and
glycolysis are highly connected pathways and may be linked
by a similar regulatory mechanism.

Because of their role as oxygen carriers and thus the large
quantity of oxyhemoglobin, red blood cells have an especially
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FIG. 4. A high number of positive
correlations are observed be-
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Pearson correlation greater than 0.5
or less than �0.5 is required to show
a connection. Heritability of these
pathways can be observed in the
shade of the node outline as well as
by the gradient outside the net-
work. This figure was created using
Cytoscape™ (58).
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FIG. 5. Poststorage ATP levels are determined by several key
factors. A, Low ATP levels following 42 days of storage are correlated
with high levels of band 3, BPGM, and carbonic anhydrase. Band 3
binds glycolytic proteins decreasing flux through glycolysis whereas
BPGM shunts intermediates to the luebering-rapoport pathway away
from the generation of ATP. Similarly, high levels of carbonic anhy-
drase produce acidic conditions and subsequently inhibit PFK. In
support of this we observe negative correlations between carbonic
anhydrase and pH level during storage. Low poststorage ATP is
additionally correlated with low pH. Correlation values of greater than
0.3 were required for consideration. B, The opposite model leads to
the generation of high ATP levels following 42 days of storage. The
size of the protein in each case is representative of the concentration
associated with each phenotype.
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high burden of oxidizing species such as superoxide and
hydrogen peroxide. Red blood cells limit the accumulation of
these species by maintaining a large pool of reducing equiv-
alents generated from glucose through the pentose phos-
phate pathway. In the lungs where O2 levels are high, RBCs
are exposed to higher levels of oxidative stress necessitating
increased flux through the pentose phosphate pathway to
generate reducing equivalents and supply the glutathione cy-
cle. Meanwhile, in peripheral tissues with low O2 levels, eryth-
rocytes must pass through narrow capillaries causing distor-
tion from mechanical stress and cation leaks (19). This causes
an increased demand for ATP to restore intercellular ion bal-
ance. Band 3 specifically binds PFK, GAPDH, and ALDOA in
the presence of oxyhemoglobin and diverts flux toward the
pentose phosphate pathway to generate NADPH. As we
would expect, band 3 correlates negatively with several gly-
colytic metabolites, including phosphoenolpyruvate and 2,3-
DPG (-0.36 and �0.34 respectively). It also positively corre-
lates with several glycolytic proteins, which is compatible with
higher concentrations of band 3 being necessary to bind
higher levels of glycolytic proteins.

Supporting this model we also observe high levels of cor-
relation between glutathione metabolism and the pentose
phosphate pathway. These are intimately linked pathways as
the reductive equivalent NADPH generated by the pentose
phosphate pathway is necessary to reduce glutathione disul-
fide generated during removal of hydrogen peroxide.
Gluconolactonase is positively correlated with GPx1, GPx4,
as well as glutamate cysteine ligase. Also, glutathione is
correlated with 6-phosphogluconate, gluconolactonase, and
6-phosphogluconate dehydrogenase demonstrating that the
pentose phosphate pathway is essential for the continuation
of glutathione metabolism.

Many of the concentrations of proteins and metabolites in
these pathways were also found to be heritable. Within glu-
tathione metabolism, glutamate, GPx4, glutamate-cysteine
ligase, glutathione, and glutathione disulfide concentrations
were all found to be over 45% heritable. Furthermore, in
glycolysis, concentrations of the regulatory enzyme PFK as
well as BPGM and the metabolites pyruvate, phosphoenol-
pyruvate, 3-phosphoglycerate, 1,3-bisphosphoglycerate,
DHAP, and FDP were all found to be over 50% heritable (Fig.
3). It is also noteworthy that one of the most heritable protein
concentrations we observed was carbonic anhydrase, at
85%, which is an important regulator of pH and therefore PFK
activity. Based on the strong correlation observed between
these pathways, and the high levels of heritably throughout,
we infer that glutathione metabolism, pentose phosphate
pathway, and glycolysis are coupled pathways that can be
inherited en bloc at various levels.

Together our results suggest a model in which inheritance
of higher concentrations of band 3 and CA1 reduce flux
through the glycolytic pathway by greater binding and inacti-
vation of PFK and by allosteric inhibition of PFK through lower

pH. In addition, inheritance of higher concentrations of BPGM
may decrease ATP production by competing with PGK for an
ATP-producing step in glycolysis. Higher inherited concentra-
tions of PFK may increase flux through the glycolytic pathway.
The combined effect of inheritance of these enzyme concen-
trations accounts both for the en bloc inheritance of glycolytic
pathway intermediates, and the heritability of ATP concentra-
tion at day 42 and day 28 of storage. The heritable concen-
trations of many molecules in the pentose phosphate and
glutathione pathways may also be predicted by this model.

Our model has implications in the management of blood
storage as it confirms that energy metabolism and ATP con-
centrations are heritable traits. In the future, we can imagine
blood donors being tested once for levels of key heritable
markers to determine a blood storage profile and optimum
storage period. Based on our results, some donors actually
show an increase in ATP concentrations early in storage sug-
gesting this blood could theoretically be stored longer than
individuals that show a continual decrease in ATP. Individuals
that have increasing ATP during storage also show correla-
tions with higher PFK and lower BPGM. This could prevent
potential ATP loss by the diversion of 1,3-bisphosphoglyver-
ate to produce 2,3-bisphosphoglycerate. Furthermore, indi-
viduals that have decreasing ATP during storage have lower
PFK and higher BPGM concentrations. These correlations are
suggestive of heritable markers which could someday be
used to predict poststorage ATP levels in blood donors.

The negative correlation identified between CA1 and post-
storage ATP is significant in that it provides one reasonable
explanation for ATP decreases that occur in storage. RBC
units are stored in gas permeable bags allowing CO2 to dif-
fuse into the bag causing acidification and inhibiting PFK. This
will decrease the natural rate of energy metabolism and sub-
sequently ATP production. Atmospheric conditions have been
shown capable of regulating RBC metabolism in storage pre-
viously in the case of oxygen saturation (50). Our results
suggest that the addition of CA1 inhibitors to stored blood, or
the selection of donors known to have low inherited levels of
CA1 are potential facile methods to increase the quality and
lifetime of stored blood. The importance of pH modulation in
blood storage was observed to be of key importance in the
development of the newest blood storage solution, additive
solution-7, which was primarily improved by increased buff-
ering capacity (45).

RBC blood bank storage is not an activity that occurs in
nature, so the strong genetic components suggests that it
intersects with a deeper problem in evolutionary biology such
as the tradeoff involved in oxygen-based energetics with the
risks of oxygen-induced biochemical damage. Keeping RBC
glycolytic flux high is known to be advantageous in RBC
storage and function and probably represents one of the
poles of the deeper tradeoffs in cellular or whole body ener-
getics. The implications for RBC storage are that it is possible
to both identify markers to identify individual blood donors

Inheritance of Energy Pathways in Red Blood Cells

Molecular & Cellular Proteomics 15.12 3621



with better blood storage or to support identified aspects of
metabolism in all donors that make all cells store better.

The heritability we observed in many pathways within eryth-
rocytes may have ramifications in metabolic disease. Dis-
eases such as Alzheimer’s disease and cancer are known to
involve aberrations of energy metabolism (51–56). Current
disease models suggest that a low glycolytic capacity may
confer a risk of Alzheimer’s disease but protect against can-
cer. Because we have determined many components of gly-
colysis to be heritable in erythrocytes, we hypothesize that
other cell types are similarly affected, and individuals who
inherit low levels of glycolytic proteins and metabolites may
be more prone to developing Alzheimer’s disease later in life.
Similarly, people who inherit high levels of glycolysis may be
inclined to develop cancer. Inverse comorbidity has been
documented between these diseases, supporting our hypoth-
esis that inheritance of energy metabolism along a spectrum
may contribute to the incidence of cancer or Alzheimer’s
disease (57).

Supplemental Information—All raw files and annotated
spectra for single peptide protein identifications from these
experiments are available on Chorus (Project ID 1114). Anno-
tated spectra of proteins identified by a single peptide can be
viewed on MS Viewer with the key jow7i89mmv.
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