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Quantifying electronic band interactions
in van der Waals materials using angle-resolved
reflected-electron spectroscopy
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High electron mobility is one of graphene’s key properties, exploited for applications and

fundamental research alike. Highest mobility values are found in heterostructures of graphene

and hexagonal boron nitride, which consequently are widely used. However, surprisingly little

is known about the interaction between the electronic states of these layered systems. Rather

pragmatically, it is assumed that these do not couple significantly. Here we study the

unoccupied band structure of graphite, boron nitride and their heterostructures using angle-

resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride

bands do not interact over a wide energy range, despite their very similar dispersions.

The method we use can be generally applied to study interactions in van der Waals systems,

that is, artificial stacks of layered materials. With this we can quantitatively understand the

‘chemistry of layers’ by which novel materials are created via electronic coupling between the

layers they are composed of.
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E
lectronic band structure is the key to most properties of
crystalline materials. Band structure measurements are
therefore widely used to study the subtle interplay of

electrons with lattice excitations1,2 or collective electron
phenomena3. The bands and their dispersions originate from
the quantum overlap between the electronic states of the atoms
that make up the crystal. Consequently, the coupling between the
electron systems of the individual layers of van der Waals (vdW)
materials4 is encoded in their band structure5,6. Heterostructures
of graphene and hexagonal boron nitride (hBN) are widely used
to screen electrons in graphene from the environment, therefore
providing high electron mobility7–9. Isolation of the two materials
is generally assumed over the full energy range, although small
changes in the graphene band structure are observed as a function
of the stacking angle of graphene and hBN10–13.

Here we scrutinize the band structure of graphene–hBN
heterostructures over a wide energy range to shed light on the
interactions in this most widely used vdW system. We apply a
series of experimental techniques based on low-energy electron
microscopy (LEEM) to assess structural and electronic properties
in situ, with high lateral resolution14,15. First, we study the
band structures of graphite and bulk hBN as a reference.
Combining LEEM-based angle-resolved photoemission spectro-
scopy (ARPES) and angle-resolved reflected-electron spectro-
scopy (ARRES)16, we deduce information on both the occupied
and unoccupied bands over an unprecedented energy range. Then
we investigate the band evolution in few-layer hBN and show that
our ARRES data match very well with ab initio calculations.
Finally, we turn to stacks of few-layer graphene on hBN to study
their electronic coupling over an energy range of B25 eV.
All samples are produced on a conductive silicon substrate using
a polymer-free assembly technique17 to guarantee clean surfaces
and graphene–hBN interfaces (see Methods section).

Results
Band structure of the bulk materials. Figure 1a,b show local
measurements on mechanically exfoliated graphite and bulk hBN
flakes of B20 nm thickness, respectively. The occupied bands
(negative energies in Fig. 1a,b) are measured with ARPES using a
helium ultraviolet light source18, whereas the unoccupied bands
(positive energies in Fig. 1a,b) are studied using ARRES16. This

novel technique offers high lateral resolution, allowing us to
measure band structures on small, exfoliated flakes. Although the
optimal lateral resolution of ARRES is B10 nm (ref. 16), here we
integrate over larger areas to improve the signal-to-noise ratio.
ARRES uses the fact that the reflectivity of low-energy electrons
depends strongly on both their kinetic energy E0 (refs 14,15,19)
and their in-plane momentum k|| (refs 20,21) (both of which can
be precisely tuned in LEEM). In particular, the electron reflection
probability for a specific combination of E0 and k|| is high when the
material studied has a band gap at that energy (red in Fig. 1a,b).
The reflection probability is low, in contrast, if E0 and k|| coincide
with an unoccupied free-electron-like band (blue in Fig. 1a,b). The
special case k||¼ 0 (normal electron incidence) is regularly used in
so-called LEEM-IV experiments22,23. It is noteworthy that we
cannot measure between the Fermi level (maximum for ARPES)
and the vacuum energy (minimum for ARRES). The resulting gap,
the work function, is incorporated to scale in Fig. 1. In total, the
ARPES–ARRES combination gives insight into an exceptionally
wide energy range of the band structure. In fact, in Fig. 1a,b, all
bands around the G-point are probed, except for the lower edge of
the conduction band. Moreover, the combined data are well-
described by band structure calculations for bulk graphite and hBN
(black lines in Fig. 1a,b, respectively).

Interestingly, ARRES does not only reveal band edge positions.
Rather, ARRES probes the full transmission states of a material.
Those states can be found by calculating the full electron
scattering problem starting from a plane wave in the vacuum
half-space above the sample and computing its reflection and
transmission at the slab of material (see details in the Methods
section and refs 24–26). A calculated ARRES spectrum for bulk
hBN is plotted in Fig. 1c and shows striking similarity to the
measurements in Fig. 1b. Most intuitively, ARRES data can be
compared with the density of unoccupied states projected onto
the sample plane. To illustrate this, we calculate the projected
density of states for bulk hBN from its Kohn–Sham band
structure in the local density approximation24. Remarkably, this
calculation shown in Fig. 1d does not only describe the large band
gaps (observed as red areas in Fig. 1b) but also the subtle pockets
in the band structure (for example, the gaps marked with arrows
in Fig. 1d). The energy resolution of our LEEM microscope is
B150 meV, which determines the minimal features of the band
structure that can be probed in our instrument. It is worth noting

E
0 

(e
V

)
E

0 
(e

V
)

E
0 

(e
V

)

E
0 

(e
V

)

E
0 

(e
V

)

E
0 

(e
V

)

0

5

10

15

20

25

30

35

40
M KΓ

1.0 0.5 0.0 0.5 1.0 1.5

k|| (Å
–1) k|| (Å

–1)

k|| (Å
–1)

k|| (Å
–1)

k|| (Å
–1)

k|| (Å
–1)

k|| (Å
–1)k|| (Å

–1)

1.0 0.5 0.0 0.5 1.0
–20

–15

–10

–5

M MΓ

σπ

0

5

10

15

20

25

30

35

40

1.0 0.5 0.0 0.5 1.0

M MΓ

σπ

1.0 0.5 0.0 0.5 1.0 1.5

M KΓ

–20

–15

–10

–5

0

5

10

15

20

25

30

35

40
1.0 0.5 0.0 0.5 1.0 1.5

1.0 0.5 0.0 0.5 1.0

M KΓ

0.01

0.5

0.1

In
te

ns
ity

 (
a.

 u
.)

0

5

10

15

20

25

30

35

40
1.0 0.5 0.0 0.5 1.0 1.5

1.0 0.5 0.0 0.5 1.0

M KΓ

–20

–15

–10

–5

b dca

Figure 1 | Measured band structures of the mother compounds graphite and bulk hBN. (a) Band structure of graphite. The unoccupied bands (positive

energies) are measured by ARRES, the occupied bands (negative energies) by ARPES. The full band structure is well described by band structure

calculations (black lines, adapted from ref. 27). (b) Experimental band structure of bulk hBN measured as in a. Black lines are calculated band edges.

(c) ARRES spectrum calculated with a full-potential linear augmented plane waves method (Methods section and refs 24–26). (d) Calculated projected

density of states of bulk hBN. The features in the measured unoccupied band structure in b can easily be identified with bands and band gaps, as well as

fine pockets in the calculations (for example, arrows in d).
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that the almost perfect match between experimental data in
Fig. 1b and theoretical predictions in Fig. 1c,d is achieved by ab
initio calculations without free parameters. Conversely, ARRES
data may serve as a benchmark for more detailed band structure
calculations. This is particularly important, as no experimental
data have been available in the energy range probed here.

Band structure of few-layer hBN. After establishing ARRES as a
method to study band properties of graphite and bulk hBN—the
mother compounds of vdW heterostructures—let us now discuss
these materials in the few-layer limit. It is well known that for
few-layer graphene, the continuous conduction band of graphite
splits up into quantized transmission resonances. For a stack of
nþ 1 graphene layers, one can find n such transmission reso-
nances, which lead to n characteristic minima in LEEM-IV

curves, thus unambiguously revealing the number of graphene
layers27–29. These transmission resonances can be viewed in
analogy to a tight-binding model where individual transmission
resonances correspond to ‘atomic’ wave functions and are
frequently called ‘interlayer states’16,28. It is noteworthy that in
contrast to tight-binding theory, the transmission resonances
probed here cannot be assigned to localized states and, in
particular, are not spatially localized between adjacent layers. In
this tight-binding picture, the energetic splitting of the
transmission resonances can be interpreted via a hopping
integral that quantifies their interaction. Consequently, the
energetic separation of the minima in the IV curves is a direct
measure for the hopping integral between the individual
‘interlayer states’, that is, their coupling. Interestingly, the same
arguments apply to few-layer hBN and hence similar discrete
transmission resonances are expected30. To investigate in detail
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Figure 2 | Band quantization in few-layer hBN. (a) LEEM micrograph of flakes with different number of hBN layers. E0¼ 3.7 eV is used for optimal layer

contrast. (b) IV curves taken by averaging the intensity of the areas indicated in a. Clear minima are observed for 0oE0o6 eV. A number of n minima

(marked with arrows) corresponds to n quantized interlayer bands and hence, to nþ 1 hBN layers. The IV curves are vertically shifted by 0.1 a.u. for clarity.

The inset shows a sketch of the flake assembly along the line profile in a. A monolayer hBN flake lies over a step edge from bilayer to trilayer hBN. (c)

ARRES measurements performed in the areas of two, three and four hBN layers marked black, red and blue in a, respectively. (d) ARRES calculations for

two, three and four hBN layers. (e) Measured dispersion of the quantized interlayer bands extracted from c. (f) Ab initio calculations describe the dispersion

well over the full range of measurement.
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how the band structure of hBN evolves towards the few-layer
layer limit, hBN is mechanically exfoliated and few-layer flakes
are selected and deposited onto a silicon substrate. Figure 2a
shows a bright-field LEEM image of a few-layer hBN crystal. In
particular, we chose an area where a monolayer hBN flake lies
over a natural step edge from trilayer to bilayer hBN as sketched
in Fig. 2b. This layer assignment can be made when looking at the
LEEM-IV curves in Fig. 2b that are taken at the marked areas in
Fig. 2a. Indeed, we observe n minima (marked with arrows in
Fig. 2b) for nþ 1 hBN layers, as in few-layer graphene. Clearly,
the top monolayer flake adds another quantized transmission
state (visible as an additional minimum in the IV curves) to both
the three and four hBN layer areas. This indicates that the
monolayer flake is electronically coupled to the underlying hBN
in the same way these hBN layers are coupled to each other. It is
worth noting that the minima expected for E0o2 eV are
convoluted with the steep mirror-mode transition and are
therefore hard to identify or are completely invisible.

Figure 2c shows ARRES measurements performed on bilayer,
trilayer and four-layer areas (the size of the used areas is marked
by black, red and blue circles in Fig. 2a, respectively). For high
energies, these ARRES maps clearly show features identical to
bulk hBN (Fig. 1b), confirming that the flakes are few-layer hBN
indeed. In addition, we perform ab initio ARRES calculations,
that is, solving the full electron scattering problem in the vacuum
and crystal half spaces (see Methods). The calculations, shown in
Fig. 2d, reproduce our experimental data in almost all details for
higher energies and for 0 eVoE0o5 eV as well. The latter is the
most exciting part, being the energy range of the quantized quasi-
two-dimensional bands of bilayer, trilayer and four-layer hBN.
Their respective dispersion relations are deduced from both
Fig. 2c (experiment) and Fig. 2d (theory), and are plotted in
Fig. 2e,f, respectively. The correspondence between theory
(Fig. 2d,f) and experiment (Fig. 2c,e) is excellent without free
parameters, demonstrating the strength of ARRES in getting
quantitative data on unoccupied bands and their evolution
towards the few-layer limit.

Studying the coupling within heterojunctions. From Fig. 2, we
conclude that transmission resonances exist in the same energy
range for both few-layer hBN and graphene16,27,28. Consequently,
one may expect the corresponding electronic states to interact
strongly once the two materials are joined together, especially as
the stacking distance is comparable to the interlayer spacing in
bulk hBN and graphite. Let us suppose this were true. Then, on
stacking few-layer graphene on bulk hBN, the graphene interlayer
states should mix with the broad hBN bulk band to form one
continuous band. In that case, LEEM-IV curves should exhibit a
broad minimum without oscillations for 0 eVoE0o5 eV.
However, this scenario is in stark contrast to the experimental
results. In Fig. 3b, we show IV curves for several thicknesses of
graphene, stacked onto bulk hBN (see Fig. 3a,c). Remarkably, for
low energies the IV curves clearly show the oscillations related to
the quantization of the graphite band into n transmission
resonances for nþ 1 layers, just similar to that for few-layer
graphene on Si. Hence, the intimate contact to the layered hBN
crystal below does not lead to a common continuous band.
Moreover, if we zoom out to the full energy scale (0–30 eV), we
find that the IV curves continuously evolve from hBN-like to
graphite-like as the number of graphene layers n increases.
Specifically, all hBN-related features (most prominently the deep
minimum around E0E8 eV in Fig. 3b) vanish for n¼ 4.
Remarkably, this layer dependence is well-described by a linear
combination of the experimental IV curves of graphite, IG(E0),
and bulk hBN, IhBN(E0) (green and blue curves in the first panel

of Fig. 3d, respectively). In Fig. 4a, we fit a simple Lambert–Beer
law (red lines) to the measured IV curves (black circles) for all
samples where the total intensity IvdW reflected from the full stack
is given by

IvdW E0; nð Þ¼IG E0ð Þþ IhBN E0ð Þ � s � e� n=d: ð1Þ
The fit works remarkably well for all n and the full energy range
(it is noteworthy that the layer-dependent low-energy minima
cannot be reproduced with this approach). We find a
characteristic penetration depth of d¼ 0.9 graphene layers and
a ratio of interaction cross-sections of low-energy electrons with
graphene and hBN of s¼ 15. Moreover, this simple fit describes
the data at least as well as more sophisticated electron reflection
calculations that take band structures and coherent effects into
account (light blue lines). The last panel in Fig. 4a shows ab initio
calculations of IV curves for different stacking geometries of
graphene on hBN. The result is independent of the stacking
geometry, which suggests that the unoccupied bands are not
significantly affected by the details of the Moiré superlattice
formed due to the lattice mismatch between graphene and hBN, a
subtle effect that can be resolved at low temperatures close to the
Fermi level10–13. Given the success of this simple Lambert–Beer
model together with the existence of the quantized graphene
bands on hBN, we can rule out interaction of the interlayer states
of few-layer graphene and hBN over an energy range of 30 eV,
despite the very similar nature and the intimate contact of the two
materials (we note that also at much higher energies, no
interaction was observed in near edge X-ray absorption fine
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(a) Few-layer graphene is transferred onto a hBN flake (both selected

using optical microscopy). A PEEM image (right) of the assembled

graphene-hBN stack shows clear contrast between the different materials.

(b) LEEM-IV curves resolve the thickness-dependent oscillations between

1 eVoE0o5 eV characteristic for few-layer graphene clearly. (c) LEEM

images (top and bottom) acquired at E0¼4.3 eV together with an overlay

of the two optical images from a. Comparison of the three images allows it

to identify areas with different numbers of graphene layers. The areas

where IV curves are taken are marked. The dark lines in the LEEM images

are wrinkles in the graphene sheet.
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structure measurements31). This is a crucial finding, as the
efficient decoupling of the layers is the underlying reason for the
high charge-carrier mobility observed in graphene–hBN
heterojunctions. It is worth noting that here we chose thin
graphene on top of a thick hBN substrate for its relevance as a
widely used system for electronic transport studies. The
experimental outcome of ARRES measurements in this two-
component heterostack is very clear and can be interpreted
straightforwardly. In the more complicated case of few-layer
graphene on few-layer hBN, for example, a beating pattern
between hBN and graphene transmission resonances emerges32,
which bears the risk of obscuring the underlying physics. In
these cases, theoretical calculations as shown in Fig. 4b are
necessary to understand the IV curves of the combined system.
As an example, we show in Fig. 4b how IV curves calculated
using a Kronig–Penney model for three layers of graphene on
hBN substrates evolve with increasing substrate thickness from
5 to 22 hBN layers. The convergence from a complex beating
pattern towards the IV curve of graphene on bulk hBN
(as experimentally observed in Fig. 3b) with increasing hBN
thickness is apparent in the smoothed calculation (red lines in
Fig. 4b). The methodology presented here is thus a versatile tool
for studying properties of vdW materials, in particular their
interlayer coupling. Combining ARRES with ARPES using a
synchrotron source and improving the energy resolution by
using an energy-filtered electron source would even allow one to
study charge transfer between the layers and determine band
offsets in the future.

Discussion
In this letter, we present a test bed for interactions in vdW
materials by measuring quantized transmission resonances in
their unoccupied band structure. We show that the conduction
bands of few-layer hBN and graphene are quantized in a
comparable manner. Despite their similar symmetry and energy
range, however, the interlayer states of graphene and hBN do not
interact electronically. This is an important insight into the
graphene–hBN system, which is the most widely used vdW
heterostructure. The methods presented here, specifically ARRES,
are directly applicable to more complex vdW materials, for
example, stacks including transition-metal dichalcogenides.
Consequently, we can study (lack of) electronic overlap between
the layers quantitatively. Similar to chemistry, where molecular
orbitals are formed from atomic orbitals via their interaction to
create compounds with novel properties, this brings us one step
closer to a quantitative chemistry of layers. Detailed insight into
the interlayer coupling marks an important step towards creating
vdW heterostructures with properties not available in conven-
tional materials.

Methods
Sample fabrication. We exfoliate flakes from highly oriented pyrolitic graphite
and bulk hBN crystals onto Si/SiO2 substrates. Few-layer flakes are selected via
optical microscopy. For the vdW assembly, the top few-layer graphene flake is
picked up from the Si/SiO2 substrate with a polydimethylsiloxane stamp coated
with an adhesion layer of poly(bisphenol A-carbonate). vdW forces allow us to pick
up hBN with this graphene layer. The whole assembly is placed onto a conductive
silicon sample via thermal release of the poly(bisphenol A-carbonate) and wet-
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chemical cleaning in chloroform and isopropanol, subsequently. Few-layer hBN is
transferred onto silicon substrates using the same method. The measurements
presented here do not depend on the substrate used, as long as it is conductive
enough to prevent charging. The samples are heated in the LEEM to 500 �C, to
desorb any residues from the surface.

Low-energy electron microscopy. All measurements presented are conducted in
the ESCHER setup33, which has a commercially available, aberration-corrected FE
LEEM P90 of Specs GmbH as its centrepiece. Microscopy is performed at
5� 10� 10 mbar and 400 �C, to prevent the formation of carbon-based
contaminants under the electron beam.

Theoretical methodology. All calculations were performed with a full-potential
linear augmented plane waves method based on a self-consistent crystal potential
obtained within the local density approximation as explained in ref. 24. The ab
initio reflectivity spectra are obtained with the all-electron Bloch wave-based
scattering method described in ref. 25. The modification of this method for
stand-alone two-dimensional films of finite thickness was introduced in ref. 26.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.

References
1. Cuk, T. et al. A review of electron-phonon coupling seen in the high-Tc

superconductors by angle-resolved photoemission studies (ARPES. Phys.
Stat. Solid. 242, 11–29 (2005).

2. Tanaka, S., Matsunami, M. & Kimura, S. An investigation of electron-phonon
coupling via phonon dispersion measurements in graphite using angle-resolved
photoelectron spectroscopy. Sci. Rep. 3, 3031 (2013).

3. Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped
graphene. Science 328, 999–1002 (2010).

4. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499,
419–425 (2013).

5. Coy Diaz, H. et al. Direct observation of interlayer hybridization and Dirac
relativistic carriers in graphene/MoS2 van der Waals heterostructures. Nano
Lett. 15, 1135–1140 (2015).

6. Le, N. B., Huan, T. D. & Woods, L. M. Interlayer interactions in van der waals
heterostructures: electron and phonon properties. ACS Appl. Mater. Interfaces
8, 6286–6292 (2016).

7. Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Tempe-
rature-dependent transport in suspended graphene. Phys. Rev. Lett. 101,
96802 (2008).

8. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport
in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

9. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics.
Nat. Nanotechnol. 5, 722–726 (2010).

10. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in
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