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Abstract

Myocardial fuel selection is a key feature of the health and function of the heart, with clear links 

between myocardial function and fuel selection and important impacts of fuel selection on 

ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-

invasive assessment of these aspects of cardiac function and metabolism. Here we review the 

landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty 

acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid 

imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and 

cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac 

function.

Introduction

Significance of MFAO in health and disease

Although the heart is a metabolic omnivore, fatty acids are the dominant myocardial fuel 

under usual circumstances in health and disease [1]. The balance between fuel types can be 

shifted as an externally imposed change that affects myocardial fuel selection, or as intrinsic 

changes that are the result of myocardial disease.

Primary sites of regulation of fuel selection and MFAO include transmembrane transport, 

oxidative and non-oxidative fatty acid metabolic processes, levels of regulatory 

intermediates, and external regulators like insulin or catecholamines. The importance of 

these sites as targets of regulation or sites of disease-related imbalance is beginning to be 

explored.

Fuel selection impacts oxidative efficiency, i.e. efficiency of energy generation per unit O2 

used. This also impacts work efficiency (work produced per unit O2 used) but the 

importance of shifts in oxidative efficiency on MFAO, contractile function or other outcomes 

of importance has not yet been well explored.

Significance of MFAO imaging

Measurement of fuel selection in the heart is challenging. Ex vivo experiments on isolated 

hearts are extremely useful but incompletely informative, and ultimately measurements in 

vivo in circumstances of health and disease are needed. The traditional methods of ‘organ 

balance’ measurements of fuel metabolism require measurements of rates and amounts of 
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fuel delivery and uptake, using invasive tools to make samples and measurements of analyte 

blood concentrations. Imaging tools provide a major advantage in animal and human studies, 

because a set of in vivo measurements can be made with only modest needs for blood 

sampling to assess metabolite concentrations. Particularly for evaluations of myocardial 

metabolism, tracer-based methods have been advanced that provide arterial measurements of 

imaging tracers, obviating the need for peripheral arterial sampling. Together with 

progressive advances in the design and production of radiolabeled fatty acid probes, and in 

the modeling approaches to extracting relevant kinetic parameters from the time-activity 

curves, imaging studies can provide accessible, accurate and quantitative measurements of 

MFAO safely and noninvasively. These tools have already provided major advances in our 

understanding of myocardial fatty acid metabolism, and of fuel metabolism more generally, 

in health and disease. In the following sections we will review the state of the art in 

radiopharmaceutical tracers that allow non-invasive measurement of MFAO, followed by a 

review of the knowledge that these approaches have provided for us in realms of human 

health and disease.

Radiopharmaceuticals for MFAO Imaging

Metabolically Cleared MFAO Probes

The central role of fatty acids in energy provision to the myocardium motivated efforts to 

develop radiolabeled long-chain fatty acids (LCFAs) that could be imaged by PET or 

SPECT. As early as 1976, the synthesis of 1-11C-palmitate (CPA, T1/2 = 20 min, Figure 1) 

had been achieved and this radiotracer was evaluated in isolated perfused rabbit hearts and in 

living dogs[2]. CPA has been used extensively in cardiovascular PET research studies to 

monitor changes in palmitate uptake and metabolism in response to physiologic conditions 

and pathologies ([3–6]). Compartmental modeling of myocardial time-activity curves allows 

estimation of CPA uptake, esterification and oxidation [7]. However, the modeling technique 

has not been validated in conditions of myocardial ischemia, where enhanced backdiffusion 

of unoxidized CPA is confounded with metabolic clearance of β-oxidized CPA. The utility 

of CPA for indication of MFAO is therefore limited to conditions that exclude myocardial 

ischemia. Fluorine-18 labeled LCFA analogs were developed to take advantage of the longer 

isotopic half-life of 18F (T1/2 = 109.8 min) for radiotracer distribution and more practical 

clinical PET imaging logistics [8]. In mice, the odd-chain length LCFA analog, 17-18F-

fluoroheptadecanoic acid (FHA, Figure 1) was found to have rapid uptake in heart similar to 

CPA with biphasic clearance from the myocardium. The even-chain LCFA analog, 16-18F-

fluorohexadecanoic acid (FHDA, Figure 1) also showed similar biphasic clearance from the 

heart, but with different clearance rates, and different labeled metabolites in the heart as 

predicted by their different end-products of β-oxidation. Bone uptake was highest for FHA, 

consistent with end-stage metabolic defluorination of the putative radiolabeled metabolite, 

3-18F-fluoropropionyl-CoA. In the case of FHDA, the primary putative metabolite is 2-18F-

fluoroacetyl-CoA, which may undergo a variety of metabolic transformations, including 

defluorination. The complex metabolic handling of the 18F-labeled LCFA analogs, in 

addition to their in vivo defluorination, complicates the development of quantitative 

modeling strategies. To provide a more metabolically stable 18F-labeled LCFA analog, Tu et 

al. [9] recently synthesized 15-(4-(2-18F-fluoroethoxy)phenyl)pentadecanoic acid (F7, 
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Figure 1) that showed dramatically reduced in vivo defluorination. F7 showed robust uptake 

in rat myocardium and a biphasic clearance pattern. Quantitative data analysis for estimation 

of myocardial fatty acid metabolic fluxes has yet to be shown with F7.

The radioiodinated LCFA analog, 123I-iodophenylpentadecanoic acid (IPPA, Figure 1), was 

developed for SPECT imaging applications [10]. In myocytes, radioiodinated IPPA is 

esterified to form labeled complex lipids and metabolized by β-oxidation to the predominant 

metabolite, iodobenzoic acid and other short chain oxidation end-products [11, 12]. In a 

canine model of regional low-flow ischemia, initial uptake of IPPA was lower in ischemic 

regions relative to non-ischemic regions, however myocardial clearance rate was 

significantly slower in ischemic regions leading to relatively increased retention of 

radioactivity in ischemic myocardium at later intervals [13]. The longer acquisition periods 

required for SPECT imaging limits the utility of IPPA for determining clearance kinetics 

from the human myocardium. Compartmental modeling was applied to the kinetics of IPPA 

in isolated rat heart [14], but application of modeling strategies in humans has been limited 

by the complex metabolic fate of the tracer.

Metabolically Trapped MFAO Probes

To simplify the myocardial kinetics of radiolabel LCFAs, structural modifications were 

investigated to impede oxidation or esterification. The 3-methyl branched chain analog, β-

methyl-1-11C-heptadecanoic acid (β-Me-HA, Figure 1) was developed to inhibit β-oxidation 

[15]. In PET imaging studies, β-Me-HA showed prolonged retention in normal and infarcted 

dog myocardium. Quantitative autoradiographic imaging of rats administered β-

methyl-1-14C-heptadecanoic acid showed the highest heart concentration at 60 min post-

injection, with myocardial concentration diminishing to 0.4% injected dose/g at 24 h [16]. 

Terminally 18F-labeled branched chain LCFA analogs have also been pursued. 3-

Methyl-17-18F-fluoroheptadecanoic acid (3MFHA, Figure 1) and 5-methyl-17-18F-

fluoroheptadecanoic acid (5MFHA, Figure 1) showed somewhat lower initial uptake than 

unbranched FHDA in rat heart [17]. Clearance rate from the heart was slowest for 3MFHA, 

while clearance of 5FMHA was similar to the unbranched analog FHDA. Metabolic 

defluorination was evident for both 3MFHA and 5MFHA. Further work is required to 

understand the differences in metabolic handling of 3MFHA and 5MFHA and the potential 

for quantitative modeling of their myocardial kinetics using PET. For SPECT imaging, 

the 123I-labeled β-methyl substituted probe β-methyl-15-123I-iodophenylpentadecanoic acid 

(β-MeIPPA, Figure 1) has been used extensively in animals and humans [18–21]. Metabolic 

studies have elucidated that BMIPP is a substrate for α-oxidation followed by β-oxidation in 

the myocardium [22–24]. However, since BMIPP is not accepted for mitochondrial transport 

by the CPT-1 dependent shuttle system [25], its early retention in myocardium reflects 

activation and esterification to complex lipids with slow turnover related to α-oxidation rate. 

Its utility as an MFAO probe is therefore very limited.

LCFA imaging probes modified by heteroatom substitution with stable or radioactive 

tellurium isotopes were investigated by Knapp and colleagues [26–28]. The LCFA analog 

9-123mTe-telluraheptadecanoic acid (9-TeHA, Figure 1) was shown to have prolonged 

retention in rat and dog myocardium [26]. Although the metabolism of these analogs was 
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not fully elucidated, their slow myocardial clearance was presumed to reflect incomplete β-

oxidation caused by the tellurium heteroatom. Heteroatom substitution with sulfur was 

subsequently pursued by DeGrado and colleagues as a more physiologically acceptable 

substitution in LCFA probes [29]. Indeed, the 6-thia LCFA analog, 14-18F-fluoro-6-thia-

heptadecanoic acid (FTHA, Figure 1) was shown to exhibit >100 heart:blood concentration 

ratio with prolonged myocardial retention. 18F-labeling at the ω-3 position was developed to 

minimize in vivo defluorination in rodent models, but subsequent studies in pigs [30] and 

humans [31] showed that terminally 18F-labeled thia fatty acids do not exhibit appreciable 

metabolic defluorination in these higher mammals. Inhibition of MFAO with a CPT-1 

inhibitor caused an 81% reduction in murine heart uptake of FTHA, indicating specificity of 

uptake for imaging of MFAO [29]. Indeed, very low incorporation of 18F into complex lipids 

showed FTHA to have a low esterification rate. The 18F-radiolabel was found to bind to 

mitochondrial protein in the myocardium, presumably through a long-chain thiol β-oxidative 

metabolite [29]. PET studies in healthy human volunteers showed the myocardial trapping 

rate of FTHA to be increased with exercise but unchanged with elevated blood flow induced 

by dipyridamole [32]. However, a later study with FTHA in hypoxic canine myocardium 

showed retention in hypoxic myocardium independent of β-oxidation rate [33]. It was 

subsequently shown that sulfur substitution at the 4th carbon enhanced specificity of thia 

fatty acid analog probes for indication of MFAO [30]. Myocardial uptake of the palmitate 

analog, 16-18F-fluoro-4-thia-hexadecanoic acid (FTP, Figure 1), was shown to track β-

oxidation rates in normal and hypoxic perfused rat heart [30]. Further quantitative validation 

studies for FTP were performed in isolated perfused rat heart to define the relationship of 

MFAO (measured using tritiated palmitate) to FTP trapping rate in myocardium under 

diverse conditions [34]. The concept of a “lumped constant” (LC) for FTP was invoked, as 

analogous to the lumped constant utilized for quantitation of glucose phosphorylation 

using 18F-FDG. Recently, DeGrado et al. [35, 36] have described an oleate analog of (FTO, 

Figure 1) which shows high specificity for MFAO imaging and enhanced myocardial 

retention relative to FTP in rat myocardium. Since oleate is the most prevalent LCFA in the 

blood, and is highly utilized as an energy-providing fatty acid [37], the oleate imaging 

analog, FTO, may provide higher sensitivity and specificity for MFAO imaging than 

palmitate analogs [36].

Incorporation of a cyclopropyl group is another structural modification employed to inhibit 

oxidation of LCFA imaging probes in heart. Shoup et al. [38] have developed 

trans-9(RS)-18F-fluoro-3,4(RS,RS)-methyleneheptadecanoic acid (18F-FCPHA, Figure 1) 

with the cyclopropyl group encompassing carbons 3 and 4. 18F-FCPHA showed high uptake 

and prolonged retention in rat heart. The metabolism of 18F-FCPHA and its specificity for 

imaging of MFAO have yet to be clarified.

MFAO imaging in ischemic heart disease

The application of fatty acid oxidation imaging to myocardial ischemia has been in two 

overall areas of interest. First is the pathophysiologic question of the shifts in fuel selection 

in ischemic myocardium. Second is the more clinically approachable application of using 

fatty acid imaging to identify and quantify regions of ischemia. We will further explore each 

of these topics.
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The heart does not maintain a significant depot of stored fuel substrate, and in the absence of 

ongoing supply of fuel and oxygen myocardial cells are able to sustain metabolism for only 

a duration of minutes. In the region of the myocardium subjected to ischemia, impaired fuel 

availability and hypoxia necessarily produce local shifts in fuel selection. These shifts, and 

accompanying changes in blood flow rates and distribution, have been studied in part using 

tracer-based methodologies, including SPECT and PET imaging [39–44]. Most such studies 

have used radiolabeled glucose (to quantify glucose uptake) and radiolabeled acetate (to 

quantify blood flow or perfusion), without concurrent imaging of fatty acid kinetics. Fuel 

selection is reciprocal between glucose and fatty acids, and the studies that have used fatty 

acid tracers overall have provided complementary findings compared to those measuring 

glucose. Specifically, ischemic myocardium metabolizes glucose preferentially, with 

reduced MFAO [45–47], with some sensitivity of the magnitude of the observed response to 

the specific fatty acid tracers used [47]. Post-ischemic changes in metabolism in the affected 

zone have also been described [48], with recovery of fatty acid metabolism directly 

associated with recovery of perfusion. Some studies of anti-ischemia approaches have used 

fatty acid imaging to evaluate effectiveness of treatment as well as the specific effects on 

myocardial fuel selection [40, 49]. These observations demonstrate the utility of fatty acid 

kinetic assessment using radionuclide imaging to elucidate the pathophysiology of ischemia, 

and increasingly to explore the mechanisms of benefit of novel anti-ischemic treatment 

approaches.

PET imaging in ischemia finds clinical utility in the estimation of infarct size, and more 

specifically in distinguishing viable from non-viable regions in the infarcted zone [34, 41, 

42, 50–62]. PET measures of blood flow in ischemia can provide prognostic information 

[58, 63], and some have even argued that a PET-derived metabolic definition of infarct is 

superior to other imaging approaches [64]. Tracers of fatty acid uptake are similarly 

informative in these applications [65–70], and in some instances have been found to provide 

superior diagnostic and prognostic information [65, 67, 71] (Figure 2) and insights into the 

metabolic physiology underlying metabolic adaptation to ischemia and recovery in 

reperfused tissue [70, 72].

Despite the widespread clinical availability of PET methodology, particularly that using 18F-

fluorodeoxyglucose (FDG), to date PET has not found widespread application in clinical 

cardiology. Nevertheless, the value of PET-based measurements of glucose or fatty acid 

kinetics in providing non-invasive assessment of physiology has been clearly demonstrated, 

and tracers of fatty acid metabolism can provide unique information about the metabolic 

shifts accompanying various degrees and stages of ischemic injury.

MFAO imaging in heart failure

Myocardial fuel selection is abnormal in heart failure. Imaging of MFAO has contributed to 

our understanding of these phenomena, and their contribution to progression or recovery of 

disease. In parallel, fatty acid imaging has been applied in studies of treatments targeting 

cardiac dysfunction including those targeting myocardial metabolism directly. These 

therapeutic studies have also contributed to our understanding of the contributions of 

metabolic dysfunction to the pathogenesis of heart failure.
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In heart failure, there is abnormal fuel metabolism overall, with variably reported shifts 

toward glucose with reduced fatty acid uptake, or away from glucose with increased fatty 

acid uptake. The majority of reports include increased fatty acid uptake, whether the 

underlying problem is ischemia [73], a non-ischemic cardiomyopathy [74–77], or a diabetic 

cardiomyopathy [78, 79], but others report reduced fatty acid uptake in idiopathic 

cardiomyopathy [80]. It is unclear whether these various conditions produce altered fatty 

acid utilization via the same mechanisms, how increased fatty acid transport relates to the 

impairment of function, and what the developmental time course of metabolic and 

mechanical dysfunction, and the inter-relationships of these changes, might be. Specifically, 

it is possible that changes in fuel selection result directly from compensatory changes due to 

impaired function (which may be a shared phenomenon driving metabolic shifts across 

various etiologies of dysfunction). It is also possible that the metabolic changes are in 

response to the whole-body response to impaired cardiac function or tissue perfusion 

(mediated for example by myokines, cytokines, or neurologically-driven changes). 

Mechanisms for these potential effects have not been systematically investigated. It is known 

that in health the myocardium responds to acute increases in fat exposure with an acute 

reduction in mechanical function [81], but conversely acute reduction in myocardial fat in 

cardiomyopathy is also associated with impaired function [82]. An increase in fatty acid 

uptake directly in response to impairment of mechanical function has not been demonstrated 

with imaging methods, but such changes are seen with experimentally imposed pressure 

overload [83, 84]. The underlying abnormalities include alterations in regulatory metabolic 

intermediates such as malonyl-CoA, and adverse changes in mitochondrial content and 

function [85–87].

There have been a small number of studies using fatty acid imaging as a measurement 

endpoint in clinical studies of heart failure, in particular in studies of metabolic modulators 

targeting abnormal fatty acid metabolism rates [77, 88–91]. Overall these show the 

anticipated restoration of fatty acid uptake and oxidation toward normal, in association with 

an improvement in function. These observations confirm that the metabolic and functional 

aberrations are strongly interconnected, and demonstrate that the metabolic abnormalities 

are not a fixed feature of the dysfunctional hearts.

An interesting and relatively recent observation made using myocardial fatty acid imaging 

studies is that there is a sex difference in the rates of myocardial fatty acid uptake, and 

oxidation with higher rates observed in women under normal physiologic conditions and 

with dysfunction [92–97]. These differences in turn relate to sex differences in metabolic 

efficiency in the heart and sex-related differences in the relationships among metabolism, 

efficiency, and mechanical function [92, 93, 98], and in responses to treatment [95]. This set 

of observations may provide novel insights into the longstanding unexplained sex difference 

in cardiac disease [99]. The molecular phenomena underlying these sex-specific changes in 

fuel selection, and the clinical implications of these recent observations, are only beginning 

to be explored.
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MFAO imaging in obesity and diabetes

Abnormal fuel selection is a feature of skeletal muscle in obesity in type 2 diabetes [100], 

generally in the setting of resistance to the actions of insulin to drive glucose uptake and 

utilization (i.e. tissue insulin resistance). Parallel phenomena are at play in the heart, where 

there is now evidence that abnormally increased uptake of fatty acids, beyond the baseline 

preference for fatty acid, contributes to metabolic abnormalities in the heart in obesity and 

diabetes [78, 98, 100–112] (Figure 3). Many of these observations have been uniquely made 

possible by the availability of non-invasive quantitative assessments of fuel flux using 

radiolabeled glucose [95, 103, 113–116] and fatty acid tracers [78, 92, 95, 98, 103, 105, 109, 

114, 117–121], showing augmented fatty acid uptake and utilization under fasting 

conditions, and importantly impaired capacity to switch among fuel sources (i.e. metabolic 

inflexibility)[31, 105, 113, 115, 122] (Figure 4).

Although Type 1 diabetes (an insulin sensitive, insulin deficient state) and Type 2 diabetes 

(an insulin resistant, hyperinsulinemic state) are pathophysiologically distinct and produce 

different clinical heart disease risk patterns, they are both typified by abnormal increases in 

myocardial fatty acid uptake [104, 110, 113, 123]. This likely relates to the shared 

underlying myocardial preference for fatty acids, and the shared phenomenon of abnormal 

control of adipose lipolysis resulting in augmented fatty acid availability.

Interestingly, in the intermediate insulin resistant state of impaired glucose tolerance 

abnormally increased fatty acid uptake has been less consistently seen [100, 117, 118, 124], 

raising the possibility that effects of elevated fatty acid delivery may be sensitive to the 

accompanying glycemic state. However, recent observations that in obesity weight loss-

associated reductions in fatty acid availability are associated with reductions in myocardial 

fatty acid uptake and improvements in cardiac function [117, 125] argue in favor of an 

adverse effect of augmented myocardial fatty acid uptake even in the non-diabetic state.

Imaging evaluation of myocardial fatty acid and glucose kinetics have been used to explore 

the effects of metabolically targeted therapies that alter systemic fatty acid metabolism, alter 

myocardial fatty acid uptake, or alter the metabolic fate of fatty acids [77, 104, 105, 113, 

115, 126–128]. These disparate approaches have converged on a unified and convincing set 

of observations causally linking increased fatty acid delivery, uptake and MFAO to 

metabolic dysfunction in the heart.

The factors that drive diabetes and obesity-associated increases in myocardial fatty acid 

uptake and utilization, and the impaired capacity to switch among fuel sources remain 

incompletely understood. Also requiring further exploration are the mechanistic connection 

between abnormalities of fuel selection and abnormalities of myocardial function, and the 

previously mentioned sex differences in myocardial fatty acid utilization. Further studies 

applying myocardial fatty acid imaging will be needed to explore and better understand 

these phenomena.
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Conclusions

Quantitiative imaging of myocardial fatty acid uptake and oxidation provides a uniquely 

valuable set of tools for clinical and research applications. The optimal fatty acid probe has 

not yet been defined, and work is ongoing attempting to optimize these probes by designing 

probes with specific metabolic fates or mitochondrial targeting, for example. The application 

of the probes available to date has defined abnormalities in myocardial fuel selection as a 

key feature of many cardiac and cardiometabolic diseases, with a small set of studies 

demonstrating that metabolically targeted therapies can produce improvements in 

myocardial function or ischemia tolerance. Future possibilities include more widespread 

application of MFAO imaging as a measure of cardiac injury with ischemia, with improved 

prognostic capabilities, and application as a research tool to explore in more detail the 

mechanisms and treatments of myocardial disease in obesity and diabetes.
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Highlights

• Myocardial fatty acid oxidation (MFAO) imaging allows in vivo 

assessment of cardiac fuel utilization.

• Fatty acid tracers and analysis models have been developed that allow 

detailed assessments of fuel kinetics in the heart.

• MFAO imaging has identified abnormalities of fuel selection in cardiac 

disease, and in cardiometabolic disease.

• MFAO imaging can be used clinically to identify regions of ischemia, 

and can be used in clinical trials to follow effects of therapies.
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Figure 1. 
Long-chain fatty acid metabolic probes.
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Figure 2. 
SPECT imaging evaluating viable myocardium using a perfusion probe (99Tc-Tetrofosmin) 

and an MFAO probe (BMIPP). The arrow indicates the location of a severe stenosis of the 

left anterior descending coronary artery. Perfusion imaging was performed at the time of 

hospital admission, and BMIPP imaging was performed the following day. The authors 

conclude that the fatty acid uptake probe provides superior sensitivity for detecting the 

injured zone, and suggested that the metabolic probe could be used to assess a metabolic 

memory of the injury. From [122]
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Figure 3. 
Increased fatty acid uptake and oxidation, and lower glucose uptake, in obese fat-fed Zucker 

rats (ZDF) compared to age-matched lean Zucker rats (ZL). Upper panel, color-scale 

matched short-axis images of the myocardium demonstrating qualitatively increased fatty 

acid uptake and reduced glucose uptake in obesity. Lower panel, kinetic quantification of 

data from the time-activity curves. From [79]
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Figure 4. 
Augmented fatty acid uptake and oxidation, reduced metabolic efficiency, and impaired 

insulin-induced fuel switching, in human Type 2 diabetes compared to age-matched lean 

controls. Fatty acid kinetics were measured using FTP, 18-18F-fluoro-4-thia-oleic acid. 

NEFA, circulating non-esterified fatty acid; FAO, fatty acid oxidation rate; MVO2, oxygen 

consumption rate (estimated from acetate kinetics assessed by PET). Insulin induced major 

shifts in all of these parameters; this effect of insulin was statistically different between the 

two groups only for the suppression of NEFA, but the steady state values achieved under 

insulin stimulation differed for both FAO and FAO/MVO2. From [31]
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