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Classic IL-6R signalling is dispensable for intestinal epithelial
proliferation and repair
K Aden1,2, A Breuer1, A Rehman1, H Geese1, F Tran1, J Sommer3, GH Waetzig4, TM Reinheimer5, S Schreiber1,2, S Rose-John6,
J Scheller3 and P Rosenstiel1

Inflammatory bowel disease is characterized by disturbed cytokine signalling in the mucosa. Inhibition of the proinflammatory
interleukin (IL)-6 pathway is a promising new therapeutic strategy, but safety concerns arise as IL-6 signalling also contributes to
epithelial repair of the intestinal mucosa. To which extent IL-6 classic or trans-signalling contributes to intestinal repair remains
elusive. We tested the influence of IL-6 classic signalling on intestinal repair and proliferation. Whereas IL-6 induced STAT3
phosphorylation in the colonic cancer cell lines, primary non-malignant intestinal organoids did not respond to IL-6 classic
signalling. Mice deficient in intestinal IL-6R (IL-6RΔIEC mice) did not display increased susceptibility to acute dextran sulfate sodium
(DSS)-induced colitis. In the azoxymethane DSS model IL-6RΔIEC mice were not protected from inflammation-induced
carcinogenesis but showed comparable tumor load to wild-type mice. These data indicate that classic signalling is not the major
pathway to transduce IL-6 stimuli into the intestinal epithelium.
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INTRODUCTION
Proficient epithelial regeneration is a prerequisite to maintain
intestinal homeostasis.1 Within the intestinal epithelium,
regeneration is elicited by pro-regenerative signals, which either
derive from invading immune cells or are secreted in a paracrine
and autocrine manner from intestinal epithelial cells (IECs).2

Many cytokines that elicit proliferative signals in the intestinal
epithelium (for example, interleukin (IL)-17, IL-22, IL-11, IL-10
or IL-36) employ epithelial Janus kinase/signal transducer and
activator of transcription (JAK/STAT) signalling, mostly by
engaging STAT3 as the major signal transducer.3–5 Mice lacking
epithelial STAT3 or JAK3 signalling display impaired epithelial
regeneration6,7 and increased T cell-driven intestinal
inflammation.8 On the other hand, overactivation of the JAK/STAT
pathway renders mice more susceptible to colon cancer
formation, which highlights the dual role of JAK/STAT in tightly
controlling intestinal regeneration.9

IL-6 is a key cytokine in intestinal inflammation with pleiotropic
functions both as a pro-inflammatory and as a regeneration-
promoting factor.10,11 IL-6 also activates JAK/STAT signalling,
mainly by STAT3. Upon binding of IL-6 to the membrane-bound
IL-6 receptor (IL-6R), a dimer of the IL-6 family signal transducer
glycoprotein gp130 is recruited, which leads to subsequent
intracellular autophosphorylation of the gp130-associated
tyrosine kinase Jak1 and finally to phosphorylation and activation
of STAT3.12

While all body cells express the signal-transducing
beta-receptor gp130, only few cell types (mainly hepatocytes
and some leukocytes) express the non-signalling, specific IL-6R.13

Activation of gp130 via the membrane-bound IL-6R is called

'classic signalling'. Soluble IL-6R (sIL-6R) is mainly produced by
protease shedding of the IL-6R ectodomain and, to a minor
extent, by alternative splicing, and IL-6/sIL-6R complexes can
activate also cells only expressing gp130, that is, practically all cells
of the body. This process is called 'trans-signalling' and is thought
to be a major sensitizing pathway for chronic inflammation.14

IL-6 trans-signalling contributes to intestinal proliferation, and
overshooting IL-6 trans-signalling leads to murine colon cancer
formation.15

IL-6 as a therapeutic target is currently under investigation in
various chronic immune-mediated diseases, including rheumatic
arthritis and inflammatory bowel disease (IBD). The interest in
using IL-6 blockade as a therapeutic strategy in IBD is driven by
the finding that the pathophysiology of IBD is strongly influenced
by host genetics and many enriched genes are involved in
pathways that influence host− environmental interactions and
intestinal immune homeostasis.16–18 A small phase 2 trial showed
favorable results, but no mucosal healing.19 Whereas IL-6 blockade
in rheumatic arthritis has been shown to be safe and efficacious,20

concerns about the safety of IL-6 blockade in the context of
intestinal inflammation were raised by various findings: (i) the
incidence of intestinal perforations in rheumatic arthritis patients
is increased under therapy with tocilizumab (Tcz), a human
anti-IL-6R antibody, when compared to therapy with conventional
disease-modifying anti-rheumatic drugs;21 (ii) IL-6R salvage
therapy induces exacerbation in ulcerative colitis with increased
ulcer formation;22 (iii) a clinical phase 2 study testing the anti-IL-6
agent BMS-945429 in Crohn's disease had to be prematurely
terminated due to two cases of intestinal perforations
(Clinicaltrials.gov Identifier: IM133-055). These observations raised
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questions about the role of IL-6 signalling in mediating intestinal
regeneration. Whereas the role of common (classic and trans) IL-6
signalling in the context of intestinal regeneration has been
studied,11 the contribution of specific IL-6 classic signalling in
intestinal epithelial regeneration remains disputable. Although
IL-6 classic signalling has been described for intestinal epithelial
tumor cell lines,23,24 the influence of IL-6 classic signalling on
intestinal proliferation in vivo is rather circumstantial.25,26 More
precisely, very few studies have shown a biological effect of IL-6
classic signalling on epithelial proliferation.26

By employing in vitro methods of intestinal regeneration and
in vivo mouse models of experimental colitis using a conditional
deletion of the IL-6R in the intestinal epithelium (IL-6RΔIEC),
we therefore investigated the influence of epithelial IL-6R on
intestinal proliferation and repair.

RESULTS AND DISCUSSION
IECs receive IL-6 signals via classic and trans-signalling
To test whether IECs receive IL-6 signals via classic and/or
trans-signalling, human HT-29 colonic carcinoma cells were
stimulated with different concentrations of IL-6 to activate the
classic signalling pathway. Alternatively, trans-signalling was
activated in these cells by using hyper-IL-6 (hIL-6), a fusion
protein consisting of human IL-6 linked by a flexible peptide chain
to human sIL-6R.27,28 Cells were stimulated for 30 min, with or
without pre-incubation with Tcz, a neutralizing human anti-IL6R
antibody, or optimized sgp130Fc, a fusion protein of
the extracellular domain of gp130 dimerized by the Fc domain
of human IgG1 that selectively blocks trans-signalling.29,30 IL-6
stimulation induced phosphorylation of STAT3, which was
inhibited by pre-incubation with Tcz in a dose-dependent manner.
As expected, pre-incubation with sgp130Fc did not interfere with
IL-6-induced STAT3 phosphorylation (Figure 1a). Conversely,
hIL-6-induced STAT3 phosphorylation was inhibited in a
dose-dependent manner by pre-treatment with sgp130Fc,
whereas Tcz had no inhibitory effect on hIL-6-induced STAT3
phosphorylation (Figure 1b), which is in line with previous
observations and is due to the fact that Tcz, which is designed
to block binding of IL-6 to (s)IL-6R, cannot significantly interfere
with any formation of the already covalently formed IL-6/sIL-6R
complex.31 To further investigate the role of classic and
trans-signalling in epithelial wound healing in vitro, we assessed
the effect of IL-6 and hIL-6 in an epithelial scratch assay in
HT29 cells32 using IL-6 and hIL-6 concentrations, which were able
to induce STAT3 in a robust manner. We also used IL-11 and IL-22
for comparison, as those cytokines have also been described to
induce epithelial proliferation.33,34 Interestingly, whereas all
cytokines were able to induce STAT3 phosphorylation with
different efficacies and kinetics (Figure 1c), only hIL-6 and IL-22
were able to induce a moderate, but statistically significant
increase of intestinal wound healing (Figure 1d). Wound
healing was assessed as the reduction of the area between the
wound edges, as shown in representative micrographs of wound
areas before (0 h) and 24 h after wound induction (Figure 1e).
IL-11 or IL-6 did not show any effect on intestinal epithelial
regeneration.
We further performed a detailed titration of IL-6 and hIL-6 in the

scratch assay to determine whether higher doses of the cytokines
would lead to increased proliferation and migration. However, the
results again indicated that IL-6 classic signalling did not induce
intestinal epithelial proliferation and migration (Figure 1f). In
contrast, hIL-6 was able to induce wound healing, albeit at very
high concentrations (100 or even 1000 ng/ml, corresponding to
1.67 or 16.7 nM, respectively) (Figure 1g). For comparison, a
maximum cell proliferation of the very hIL-6-responsive cell line
Ba/F3-gp130,35,36 is achieved with 10 ng/ml hIL-6, similar to the

10 ng/ml EGF giving a maximum reference signal in the scratch
assay used in the present study (Figures 1f and g). Lastly, we could
show that only sgp130Fc, but not Tcz, could inhibit the hIL-6
induced wound healing (Figure 1h).

Intestinal organoids respond to IL-6 trans-signalling, but not to
classic signalling
The results described above prompted us to test the impact of
the presence of the epithelial membrane-bound IL-6R on
IL-6-dependent intestinal regeneration in a clean genetic model
of epithelial IL-6R deletion. For this purpose, we crossed IL-6Rflox

mice37 with C57Bl/6VillinCre mice to generate conditional knockouts
in the intestinal epithelium, which were termed IL-6RΔIEC

(for ‘deleted in intestinal epithelial cells’). IL-6Rfl/fl (IL-6Rfl)
littermates were used as controls.
IL-6 has been shown to act as a canonical STAT3 inducer in

multiple colon cancer epithelial cell lines.23 As epithelial
regenerative responses occur independently from malignant
transformations, we wanted to assess the role of IL-6 classic
signalling in a epithelial non-tumor-derived model. For this
purpose we cultured intestinal organoids from IL-6Rfl and
IL-6RΔIEC mice as described previously38 (Figure 2a). Intestinal
organoids were stimulated with IL-6, hIL-6 or IL-22, and the
expression of the STAT3 target genes Reg3b and Reg3g was
analyzed. Whereas IL-22 and hIL-6 induced a strong expression of
STAT3 target genes, IL-6 did not induce any STAT3-driven gene
expression (Figure 2b). Interestingly, no difference was seen
between intestinal organoids from IL-6Rfl and IL-6RΔIEC mice,
indicating that, if at all, the epithelial IL-6R does not interact with
IL-6 trans-signalling. To further delineate whether impaired
expression of Reg3b and Reg3g is indeed a surrogate of impaired
phosphorylation of STAT3, IECs were stimulated with indicated
cytokines for 30 min and probed for pSTAT3. Indeed, only
hIL-6 and IL-22 induced phosphorylation of STAT3, whereas
IL-6-stimulated cells showed no response (Figure 2c). This finding
demonstrates that in non-malignant epithelial cells the epithelial
IL-6R does not transduce STAT3-driven signals into the epithelium
via classic IL-6R signalling.

Il6-RΔIEC mice do not display increased susceptibility to dextran
sulfate sodium (DSS)-induced colitis
Having shown that classic IL-6 signalling is not active in
non-malignant IECs in vitro, we wanted to test the role of the
epithelial IL-6R in vivo. Deletion efficiency and specificity were
tested in genotyping PCR from tail and colon IEC DNA (Figure 3a).
Macromorphological analysis of the small and large intestine of
IL-6RΔIEC mice did not reveal any spontaneous abnormalities when
compared to wild-type littermates (data not shown), and baseline
body weight (Figure 3b) and spleen weight (Figure 3c) were
comparable between age- and sex-matched littermates. To
determine the impact of IL-6R signalling on intestinal proliferation
and repair under exogenous stress, we exposed IL-6Rfl and
IL-6RΔIEC mice to DSS, a chemical irritant that disrupts the
intestinal epithelial barrier and results in induction of colitis.39

Mice of both genotypes started to lose weight, but IL-6RΔIEC mice
seemed to cope better with DSS-induced colitis than their
wild-type littermates (Figure 3d) as they significantly lost less
weight than IL-6Rfl mice. Remarkably, IL-6RΔIEC lost significantly less
weight than the IL-6Rfl littermates, but showed no significant
differences in other parameters of inflammation. Next, we aimed
to rule out environmental factors that could influence the overall
outcome of the DSS colitis. We performed 16srRNA sequencing of
the luminal microflora after DSS colitis. IL-6Rfl and IL-6RΔIEC showed
no difference in the overall composition of the colonic microflora
and the relative abundance of major phylotypes (data not shown).
In post-mortem analyses, no significant difference was seen in
colon length (Figure 3e) or spleen weight (Figure 3f), although a
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non-significant trend points towards a diminished inflammatory
response in IL-6RΔIEC mice.This was in line with histological
evaluation of the diseased colon, which showed a non-
significant trend towards less histological inflammation in
IL-6RΔIEC in the overall histological score (Figures 3g and h) or in
any subscore (mononuclear infiltration, crypt hyperplasia,
epithelial erosion, polymorphonuclear infiltrates, transmural
inflammation; details not shown). In order to investigate the
impact of IL-6R signalling on intestinal regeneration, we also
evaluated the overall bromodeoxyuridine-positive (BrdU+) areas of
the entire colon. Interestingly, IL-6RΔIEC mice showed significantly
increased mucosal areas with BrdU incorporation, thereby
indicating more proficient epithelial regeneration than IL-6Rfl

littermates. (Figures 3i and j). It must be noted that the acute DSS
model is driven by an acute toxic destruction of the intestinal

epithelium, in which partial IL-6-dependent regenerative
responses can be completely overridden by the overt
inflammation. In order to describe presumable partial regenerative
effects of the epithelial IL-6R on the intestinal epithelium, a DSS
colitis was induced only for 3 days. Colonic IECs were isolated and
tested for STAT-dependent gene expression. DSS induction
induced an upregulation of the STAT3 target genes Reg3g and
Reg3b in IL-6RΔIEC and IL-6Rfl, indicating that epithelial IL-6R is not
primarily involved in epithelial STAT3 signalling. As expected, Il6ra
expression was absent in epithelial cells of IL-6RΔIEC compared to
IL-6Rfl, whereas gp130(IL6st) expression levels in IECs were
comparable (Figure 3k). BrdU staining revealed again comparable
numbers of proliferative cells in the colon mucosa of IL-6RΔIEC and
IL-6Rfl (Figures 3l–o). Although we cannot entirely rule out an
incremental beneficial effect of IL-6 signalling on the intestinal
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Figure 1. Functional classic IL-6 signalling in IECs does not lead to increased cellular proliferation. (a) Tcz inhibits STAT3
phosphorylation (pSTAT3) after induction of classic signalling in a dose-dependent manner. Western blot analysis of lysates from HT-29
colon carcinoma cells, pre-treated with Tcz (1–1000 ng/ml) or sgp130Fc (1–1000 ng/ml) for 6 h and stimulated with human IL-6 (100 ng/ml)
for 30 min. (b) sgp130Fc dose-dependently blocks trans-signalling: western blot analysis of lysates from HT-29 colon carcinoma cells,
pre-treated with Tcz or sgp130Fc (1–1000 ng/ml) for 6 h and stimulated with hyper-IL-6 (hIL-6) (10 ng/ml) for 30 min. (c) HT-29 colon
carcinoma cells were stimulated with IL-6 (100 ng/ml), hIL-6 (100 ng/ml), IL-11 (100 ng/ml) or IL-22 (100 ng/ml) for 30 or 60 min, and protein
lysates were probed for (p)STAT3, STAT3 or β-actin. (d) IL-6 trans-signalling and IL-22, but not IL-6 classic signalling or IL-11 induce epithelial
regeneration: confluent HT-29 cells (n= 8 wells/stimulation) were scratched with a sterile 200 μl pipette and stimulated with IL-6 (100 ng/ml),
hIL-6 (100 ng/ml), IL-11 (100 ng/ml) or IL-22 (100 ng/ml) for 24 h. Absolute and relative growth was assessed 24 h after scratching.
(e) Representative photomicrographs were taken at 0 and 24 h after scratch induction in PBS-treated HT-29 cells. (f) IL-6 classic signalling
does not alter intestinal epithelial proliferation and migration: absolute growth of HT-29 colon carcinoma cells after scratching with a sterile
pipette and treatment with human EGF (10 ng/ml) or IL-6 (1–1000 ng/ml) for 24 h (n= 8 wells per stimulation). (g) IL-6 trans-signalling
increases intestinal epithelial proliferation and migration: HT-29 colon carcinoma cells were scratched and stimulated with human EGF
(10 ng/ml) or hIL-6 (1–1000 ng/ml), and absolute growth was assessed after 24 h (f). (h) sgp130Fc, but not Tcz, inhibits hIL-6-induced
epithelial proliferation and migration: HT-29 colon carcinoma cells were pre-incubated with Tcz (1000 ng/ml) or sgp130Fc (1000 ng/ml)
for 4 h, scratched and stimulated with hIL-6 (100 ng/ml), and absolute growth was assessed after 24 h (n= 8 wells per stimulation).
Note the slight variations of absolute growth between g, h, which results from biological replicates of the experiment. Data are representative
of n= 2 individual experiments. Significance was determined using the two-tailed Student’s t-test, and data are expressed as mean± s.d.
*Po0.05; **Po0.01; ***Po0.001.
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epithelium, our data support the hypothesis that epithelial IL-6R
does not orchestrate the regenerative response of the intestinal
mucosa to inflammatory conditions.

IL-6RΔIEC mice are not protected from azoxymethane
(AOM)-DSS-induced carcinogenesis
It has been recently postulated that classic IL-6R signalling
contributes to intestinal carcinogenesis in a model of
inflammasome-triggered carcinogenesis.40 We therefore tested
the hypothesis that deletion of the IL-6R in IECs protects from
inflammation-induced carcinogenesis using the AOM-DSS model.
Mice received a single dose of 10 mg/kg AOM on day 0, and
chronic DSS colitis was induced using three cycles of 1% DSS
(Figure 4a). During the colitis cycles four IL-6RΔIEC and two IL-6Rfl

mice died prematurely (data not shown). Postmortem analysis
revealed no difference in total numbers of tumors/mouse
(Figure 3b), total tumor area/mouse (Figure 3c) or in tumor size
(Figure 3d) between IL-6RΔIEC and IL-6Rfl/fl mice. Western blot of
mucosa from tumors or adjacent non-tumor mucosa showed
increased tumor-dependent STAT3 phosphorylation levels. In line,
no genotype-specific differences were seen, which indicates that
classical IL-6R signalling does not contribute to malignant STAT3
activation in colon carcinogenesis (Figure 3e). Endoscopic
assessment of tumors showed, again, no difference between
IL-6RΔIEC and IL-6Rfl mice (Figure 3f). Histopathological assessment
showed no difference in histological H&E staining (Figure 3g)
or in BrdU staining in colonic tumors (Figure 3h). As these data
suggested that epithelial-specific deletion of the IL-6R does not
inhibit carcinogenesis, we investigated the impact of impaired

classic IL-6 signalling in the context of tumor or non-tumor lesions.
IL-6 has been described to induce a specific set of genes in the
context of intestinal carcinogenesis, which is distinct from
the STAT3-signalling cytokines like IL-11.34 Indeed, a set of genes
were exclusively downregulated in tumors from IL-6RΔIEC but not
IL-6Rfl mice, suggesting that IL-6 signalling is biologically active in
the context of intestinal carcinogenesis but does not affect the
overall tumor development (Figure 3i). Interestingly, gene expres-
sion of IL-6R itself (il6ra) was still detectable in tumor and non-
tumor mucosal specimens from IL-6RΔIEC mice, which was most
probably due to the invasion of leukocytes into the inflamed
mucosa. Thus we conclude that functional classic IL-6R signalling
in IECs is not involved in AOM-DSS-driven carcinogenesis. En
masse we have shown that the IL-6 classic signalling pathway
does not activate epithelial pSTAT3 and is not essentially involved
in the orchestration of STAT3-driven regenerative responses in the
context of intestinal inflammation. This finding contrasts
observations made in epithelial cancer cells, where IL-6 signalling
induces pSTAT3 activation and contributes to epithelial
cancer proliferation.41 Indeed, we observed in our tested colon
cancer cell line a great variety of IL-6 classic signalling
responsiveness (data not shown). This finding leaves room for
the speculation that classic IL-6 signalling is not an
essential epithelial growth signal, but is rather acquired as a
second proliferative signal during malignancy. With regard to
regenerative response in acute or chronic inflammatory
disorder we have shown that interception of the epithelial
classic IL-6 signalling does not disrupt epithelial growth and
mucosal healing.

Figure 2. IL-6 trans-signalling, but not classic signalling, induces STAT3 target gene expression in intestinal organoids. (a) Mouse intestinal
organoids from IL-6Rfland IL-6RΔIEC mice were cultivated as described previously.21 The medium was changed every other day and
organoids were stimulated after 7 days of cultivation with hIL-6 (100 ng/ml), IL-6 (100 ng/ml) or IL-22 (100 ng/ml). (b) Expression of Reg3b and
Reg3 was assessed by qPCR, and data are expressed as the expression relative to the housekeeping gene β-actin. (c) Western blot of isolated
IECs, stimulated for 30 min with hIL-6 (100 ng/ml), IL-6 (100 ng/ml) or IL-22 (100 ng/ml) and probed for pSTAT3, STAT3 and β-actin. Data are
representative of n= 2 individual experiments. Significance was determined using the two-tailed Student’s t-test, and data are expressed as
mean ± s.d. **Po0.01; ***Po0.001.

Classic IL-6 signalling
K Aden et al

4

Oncogenesis (2016), 1 – 7



0 2 4 6 8 10 12
80

85

90

95

100

110

%
 b

od
y 

w
ei

gh
t c

ha
ng

e

time (days)2% DSS

*
* * *

0
10
20
30
40
50

H
is

to
lo

cy
 S

co
re

200μm 200μm

n.s

H
&

E

0

2

4

6

8

co
lo

n 
le

ng
th

(c
m

)

0.00

0.05

0.10

0.15 n.s

sp
le

en
 w

ei
gh

t
(g

)

n.s

0

10

20

30

40

bo
dy

 w
ei

gh
t

(ig
)

0.00

0.05

0.10

0.15

sp
le

en
 w

ei
gh

t
(g

)
ta

il

Cre recombinase (1100 bp)

Flox allele (671 bp)

Wildtype (2019 bp)

Exon 4-6 Excision (203 bp)

co
lo

n

IL-6R fl

IL-6R fl

IL-6R ΔIEC

IL-6R ΔIEC

IL-6R fl

IL-6R ΔIEC

IL-6R fl

IL-6R ΔIEC

IL-6R fl

IL-6R fl

IL-6R ΔIEC

IL-6R ΔIEC

IL-6R fl

IL-6R ΔIECn.s

n.s

B
rd

U

0

5

10

15

B
rd

U
 S

po
ts

 / 
C

ry
pt

IL-6R fl IL-6R ΔIEC

200μm 200μm

n.s

reg3g 

0.0
0.2
0.4
0.6
0.8
1.0

re
la

tiv
e 

ex
pr

es
si

on

H2O 2%DSS

*

reg3b 

0

1

2

3

re
la

tiv
e 

ex
pr

es
si

on *

H2O 2%DSS

il6ra

0.0
0.001
0.002
0.003
0.004
0.005

H2O 2%DSS

n.d. n.d.

re
la

tiv
e 

ex
pr

es
si

on

il6st

0.0

0.005

0.010

0.015

0.020

H2O 2%DSS

re
la

tiv
e 

ex
pr

es
si

on

0
20
40
60
80

%
 B

rd
U

+
pr

ol
ife

ra
tiv

e 
ar

ea

B
rd

U
B

rd
U

IL-6R fl IL-6R ΔIEC

0
4
8

12
16

200μm 200μm

500μm 500μm

B
rd

U
 S

po
ts

 / 
C

ry
pt

n.s

n.s

Figure 3. IL-6RΔIEC are not susceptible to DSS colitis and display regular epithelial regeneration. (a) Genotyping of IL-6Rfl and IL-6RΔIEC,
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DSS or left untreated (water, H2O) for 3 days, and colonic IECs were isolated. Gene expression was assessed using qPCR. DSS induction led to
significant upregulation of STAT3 target genes in IL-6Rfl animals, which was reduced or abrogated in IL-6RΔIEC mice. (l, m) Representative
pictures of BrdU staining of IL-6RΔIEC and IL-6Rfl are shown in (i). 10 mg/kg bodyweight of BrdU was injected i.p. 1.5 h before sacrifice.
The percentage of intact BrdU+ mucosa was expressed as 1− (length of BrdU-negative mucosa in μm/total mucosal length in μm)*100.
(n, o) A minimum of 15 crypts/intestine were evaluated for BrdU-positive stained cells. Genotype pooled data from IL-6Rfl (n= 4) and IL-6RΔIEC

(n= 4) are depicted for statistical evaluation. Significance was determined using the two-tailed Student’s t-test, and data are expressed as
mean± s.d. *Po0.05.
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Therefore our data do not support the clinical preoccupation
about intestinal perforations as a complication in the therapeutic IL-6
interference, but rather come to the conclusion that the IL-6 classic
signalling is indispensable for intestinal epithelial regeneration.
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