16,17-Dihydro Gibberellin A₅ Competitively Inhibits a Recombinant Arabidopsis GA 3 β -Hydroxylase Encoded by the *GA4* Gene

Rong Zhou¹, Min Yu², and Richard P. Pharis*

Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Ring D-modified gibberellin (GA) A_5 and A_{20} derivatives are structurally similar to GA_{20} and GA_9 (the precursors to growthactive GA_1 and GA_4) and, when applied to higher plants, especially grasses, can reduce shoot growth with concomitant reductions in levels of growth-active GAs and increases in levels of their immediate 3-deoxy precursors. The recombinant Arabidopsis GA 3 β -hydroxylase (AtGA3ox1) protein was used in vitro to test a number of ring D-modified GA structures as possible inhibitors of AtGA3ox1. This fusion protein was able to 3 β -hydroxylate the 3-deoxy GAs, GA₉ and GA₂₀, to GA₄ and GA₁, respectively, and convert the 2,3-didehydro GA, GA₅, to its 2,3-epoxide, GA₆. Michaelis-Menten constant (K_m) values of 1.25 and 10 μ M, respectively, were obtained for the GA₉ and GA₂₀ conversions. We utilized the enzyme's ability to convert GA₂₀ to GA₁ in order to test the efficacy of GA₅, 16,17-dihydro GA₅ (dihydro GA₅), and a number of other ring D-modified GAs as inhibitors of AtGA3ox activity. For the *exo*-isomer of dihydro GA₅, inhibition increased with the dose of dihydro GA₅, with Lineweaver-Burk plots showing that dihydro GA₅ changed only the K_m of the enzyme reaction, not the $V_{max'}$ giving a dissociation constant of the enzyme-inhibitor complex (K_i) of 70 μ M. Other ring D-modified GA derivatives showed similar inhibitory effects on GA₁ production, with 16,17-dihydro GA₂₀-13-acetate being the most effective inhibitor. This behavior is consistent with dihydro GA₅, at least, functioning as a competitive substrate inhibitor of AtGA3ox1. Finally, the recombinant AtGA3ox1 fusion protein may be a useful screening tool for other effective 3 β -hydroxylase inhibitors, including naturally occurring ones.

We now know, through the use of gibberellin (GA) biosynthesis mutants (for review, see Reid and Howell, 1995; Hedden and Proebsting, 1999), that GA_1 , GA_4 , and other 3 β -hydroxylated GAs are active per se in stem elongation, while their immediate 3-deoxy precursors, i.e. GA_{20} and GA_9 , are not. The biosynthetic conversions of GA_{20} and GA_9 to GA_1 and GA_4 , respectively, are catalyzed by GA 3 β -hydroxylases (Lester et al., 1997; Martin et al., 1997; Williams et al., 1998; Itoh et al., 2001). 16,17-Dihydro GA₅ (Fig. 1) and other ring D-modified GA₅ derivatives (Mander et al., 1995, 1998a, 1998b) are structurally very similar to GA₂₀. When these ring D-modified GAs are applied to many higher plant species, and especially to grasses, they can effectively inhibit shoot growth (Evans et al., 1994a, 1994b; Takagi et al., 1994; Foster et al., 1997; King et al., 1997, 2004). Associated with the reduction in shoot elongation is a concomitant reduction in levels of endogenous 3β -hydroxylated GAs and an increase in one or more of the 3-deoxy precursors

(Foster et al., 1997; Junttila et al., 1997; Zhou, 2000). For example, application of *exo*-16,17-dihydro GA₅-13acetate to wild oat reduces levels of endogenous GA₁, GA₃, and GA₄ while elevating levels of their immediate 3-deoxy precursors, GA₉ and GA₂₀ (Zhou, 2000). It thus appears likely that 16,17-dihydro GA₅ and allied ring D-modified GA derivatives gain their efficacy as growth-retarding compounds in grasses (Evans et al., 1994a; Mander et al., 1995; Foster et al., 1997; Zhou, 2000) by inhibiting per se the action of the GA 3β -hydroxylase(s) which catalyze(s) the conversion of GA₂₀ to GA₁ and GA₉ to GA₄, respectively.

To examine this possibility, the Arabidopsis GA 3β -hydroxylase (AtGA3ox1) encoded by the GA4 gene was expressed in Escherichia coli. We then used this recombinant protein for a series of in vitro tests, both as the crude lysate (Zhou et al., 1998) and as a purified fusion protein (Zhou, 2000), to examine the ability of a range of concentrations of GA₅, the endoand exo-isomers of 16,17-dihydro GA5 and 16,17-dihydro GA₂₀, three 13-O-acetyl derivatives of these two dihydro GAs, 16,17-methano-dihydro GA_5 and 16,17-dichloromethano-dihydro GA₅, to inhibit GA 3β -hydroxylase activity (i.e. inhibit conversion of GA_{20} to GA_1 by AtGA3ox1). A parallel approach has also been taken by King et al. (2004) using cell lysates containing recombinant 3β - and 2β -hydroxylases from Pisum sativum, where their range of ring D-modified GA₅ derivatives included the 17-ethyl, *n*-propyl, and *n*-butyl derivatives of dihydro GA₅.

¹ Present address: Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9.

² Present address: Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada S7N 0X2.

^{*} Corresponding author; e-mail rpharis@ucalgary.ca; fax 403– 289–9311.

Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.104.041509.

Figure 1. Structures of GA₁, GA₄, GA₉, GA₂₀, GA₅, and several ring D-modified GA derivatives.

Williams et al. (1998) showed that AtGA3ox1, which is encoded by the *GA4* gene, was a GA 3 β -hydroxylase. To examine the inhibitory effects of ring D-modified GA derivatives, we also expressed this enzyme as a fusion protein in *E. coli*. Both the crude *E. coli* lysate and purified fusion protein, with the addition of appropriate cofactors, effectively 3 β -hydroxylated 3-deoxy GAs (e.g. GA₂₀ or GA₉). However, in this paper we present only results obtained with the purified fusion protein.

exo-16,17-dihydro GA₂₀-acetate exo-16,17-dihydro GA₅-acetate

Characterization of Bacterially Expressed AtGA3ox1

For longer term reactions, the fusion protein's ability to 3β -hydroxylate GA₂₀ to GA₁ and GA₅ to GA₆ was

endo-16,17-dihydro GA5-acetate

quite sensitive to pH, with enzyme activity being reduced appreciably below pH 6 or above pH 9. The optimal pH, then, for AtGA3ox1 activity, was determined to be 7.5, a finding similar to that obtained by Williams et al. (1998). When the AtGA3ox1 fusion protein was diluted in assay buffer containing essential cofactors, its activity at room temperature increased gradually up to hour 1 (Fig. 2). However, by hour 2, enzyme activity had dropped by nearly 50%. All subsequent assays were thus run with enzyme that had been preincubated at room temperature for 30 to 40 min. The identity and amounts of reaction products, GA₄ and GA₁, were determined by gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM) as the methyl ester trimethylsilyl ether (MeTMSi) derivatives, with quantification being accomplished through stable isotope dilution after

Figure 2. Stability of recombinant AtGA3ox1 at room temperature. Enzyme (0.02 μ g protein) was diluted in 80 μ L Tris-HCl buffer, pH 7.5 containing 0.1 mm Fe²⁺, 5 mm ascorbate, 5 mm 2-oxoglutarate, 2 mm NADPH, and 0.2 mg BSA. This mixture was incubated at room temperature for varying periods before being mixed with 20 μ L of a 50 μ m solution of GA₂₀ to form a reaction mixture. Quantification of GA₁ was accomplished with the isotope dilution method using GC-MS-SIM (a known amount of [²H₂]GA₁ was added just prior to extracting the reaction mixture with EtOAc).

addition of known amounts of $[{}^{2}H_{2}]GA_{4}$ and $[{}^{2}H_{2}]GA_{1}$ (Fujioka et al., 1988). Plots of the reciprocal of reaction rate against the reciprocal of substrate concentration were produced by linear regression analysis (Fig. 3, A and B). These yielded $K_{\rm m}$ values of 1.25 μ M ($V_{\rm max}$ 800 nmol min⁻¹ mg⁻¹ protein) for GA₉ and 10 μ M ($V_{\rm max}$ 62 nmol min⁻¹ mg⁻¹ protein) for GA₂₀, respectively, values similar to those reported by Williams et al. (1998).

Mode of Action of 16,17-Dihydro GA₅ in Inhibiting AtGA3ox1 Activity

We initially tested the dose effects of four ring D-modified GA derivatives on the ability of AtGA3ox1 to produce GA_1 from GA_{20} (Fig. 4). Enzyme activity decreased in a linear fashion as the log dose of exo-16,17-dihydro GA_5 increased (Fig. 4B). A similar response occurred for endo-16,17-dihydro GA5, endo-16,17-dihydro GA₂₀, and exo-16,17-dihydro GA₂₀ (Fig. 4, A, C, and D, respectively). Then we utilized Michaelis-Menten plots to examine the effect of a 100 μ M dose of the *exo*-isomer of dihydro GA₅ on AtGA3ox1 activity (reaction velocity) across a range of GA_{20} concentrations (Fig. 3B, black circles). The V_{max} in the presence of the dihydro GA₅ remained the same as for GA₂₀ alone, even though the slope increased (Fig. 3B). Hence, only the $K_{\rm m}$ of the reaction was changed, not the $V_{\rm max}$. The dihydro GA₅ molecule is thus functioning as a competitive substrate inhibitor in the AtGA30x1 enzyme's conversion of GA_{20} to GA_1 . The dissociation constant of the enzyme-inhibitor complex (K_i) for *exo*-16,17-dihydro GA₅ was calculated to be 70 µм (Fig. 3B).

We then tested the inhibitory effects of 16,17dihydro GA₅, 16,17-dihydro GA₂₀, and a number of other ring D-modified GA₅ derivatives, as well as GA₅, all at 100 μ M, on 3 β -hydroxylation of 10 μ M of GA₂₀ by the fusion protein (Table I). Thus, when added to GA₂₀, the aliquots of GA₅, *exo*-16,17-dihydro GA₅ and *endo*-16,17-dihydro GA₅, all reduced GA₁ production by nearly 50%. 16,17-Methano-dihydro GA₅ and 16,17-dichloromethano-dihydro GA₅, when added at 10-fold the concentration of GA₂₀, reduced GA₁ production by 70% (Table I). The most effective of the dihydro GA₅, however, was dihydro GA₂₀, where both the *endo-* and *exo-*isomers (Fig. 4, C and D), when

Figure 3. Michaelis-Menten and Lineweaver-Burk (inset) plots for AtGA3ox1's conversion of GA₉ to GA₄ (A) and GA₂₀ to GA₁ (B). Enzyme (0.01 μ g for A and 0.1 μ g for B) was diluted in 90 μ L Tris-HCl buffer, pH 7.5 containing 0.1 mM Fe²⁺, 5 mM ascorbate, 5 mM 2-oxoglutarate, 2 mM NADPH, and 0.2 mg BSA. This mixture was incubated at room temperature for 30 min before adding GA₉ or GA₂₀, with (black circles) or without (white circles) the addition of *exo*-16,17-dihydro GA₅ at a final concentration of 100 μ M to form a reaction mixture. The reaction period was 5 min. Quantification of GA₄ and GA₁ was accomplished by the isotope dilution method using GC-MS-SIM (a known amount of [²H₂]GA₄ or [²H₂]GA₁ was added to the reaction mixture just before extraction with EtOAc).

Concentration of ring D-modified GAs (μ M)

Figure 4. Effects of varying the dose (1, 3.3, 10, 33, and 100 μ M) of ring D-modified GA derivatives on the production of GA₁ from substrate GA₂₀ in the presence of AtGA3ox1. The same amount of enzyme was added to each reaction mixture. The initial GA₂₀ concentration was 10 μ M. Cofactors added included 0.1 mM Fe²⁺, 5 mM ascorbate, 5 mM 2-oxoglutarate, 2 mM NADPH, and 2 mg BSA mL⁻¹. The control is 10 μ M GA₂₀ alone, plus cofactors (white circle, upper left). A, endo-dihydro GA₅ ($r^2 = 0.98$); B, exo-dihydro GA₅ ($r^2 = 0.82$); C, endo-dihydro GA₂₀ ($r^2 = 0.95$); D, exo-dihydro GA₂₀ ($r^2 = 0.89$). The reaction period was 10 min. Quantification of GA₁ was accomplished by GC-MS-SIM using a known amount of [²H₂]GA₁ which was added after stopping the reaction mixture, just before extraction with EtOAc.

added at 10-fold the GA_{20} concentration, reduced GA_1 production by 79% (Table I).

Interestingly, addition of an acetate group at C-13 increased inhibition efficacy by approximately 10-fold, with the *exo*-isomers (most active) of each of dihydro GA_5 -Ac and dihydro GA_{20} -Ac reducing GA_1 formation by 96.4% and 99.7%, respectively (Table I).

Thus, GA_5 and all of the ring D-modified GA_5 or GA_{20} derivatives inhibited the conversion of GA_{20} to GA_1 by AtGA3ox1, with *exo*-16,17-dihydro GA_{20} -13-O-acetate being the most effective (Table I). However, only the *exo*-isomer of 16,17-dihydro GA_5 has actually been shown to function as a competitive substrate inhibitor (Fig. 3).

Also of interest with regard to use of the 13-acetate derivatives of dihydro GA_5 and dihydro GA_{20} is the fact that there was no production of dihydro GA_5 or dihydro GA_{20} during the reaction. This was ascer-

tained by GC-MS-SIM analysis of the reaction mixture. Thus, the exo-isomers of each of 16,17-dihydro GA₅-13-O-acetate and 16,17-dihydro GA₂₀-13-O-acetate, the most potent of the ring D-modified GAs, are per se active as inhibitors of the 3β -hydroxylase without conversion to their 13-hydroxyl forms. We also checked the reaction mixtures by GC-MS full scan and SIM for products of 16,17-dihydro GA₅, i.e. dihydro GA₆ or dihydro GA₃, and found no evidence of its metabolism. However, when we checked the reaction mixture containing 16,17-dihydro GA₂₀, putative 16,17-dihydro GA₁ (tetrahydro GA₃) was identified by GC-MS full scan based on its fragmentation pattern and retention time (Rt) relative to the Rt of [²H₂]GA₁ (which was present as an internal standard). Thus, the M^+ (508) and characteristic m/z fragmentation ions 465, 450, and 209 for 16,17-dihydro GA_1 were present at relative intensities shown by authentic 16,17-dihydro GA₁. Additionally, the capillary GC Rt of authentic dihydro GA₁, relative to the Rt of $[{}^{2}H_{2}]GA_{1}$, was consistent with the Rt we found for the putative dihydro GA₁. Based on use of the deuterated GA₁ internal standard, it was apparent that the amount of putative dihydro GA₁ formed increased with the reaction time, at least in the first 10 min.

DISCUSSION

The $K_{\rm m}$ values of AtGA3ox1 fusion protein (in a pGEX-2T vector) for the conversions of GA₉ to GA₄ and GA₂₀ to GA₁ were approximately the same as those obtained by Williams et al. (1998) with lysate preparations and also roughly comparable to those seen for other GA3ox1 enzymes expressed in different vectors (Martin et al., 1997; King et al., 2004). However, purified AtGA3ox1 fusion protein was much more

Table I. Inhibitory effects of GA_5 and a range of ring D-modified GA_5 and GA_{20} derivatives on 3β -hydroxylation of GA_{20} by recombinant AtGA30x1

Initial GA_{20} concentration was 10 μ m. Gibberellin A_5 and the various GA derivatives were added at a concentration of 100 μ m. Values are the mean of two replicate experiments that tested all compounds on the same day.

	GA ₁ Produced
GA20 alone	% of control 100 ^a
$GA_{20}^{20} + GA_{5}$	52.4 ± 1.2
$GA_{20}^{-} + exo-16,17$ -dihydro GA_5	51.4 ± 5.7
$GA_{20} + endo-16,17$ -dihydro GA_5	51.2 ± 0.9
GA_{20} + 16,17-dichloromethano-dihydro GA_5	27.5 ± 1.9
GA ₂₀ + 16,17-methano-dihydro GA ₅	30.3 ± 6.0
$GA_{20} + exo-16, 17$ -dihydro GA_{20}	21.1 ± 2.6
GA ₂₀ + <i>endo</i> -16,17-dihydro GA ₂₀	21.9 ± 0.4
$GA_{20} + exo-16,17$ -dihydro GA_5 -acetate	3.6 ± 0.1
GA_{20} + <i>endo</i> -16,17-dihydro GA_5 acetate	6.0 ± 0.3
$GA_{20} + exo-16,17$ -dihydro GA_{20} -acetate	0.26 ± 0.01
^a 90 ng of GA ₁ was produced in 5 min.	

active than the earlier lysate preparations, with a V_{max} of 800 and 62 nmol min⁻¹ mg⁻¹ protein for GA₉ and GA₂₀ at 20°C (Fig. 3). For example, at optimal pH, a 1- μ g aliquot of enzyme, incubated for 1 min at room temperature with a 4 μ M concentration of GA₉ or 2 μ M GA₂₀ substrate in a final volume of 100 μ L, produced 300 pmol of GA₄ and 22 pmol of GA₁, respectively (data not shown). This contrasts with only 5.5 and 1 pmol of GA₄ and GA₁, respectively, for 1 mg of protein incubated at 30°C for 1 min using 4 μ M of GA₉ and GA₂₀ as substrate (Williams et al. 1998).

Our lysate preparations appeared to contain AtGA3ox1 inhibitors. That is, when we mixed 3 μ L of AtGA3ox1 lysate with 87 μ L of control lysate (prepared from bacteria transformed with the empty vector only) in a 100- μ L reaction volume, the GA 3 β -hydroxylase activity was reduced at least 15-fold (data not shown). Although this type of diminished activity seems most likely to be due to the presence of inhibitors of the hydroxylation reaction, one cannot rule out the possibility that bacterial proteases (which could digest AtGA3ox1) also occur in the lysate preparations. We also found that detergent can reduce the activity of the AtGA3ox1 fusion protein, e.g. Triton X-100 reduced enzyme activity by 75% (data not shown).

The AtGA3ox1 fusion protein is relatively unstable, with activity increasing initially with incubation time up to 1 h, but diminishing after that (Fig. 2). We cannot explain the initial gradual increase of enzyme activity. The AtGA30x1 fusion protein prefers GA₉ as a substrate, followed by GA₂₀ and, finally, GA₅. When similar amounts of GA₉, GA₂₀, and GA₅ were pooled and then incubated with the enzyme, it produced predominantly GA₄, only a small amount of GA₁, and virtually no GA₆ (data not shown). This trend in efficacy can also be seen from a comparison of the K_m or K_i values, i.e. GA₉, 1.25 μм; GA₂₀, 10 μм; and GA₅, 55 μ M (the $K_{\rm m}$'s of GA₉ and GA₂₀ were calculated from Fig. 3; the K_i of GA₅ was estimated from Table I using 100 μ M of GA₅ incubated with 10 μ M of GA₂₀). This finding is in general agreement with earlier reports (Martin et al., 1997; Williams et al., 1998), although Kwak et al. (1988) found that a partially purified GA 3 β -hydroxylase from immature seeds of *Phaseolus vulgaris* had a slightly higher affinity for GA₂₀ than GA₉. Thus, enzymes isolated from different plant species or even different tissues of the same plant may or may not show differences in substrate preference.

It is common that compounds with similar structures act as substrate competitors in biosynthetic steps. For the GA 3β -hydroxylase, we would expect that a range of GA structures might compete for the active site(s) with the preferred substrates, GA₉ or GA₂₀. Based on evidence in hand for rice (Takagi et al., 1994), sorghum (Foster et al., 1997), Lolium (Junttila et al., 1997), wild oat (Zhou, 2000), or a wild-type pea genotype (King et al., 2004), this type of competition is strongly implied for those ring D-modified GAs that can effectively inhibit shoot growth. Accompanying the inhibition of stem and leaf elongation that was obtained by exogenous application of 16,17-dihydro GA_5 and/or its derivatives to various grass species were lowered levels of GA_1 and/or GA_4 and very elevated levels of GA_{20} and GA_9 (King et al., 2004).

We thus tested the hypothesis that the ring D-modified GAs are acting as competitive substrate inhibitors by using the purified AtGA3ox1 fusion protein in an in vitro system that could rapidly convert GA_{20} to GA_1 (see "Results"). Using the *exo*-isomer of 16,17-dihydro GA_5 (Fig. 1) and expressing the results in a Lineweaver-Burk plot of enzyme activity, it was apparent that dihydro GA_5 changed only the K_m of the enzyme, with the V_{max} remaining the same (Fig. 3B). Thus, dihydro GA₅ is indeed a competitive substrate inhibitor of AtGA3ox1. In a parallel study with recombinant pea Le 3β -hydroxylase, where tritium release from [³H]GA₂₀ was utilized as a measure of 3β -hydroxylation, King et al. (2004) provided evidence that implies a similar mechanism (competitive inhibition) for certain, but not all, of the ring D-modified GAs that they tested. However, their data did not allow them to determine whether or not the inhibition was truly competitive for these compounds. For the pea GA3ox, while GA₅ was a fair inhibitor (it reduced 3β-hydroxylation to 40% of control at 100 μ M), dihydro GA₅ inexplicably showed very poor activity, although dihydro GA₅-13-Ac was a good inhibitor, i.e. it reduced GA₁ production to 30% of control at 10 μ M (King et al., 2004). In contrast, for the Arabidopsis AtGA3ox1, GA_5 and dihydro GA_5 were equally effective, dihydro GA₂₀ was very effective, and the 13-acetate derivatives of these two dihydro GAs were exceptionally effective enzyme activity inhibitors (Table I). Hence, ignoring purification differences and other variables, there may well be inherent differences between the Arabidopsis and pea 3β -hydroxylase enzymes in their ability to recognize ring D-modified GAs as competitive substrate inhibitors. The inhibition of GA 3β -hydroxylation by certain GAs (Kwak et al., 1988) and C/D-ring-rearranged GA isomers (Saito et al., 1992), using a partially purified bean GA 3β -hydroxylase, has also been described. It is thus possible that a wide range of GA₅ or GA₂₀ derivatives (Table I) will function as competitive substrate inhibitors not only of AtGA3ox1, but also of 3β -hydroxylases from other plant species.

Among the 16,17-dihydro GAs that we tested, *exo*-16,17-dihydro GA₂₀-13-O-acetate was the most effective inhibitor of AtGA3ox1 (Table I). The *exo*-isomer of 16,17-dihydro GA₅-O-13-acetate was also quite effective, with 1.7-fold greater inhibitory activity than the comparable *endo*-isomer (Table I). However, using the simpler structures (e.g. dihydro GA₅ and dihydro GA₂₀ which have a C-13 hydroxyl), there were essentially no differences in efficacy between the two exocyclic isomers (Table I).

The K_i value obtained for *exo*-dihydro GA₅ in its inhibition of the GA₂₀ to GA₁ conversion is about 70 μ M. In contrast, the K_m values for GA₉ and GA₂₀ in

their conversions to GA_4 and GA_1 , respectively, are 1.25 and 10 μ M (as calculated from Fig. 3). Thus, the inhibitory effect of dihydro GA_5 on the in vitro activity of AtGA3ox1 is really quite limited. This can also be seen from results shown in Table I, where inhibitory activity of dihydro GA_5 is compared with a range of ring D-modified GAs, including the highly effective 13-O-acetate- and 16,17-dichloromethano derivatives of dihydro GA_5 and dihydro GA_{20} . Even so, dihydro GA_5 is a very effective inhibitor in situ of both growth and GA_{20} 3β -hydroxylation in rice (Takagi et al., 1994), sorghum (Foster et al., 1997), Lolium (Junttila et al., 1997), and wild oat (Zhou, 2000).

Although GA₅ and dihydro GA₅ give similar inhibitory effects (Table I), GA₅ stimulates stem elongation while dihydro GA₅ usually inhibits it, especially in grasses (Evans et al., 1994b). The growth-promotive activity of GA₅ can be explained in a number of ways. For example, GA_5 may be per se active (as postulated by Spray et al. [1996]), or else growth-active metabolites of GA_5 (e.g. GA_3 , GA_6) are produced (Fujioka et al., 1990). We think that the latter hypothesis is more likely. This conclusion is based on in situ experiments that showed production of growth-active metabolites (see above), together with in vitro enzyme assays using AtGA3ox1 (GA₅ converted to GA_6 ; Williams et al., 1998, and herein) and OsGA3ox1 (GA₅ converted to GA₃; Itoh et al., 2001). That said, another explanation for the activity of GA₅ is the possibility that GA₅ may block GA_{20} 2 β -hydroxylation (which yields GA_{29} , an inactive catabolite), an effect that would place appreciably increased amounts of GA₂₀ into the biosynthetic pathway where it could be converted to growth-active GA_1 . Indeed, such an effect was seen for GA_5 when it was used in vitro to inhibit the action of recombinant pea GA2ox1 enzyme (which catalyzes the GA₂₀ to GA₂₉ step; King et al., 2004).

Different dihydro GA₅ derivatives have very different inhibitory effects on AtGA3ox1 activity, thus implicating structural differences between the derivatives at C-3, C-13, and C-16,17 as the causal factor(s). Relative to GA20, the C-2,3 double bond of GA5 reduces, by fivefold, the affinity of AtGA3ox1 for the GA molecule (Table I). In contrast, relative to GA_5 , the loss of the double bond at C-16,17, i.e. dihydro GA₅, did not increase inhibition of AtGA3ox1's activity (Table I). However, it was somewhat surprising to note that for pea GA30x1, dihydro GA₅ was very much less effective as an inhibitor than GA₅ (King et al., 2004). When one makes further modifications at C-16,17, a very enhanced inhibitory effect on activity of AtGA3ox1 can be obtained. For example, relative to 16,17-dihydro GA₅, both 16,17-methano-dihydro GA₅ and 16,17-dichloromethano-dihydro GA₅ have much greater inhibitory effects on AtGA3ox1 activity (Table I). In a somewhat similar fashion, modifying the exocyclic 17-methyl (dihydro GA₅) to exocyclic ethyl, *n*-propyl and *n*-butyl structures also gave enhanced inhibition of 3β -hydroxylation (relative to dihydro GA_5) for the recombinant pea GA 3 β -hydroxylase

(King et al., 2004). Finally, replacing the 13-hydroxyl of GA₅ with a 13-O-acetate substantially increased inhibitory activity against the pea GA 3β -hydroxylase (King et al., 2004). Also, replacing the 13-hydroxyl with a hydrogen, i.e. GA₉, gives about a sevenfold higher affinity (relative to GA₂₀) for AtGA3ox1 (Fig. 3; Williams et al., 1998) and a similar relationship occurs even with the pea 3β -hydroxylase (Martin et al., 1997).

Dihydro GA₅-13-O-acetate and especially dihydro GA_{20} -13-O-acetate gave exceptionally enhanced (10- to 100-fold increases) inhibition of AtGA3ox1 activity, relative to the dihydro GA analogs with a free hydroxyl at C-13 (Table I). However, we did not know whether the 13-acetates of 16,17-dihydro GA₂₀ and dihydro GA₅ function per se in the living plant, or first undergo hydrolysis of the 13-acetate group. A pre-liminary experiment with [³H]GA₁-13-acetate in rice (D.W. Pearce, R.P. Pharis, and L.N. Mander, unpublished data) did show a rapid conversion of the 13-acetate to [³H]GA₁. However, our in vitro work with AtGA3ox1 demonstrates that the 13-acetate forms of dihydro GA₅ and dihydro GA₂₀ exert their inhibitory effects directly (e.g. GC-MS-SIM of the reaction mixture showed no presence of a 13-hydroxylated dihydro GA [i.e. no dihydro GA5 or dihydro GA20] after the reaction was finished).

We also found that purified AtGA3ox1 did not produce detectable levels (based on GC-MS full-scan analysis of the reaction mixtures) of any metabolites of dihydro GA₅. We had expected that there might be production of dihydro GA₃ or dihydro GA₆ based on earlier work with a cell-free system from immature bean seeds by Saito (1990) using C/D-rearranged GA₅. King et al. (2004) also reported a finding similar to ours (no metabolism of 16,17-dihydro GA_5) for the pea Le GA3ox. Hence, there may be inherent differences between species, or else the crude, cell-free system used by Saito et al. (1992) may have contained essential cofactors that were missing in our reaction mixture or in the reaction mixture of King et al. (2004). We did, however, find that 16,17-dihydro GA₂₀ was metabolized in our reaction mixture to putative 16,17-dihydro GA₁ by AtGA30x1 and that the production of putative dihydro GA₁ increased with time. Of interest here is the likelihood that production of dihydro GA₁ would likely have resulted in a somewhat reduced level of enzyme-inhibitory activity by the dihydro GA₂₀ in the reaction mixture (Table I), since dihydro GA₁ has been shown to be growth promotive on stem elongation in Lolium (Evans et al., 1994b). The recombinant purified AtGA3ox1 system is a very useful tool in better understanding the interaction between substrate structure and enzyme function for the 3β -hydroxylation step in GA biosynthesis. Additionally, this system may be useful for screening GA 3β -hydroxylase inhibitors, including naturally produced inhibitors. Finally, the AtGA3ox1 fusion protein can also be used to synthesize stable isotope- or radioisotope-labeled GAs. Such a use of recombinant AtGA3ox1 has recently been described by Tudzynski et al. (2003).

MATERIALS AND METHODS

Expression of Arabidopsis AtGA30x1 Protein in Escherichia coli

A sense primer (5' to 3', GGGGATCCATGCCTGCTATGTTAACAG) and an antisense primer (5' to 3', GGGGATCCTTCTTCTCTGTGATTTCTAA), with a BamHI restriction site for each primer, were designed based on the Arabidopsis GA4 cDNA sequence (Chiang et al., 1995). When pGEX-2T vector was used, the designed sense primer allowed the GST reading frame to read through the GA4 insert. PCR was then performed using the Arabidopsis GA4 cDNA clone pCD7 (a gift from Dr. H.M. Goodman, Harvard Medical School, Boston, MA) as the template. The reaction mixture (100 μ L) contained 250 μ M dNTPs, 2 mM MgCl₂, 40 pmol of each primer, and 20 units of cloned Pfu DNA polymerase (Stratagene, La Jolla, CA). The reaction was heated to 94°C for 2 min, then subjected to 30 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 1.5 min. The amplified PCR product was digested with BamHI and ligated into the dephosphorylated BamHI site of the pGEX-2T vector before E. coli DH5 α cells were transformed. Isolated plasmids were examined with a PCR reaction using the sense and 3' pGEX sequencing primers to see if they contained the correct insert oriented in the correct direction. The clone with the correct orientation was then sequenced. Transformed E. coli were inoculated into 5 mL of an LA broth (1% [w/v] NaCl; 1% [w/v] tryptone; and 0.5% [w/v] yeast extract containing 100 μ g amphicillin mL⁻¹;) and initially incubated at 37°C overnight with shaking. Then, after the addition of isopropyl-1-thio-α-D-galactopyranoside (IPTG) to a final concentration of 0.2, 0.4, 0.6, and 0.8 mM, the transformed E. coli cells were incubated at 28°C for 3 h. The bacteria were then spun down and to each of the pellets was added 1 mL of phosphate-buffered saline (PBS), containing 140 mM NaCl, 2.7 mM KCl, 10 mм Na2HPO4, and 1.8 mм KH2PO4, pH 7.3 with 50 µL 0.2 м phenylmethylsulfonyl fluoride The pellets were then sonicated to lyse the bacteria. About 20 μ g of lysate protein from each pellet was analyzed on an SDS gel and we found that use of 0.4 mM IPTG induced the highest titer of fusion protein. The crude lysate containing the fusion protein was then tested to see if it could convert [2,3-3H]GA9 and [17,17-2H]GA9 to labeled-GA4. We used the bacterial lysate transformed with pGEX-2T vector alone as a control.

To make a large amount of recombinant AtGA3ox1 fusion protein, the transformed bacteria were inoculated into 100 mL of enriched medium (2% [w/v] tryptone; 1% [w/v] yeast extract; 50 mM KPi; 0.2% [w/v] glycerol; 0.5% [w/v] NaCl; pH 7.5) and incubated overnight at 37°C with shaking. Fresh medium (400 mL) was then used to dilute the bacteria and IPTG was added to a final concentration of 0.4 mm. After shaking at 28°C for 5 to 6 h, the bacteria were spun down at 4°C in 250-mL bottles at 8,000 rpm (approximately 5,000g) for 10 min. The pellet was suspended in 80 mL of PBS with 0.5 mM phenylmethylsulfonyl fluoride on ice. A French press was then used to lyse the bacteria in order to release the fusion protein and the lysate was centrifuged at 10,000 rpm (approximately 6,000g) for 10 min at 4°C to remove cell debris. The supernatant was passed through a preconditioned glutathione Sepharose 4B (2 mL) affinity column (Pharmacia, Piscataway, NJ). After washing the column with 20 mL of PBS, the flow was stopped and 10 mL of a freshly made reduced glutathione elution buffer (10 mM glutathione in 50 mM Tris, pH 7.5) was added. The affinity-column eluate was collected in 1-mL fractions and a Bio-Rad (Hercules, CA) protein assay was used to estimate protein titer for each fraction. The fusion protein eluted mainly in fractions 2 and 3, which were combined. Aliquots containing 100 µg of protein were taken and frozen in liquid N_2 for storage at -60° C.

Enzyme Assays

When the crude lysate was used, 90 μ L were mixed with 5 μ L of the 3-deoxy GA substrates and another 5 μ L of the necessary cofactors (10 mM Fe²⁺, 80 mM 2-oxoglutarate, 80 mM ascorbate, 2 mg bovine serum albumin [BSA] mL⁻¹, and 1 mg catalase mL⁻¹). When purified fusion protein was used, a thawed aliquot of the purified recombinant AtGA3ox1 fusion protein was added to 2 mL of Tris-HCl buffer (pH 7.5) containing 2 mg BSA mL⁻¹, 2 mM dithiothreitol, 2 mM nicotinamide adenine dinucleotide phosphate, reduced (NADPH), 5 mM 2-oxoglutarate, 5 mM of ascorbic acid, and 0.1 mM Fe²⁺. The 3-deoxy GA substrates were first dissolved in methanol, then diluted to 10% methanol (v/v) with 50 mM Tris-HCl buffer (pH 7.5). Unless specified otherwise, all tests, including enzyme stability tests, were carried out at room temperature (20°C). The stability of the fusion protein was tested over 2, 5, 10, 16, 30, 60, and 120 min by taking an 80- μ L aliquot of diluted protein from each

incubation time and adding it to the 20 μ L of 200 μ M GA₂₀ solution, followed by a 10-min reaction period. For kinetic studies, diluted protein was incubated at room temperature for 30 min before adding the 3-deoxy GA substrates to initiate the assay reaction. This was accomplished with and without the various ring D-modified GA₅ derivatives and ring D-modified GA₂₀ derivatives, and with GA₅ (as putative competitive inhibitors of 3 β -hydroxylation).

The assay reaction was stopped by adding 1 mL of cold 5% HOAc and mixing, yielding a pH of about 3. In order to measure the reaction product and/or precursor remaining, a known amount of internal standards was added and the mixture then partitioned $3 \times$ against 1 volume of H₂O-saturated EtOAc. An aliquot of the combined EtOAc fractions was dried under N₂, methylated with ethereal diazomethane, and trimethylsilyated by *N*,*O*,*-b*is(trimethylsilyl)trifluoroacetimide (BSTFA) with 1% trimethylchorosilane (TMCS) prior to analysis by GC-MS-SIM (Sheng et al., 1992). The GA substrate or product was then quantified by isotope dilution of the [²H₂]GA (Fujioka et al., 1988). Identification was made by full-scan GC-MS.

Distribution of Materials

Upon request, all novel materials described in this publication will be made available in a timely manner for noncommercial research purposes, subject to the requisite permission from any third-party owners of all or parts of the material. Obtaining any permissions will be the responsibility of the requestor.

ACKNOWLEDGMENTS

We thank Dr. H.M. Goodman (Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA) for *GA4* clone and Prof. L.N. Mander (Research School of Chemistry, Australian National University, Canberra, A.C.T., Australia) for both the deuterated GAs and ring D-modified GAs.

Received February 23, 2004; returned for revision March 26, 2004; accepted March 26, 2004.

LITERATURE CITED

- Chiang H-H, Hwang I, Goodman HM (1995) Isolation of the *Arabidopsis GA4* locus. Plant Cell **7:** 195–201
- Evans LT, King RW, Mander LN, Pharis RP (1994a) The relative significance for stem elongation and flowering in *Lolium temulentum* of 3β-hydroxylation of gibberellins. Planta **192**: 130–136
- Evans LT, King RW, Mander LN, Pharis RP, Duncan KA (1994b) The differential effects of C-16,17-dihydro gibberellins and related compounds on stem elongation and flowering in *Lolium temulentum*. Planta 193: 107–114
- Foster KR, Lee I-J, Pharis RP, Morgan PW (1997) Effects of ring D-modified gibberellins on gibberellin levels and development in selected *Sorghum bicolor* maturity genotypes. J Plant Growth Regul 16: 79–87
- Fujioka S, Yamane H, Spray CR, Gaskin P, MacMillan J, Phinney BO, Takahashi N (1988) Qualitative and quantitative analysis of gibberellins in vegetative shoots of normal, *dwarf-1*, *dwarf-2*, *dwarf-3*, and *dwarf-5* seedlings of *Zea mays* L. Plant Physiol 88: 1367–1372
- Fujioka S, Yamane H, Spray CR, Phinney BO, Gaskin P, MacMillan J, Takahashi N (1990) Gibberellin A_3 is biosynthesised from gibberellin A_{20} via gibberellin A_5 in shoots of Zea mays L. Plant Physiol 94: 127–131
- Hedden P, Proebsting WM (1999) Genetic analysis of gibberellin biosynthesis. Plant Physiol 119: 365–370
- Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3β -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA **98**: 8909–8914
- Junttila O, King RW, Poole A, Kretschmer G, Pharis RP, Evans LT (1997) Regulation in *Lolium temulentum* of the metabolism of gibberellin A_{20} and gibberellin A_1 by 16,17-dihydro- GA_5 and by the growth retardant, LAB 198 999. Aust J Plant Physiol **24**: 359–369

- King RW, Blundell C, Evans LT, Mander LN, Wood JT (1997) Modified gibberellins retard growth of cool-season turfgrasses. Crop Sci. 37: 1878–1883
- King RW, Junttila O, Mander LN (2004) Gibberellin structure and function: biological activity and competitive inhibition of 3β -hydroxy-lase and 2β -oxidase enzymes. Physiol Plant **120**: 287–297
- Kwak S-S, Kamiya Y, Sakurai A, Takahashi N, Graebe JE (1988) Partial purification and characterization of gibberellin 3ß-hydroxylase from immature seeds of *Phaseolus vulgaris* L. Plant Cell Physiol. 29: 935–943
- Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel's stem length gene (*Le*) encodes a gibberellin 3β -hydroxylase. Plant Cell **9**: 1435–1443
- Mander LN, Camp D, Evans LT, King RW, Pharis RP, Sherburn M, Twitchin B (1995) Designer gibberellins: The quest for specific activity. Acta Hortic 394: 45–55
- Mander LN, Adamson G, Bhaskar VK, Twitchin B, Camp D, King RW, Evans LTE (1998a) Effects of 17-alkyl-16,17-dihydrogibberellin A₅ derivatives on growth and flowering in *Lolium temulentum*. Phytochemistry 49: 1509–1515
- Mander LN, Sherburn M, Camp D, King RW, Evans LT, Pharis RP (1998b) Effects of D-ring modified gibberellins on flowering and growth in *Lolium temulentum*. Phytochemistry **49:** 2195–2206
- Martin DN, Proebsting WM, Hedden P (1997) Mendel's dwarfing gene: cDNAs from the *Le* alleles and function of expressed proteins. Proc Natl Acad Sci USA 94: 8907–8911
- Reid JB, Howell SH (1995) Hormone mutants and plant development. *In* PJ Davies, ed, Plant Hormones: Physiology, Biochemistry and Molecular Biology. Ed 2, Kluwer Academic Publishers, The Netherlands, pp 448–485
- Saito T (1990) Purification of gibberellin biosynthetic enzymes and investigation of their inhibitors. PhD thesis. University of Tokyo, Tokyo, Japan

- Saito T, Kamiya Y, Yamane H, Sakurai A, Murofushi N, Takahashi N (1992) Effects of 3-methylgibberellin analogs on gibberellin 3β -hydroxylases and plant growth. Biosci Biotechnol Biochem **56**: 1046–1052
- Sheng C, Bhaskar KV, Chu W-LA, Mander LN, Pearce DW, Pharis RP, Young S (1992) Identification of a novel gibberellin (GA₈₅) in very young seedlings of *Brassica campestris* cv. Tobin. Biosci Biotechnol Biochem 56: 564–566
- Spray CR, Kobayashi M, Suzuki Y, Phinney BO, Gaskin P, MacMillan J (1996) The dwarf-1 (d1) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci USA 93: 10515– 10518
- Takagi M, Pearce DW, Janzen LM, Pharis RP (1994) Effect of exo-16,17dihydro-gibberellin A_5 on gibberellin A_{20} metabolism in seedlings of dwarf rice (*Oryza sativa* L. cv. Tan-ginbozu). Plant Growth Regul **15**: 207–213
- Tudzynski B, Mihlan M, Rojas MC, Linnemannstones P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of *Gibberella fujikuroi*. J Biol Chem 31: 28635–28643
- Williams J, Phillips AL, Gaskin P, Hedden P (1998) Function and substrate specificity of the gibberellin 3β -hydroxylase encoded by the *Arabidopsis GA4* gene. Plant Physiol **117:** 559–563
- **Zhou R** (2000) The mode of action of ring D-modified gibberellin A_5 and its derivatives in wild oat seedlings. PhD thesis. University of Calgary, Calgary, Alberta, Canada
- Zhou R, Yu M, Pharis RP (1998) Dihydro-GA₅ and its derivatives competitively inhibit recombinant *Arabidopsis* GA 3β-hydroxylase. Intl Plant Growth Substances Assoc 16th Intl Conference, Tokyo, p 157 (Abstr No. 292)