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Ubiquitin/proteasome-mediated protein degradation controls various developmental pathways in eukaryotes. Cullin-

containing complexes are both versatile and abundant groups of RING family ubiquitin E3 ligases, whose activities are

subject to control by RUB/Nedd8 (for related to ubiquitin/neural precursor cell-expressed developmentally downregulated

8) modification of their cullin subunits. Here, we report the identification of an Arabidopsis thaliana counterpart of human

CAND1 (cullin-associated and neddylation-dissociated) and demonstrate that it can preferentially interact with unmodified

CUL1. The Arabidopsis cand1-1 null mutant displays distinct phenotypes, including late flowering, aerial rosettes, floral

organ defects, low fertility, dwarfism, loss of apical dominance, and altered responses to multiple plant hormones.

Molecular analyses show that many of these defects are because of compromised activity of CUL1-containing ubiquitin E3

ligases, indicating that CAND1 is required for their optimal activity. Furthermore, the cand1-1 mutant displays a partial

constitutive photomorphogenic phenotype and has defects in HY5 degradation in the absence of light, a process mediated

by a different RING family E3, COP1. Thus, our data provides genetic support for a critical role of CAND1 in regulating

various ubiquitin E3 ligases and their targeted cellular and developmental pathways.

INTRODUCTION

The ubiquitin/proteasome system is a universal selective pro-

teolysis system in eukaryotes, in which target proteins are

ubiquitinated and subsequently degraded by the 26S protea-

some. Protein ubiquitination requires the coordinated action of

a series of three distinct enzymes, a ubiquitin-activating enzyme

(E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin ligase

(E3) (Hershko and Ciechanover, 1998). Ubiquitin E3 ligases are

capable of recruiting substrates and catalyzing the transfer of

ubiquitin moieties from the E2 to the substrates. Thus, they are

largely responsible for the substrate specificity of the ubiquitin/

proteasome system (Vierstra, 2003).

Cullin-containing complexes, which belong to the RING su-

perfamily, are probably the most abundant group of ubiquitin E3

ligases. Cullin proteins can be clustered phylogenetically into five

clades (Risseeuw et al., 2003). CUL1 is the best characterized

cullin, which forms the SKP1/CUL1/ROC1/F-box protein (SCF)

complex. SCF complexes can recruit ubiquitin-conjugated E2s

through the RING finger protein ROC1 (also known as RBX1 or

HRT1) and different substrates through divergent F-box proteins

(Deshaies, 1999; N. Zheng et al., 2002). Some other cullin family

members have also been shown to form SCF-like ubiquitin E3

ligase complexes in mammalian cells. CUL2 (or CUL5) forms

a complexwith ROC1, elongin B, elongin C, andBC-box proteins

(Kamura et al., 1998, 2001; Kaelin, 2002). CUL3 forms a complex

with the ROC1 and BTB proteins (Furukawa et al., 2003; Geyer

et al., 2003; Pintard et al., 2003b; Xu et al., 2003). CUL4A forms

complexes with ROC1, DDB1, and DDB2, or CSA, or DET1/

COP1 (Groisman et al., 2003; Wertz et al., 2004).

In Arabidopsis thaliana, although multiple cullins are present,

only CUL1-containing SCF-type ubiquitin E3 ligases have been

characterized at the biochemical and functional levels. On the

other hand, Arabidopsis COP1, a repressor of photomorphogen-

esis indarkness, hasbeenstudied indetail. COP1 is aRINGfinger

protein (von Arnim and Deng, 1993) and exhibits in vitro ubiquitin

E3 ligase activity toward photomorphogenesis-promoting tran-

scription factors on its own (Saijo et al., 2003; Seo et al., 2003),

hence representing a different type of RING family E3. Recently,

its humancounterpart hasbeensuggested tobepart of aCUL4A-

containing ubiquitin E3 ligase complex (Wertz et al., 2004).

The ubiquitin-like protein RUB (for related to ubiquitin; Arabi-

dopsis and yeast), also known as Nedd8 (for neural precur-

sor cell-expressed developmentally downregulated 8; human),
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modifies all cullins examined so far. RUB/Nedd8 undergoes

a ubiquitination-like E1/E2 cascade to form a covalent linkage

with cullins, a process called rubylation or neddylation (Hoch-

strasser, 2000). RUB/Nedd8 modification stimulates the ubiq-

uitin ligase activity of cullin-containing complexes (Furukawa

et al., 2000; Podust et al., 2000; Read et al., 2000;Wu et al., 2000;

del Pozo et al., 2002; Ohh et al., 2002). It has been suggested that

RUB/Nedd8 can help ROC1 to recruit ubiquitin-conjugated E2s

(Kawakami et al., 2001; N. Zheng et al., 2002). Interestingly, RUB/

Nedd8-modified CUL1 is also the preferred form of CUL1

present in SCF complexes (Osaka et al., 2000; Read et al.,

2000; Kawakami et al., 2001). Thus, theRUB/Nedd8modification

status of cullin plays a critical role in the assembly of cullin-

containing ubiquitin E3 ligases.

Not surprisingly, RUB/Nedd8 deconjugation also plays an

essential role in regulating cullin-containing ubiquitin E3 ligases.

A highly conserved protein complex, the COP9 signalosome

(CSN; Wei et al., 1998; Serino and Deng, 2003; Wei and Deng,

2003), has been shown to be capable of interacting with cullin-

containing complexes and of cleaving RUB/Nedd8 off of the

modified cullin (Lyapina et al., 2001; Schwechheimer et al., 2001;

Zhou et al., 2001; Cope et al., 2002). Several groups have

demonstrated that RUB/Nedd8 deconjugation negatively regu-

lates the in vitro activity of cullin-containing ubiquitin E3 ligases

(Lyapina et al., 2001; Zhou et al., 2001; Yang et al., 2002;

Groisman et al., 2003). However, various genetic studies suggest

that CSN is necessary for the optimal activity of multiple cullin-

containing ubiquitin E3 ligases (Schwechheimer et al., 2001;

Cope et al., 2002; Feng et al., 2003; Groisman et al., 2003; Liu

et al., 2003; Pintard et al., 2003a; Wang et al., 2003). Therefore, it

is hypothesized that dynamic cycles of RUB/Nedd8 conjugation

and deconjugation are required to regulate assembly and activity

of cullin-containing ubiquitin E3 ligases (Cope and Deshaies,

2003; Serino and Deng, 2003; Wei and Deng, 2003; Wolf et al.,

2003). However, the mechanism for this regulation and the key

players remain to be identified.

Recently, human CAND1 (cullin-associated and neddylation-

dissociated), previously known as TIP120A (TATA binding

protein interacting protein; Yogosawa et al., 1996), has been

identified as a potential key player in the assembly of cullin-

containing ubiquitin E3 ligases and has been shown to selectively

bind unmodified cullins. Overexpressing CAND1 in cultured cell

lines inhibits CUL1/SKP1 binding, and either RUB/Nedd8 mod-

ification or SKP1 binding dissociates CAND1 from CUL1 (Liu

et al., 2002; J. Zheng et al., 2002; Hwang et al., 2003; Min et al.,

2003; Oshikawa et al., 2003). Because CAND1 binding appears

to antagonize RUB/Nedd8modification, it is not surprising that in

vitro cullin-containing ubiquitin E3 ligase activities are inhibited

by CAND1 (Liu et al., 2002; J. Zheng et al., 2002;Min et al., 2003).

Still, like CSN, CAND1 knockdown in cultured mammalian cells

causes accumulation of SCF substrates, implying that CAND1

might be important for the optimal activity of cullin-containing

ubiquitin E3 ligases (J. Zheng et al., 2002). However, because

each of the mammalian studies was performed in vitro or in

cultured cells, a validation by genetic analysis and revelation of

CAND1’s developmental functions will be essential.

In this article, we report a molecular genetic analysis of the

Arabidopsis CAND1 gene. We demonstrate that Arabidopsis

CAND1 is preferentially associated with unmodified CUL1 in

vivo. More importantly, we provide critical genetic evidence that

CAND1 acts positively to regulate multiple ubiquitin E3 ligases

and their associated developmental processes in plants.

RESULTS

Identification of the Arabidopsis CAND1 Gene

A homology search using human CAND1 sequence (Liu et al.,

2002) identified a CAND1 homolog, At2g02560, in the Arabidop-

sis genome. The presence ofmultiple EST clones aswell as a full-

length cDNA (RAFL09-95-I08) in the RIKEN collection supports

the expression of At2g02560. The full-length open reading frame

(ORF) of Arabidopsis CAND1 was cloned by RT-PCR using RNA

isolated from wild-type Arabidopsis seedlings, and sequence

analysis confirmed its 100% identity to the reported full-length

cDNA.

The Arabidopsis CAND1 gene has 28 exons and encodes

a protein of 1219 amino acids (accession number AY099857).

The sequence identity of Arabidopsis CAND1 with other eukary-

otic CAND1s is significant: 43% identity for mammals, 35% for

Drosophila melanogaster, 33% for Caenorhabditis elegans, and

22% for fission yeast (Schizosaccharomyces pombe). A phylo-

genetic tree based on CAND1 protein sequence homologies

shows that CAND1 is evolutionarily conserved (Figure 1A). In

each of those organisms, the RUB/Nedd8 conjugation pathway

is essential (Osaka et al., 2000; Tateishi et al., 2001; Kurz et al.,

2002; Ou et al., 2002; Dharmasiri et al., 2003). Interestingly,

CAND1 seems to be missing in budding yeast (Saccharomyces

cerevisiae), where RUB/Nedd8 conjugation is not essential

(Lammer et al., 1998; Liakopoulos et al., 1998). This is consistent

with the notion that CAND1 may be functionally connected with

RUB/Nedd8 modification.

Identification of cand1 T-DNA Insertional Mutants

To investigate the developmental function of Arabidopsis

CAND1, we took advantage of the superior genetics available

in Arabidopsis. We searched the available Arabidopsis T-DNA

insertional mutagenesis collections and obtained three indepen-

dent lines (Figure 1B; Alonso et al., 2003; Rosso et al., 2003; see

Methods). All three T-DNA insertional mutations studied behave

recessively (data not shown). Polyclonal antibodies raised against

Arabidopsis CAND1 can detect a single band migrating around

120 kD in wild-type Arabidopsis protein extracts but not in any of

the three cand1 homozygous T-DNA insertional alleles (Figure

1C). Thus, all three mutants likely represent true null or severe

loss-of-function mutations for CAND1. Interestingly, the CUL1

protein level, in either the RUB-modified form or unmodified form,

is not affected by any of the three cand1 mutations (Figure 1C).

Initial Phenotype Analysis of cand1Mutants

All three cand1 alleles produce similar phenotypes (Figure 1D).

Basically, cand1 affects multiple aspects of the plant phenotype

throughoutdevelopment.Germinationandseedlingstagegrowth

of cand1mutants under normal conditions appear to be the same

Characterization of Arabidopsis CAND1 1871



as wild-type Arabidopsis (data not shown). The phenotypes of

cand1mutants becomemore obvious later during development.

As shown in Figure 1D, the rosette leaves of cand1 mutants are

much smaller than those of wild-type plants and have a wavy

morphology. The cand1 mutants flower later than wild-type

plants, with an increased number of rosette leaves (Figures 1D

and 4A), indicating that the vegetative to reproductive growth

transition of the primary shoot apical meristem is affected. The

growth of axillary meristems is also abnormal, where a large

number of smaller leaves are produced (Figure 1D). Furthermore,

the mutants have very low fertility, with less than one seed

produced on average per silique (data not shown). Possibly

Figure 1. Identification and Characterization of Arabidopsis CAND1 Gene and Its T-DNA Insertional Mutants.

(A) A phylogenetic tree of CAND1 proteins from representative eukaryotic organisms as labeled at the right.

(B) Schematic diagram of T-DNA insertions in the Arabidopsis CAND1 gene (At2g02560). Exons are represented by closed (coding region) and open

(untranslated regions) boxes, whereas introns are represented by lines. The T-DNA insertion sites of the three mutant alleles are indicated by arrows,

with the assigned allele names for each insertional mutation at the top.

(C) The cand1 mutations abolish CAND1 expression but do not affect CUL1 accumulation. Flower protein extracts were prepared from wild-type

Arabidopsis and three cand1 mutants and subjected to immunoblot analysis with anti-CAND1, anti-CUL1, and anti-RPN6 antibodies. Arrowheads

indicate protein positions. RPN6 is used as a loading control.

(D) All three cand1 mutants show similar phenotypes when grown under identical conditions. Numbers at the right of each row indicate the age of the

plants when photographed.
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because of their poor fertility, mutant plants continue to make

new flowers while wild-type plants of the same age start to

senesce (Figure 1D).

Other notable phenotypes of cand1mutants include dwarfism

and loss of apical dominance.When examined closely, dwarfism

largely results from reduced stem elongation (Figure 1D; data not

shown), which is analogous to the gibberellin pathway mutants

(Harberd et al., 1998). The cand1mutants have a strong increase

in the number of secondary inflorescences (Figure 1D), an in-

dication that they have lost apical dominance, which is also

observed in auxin responsemutants (Lincoln et al., 1990; Estelle,

1992). In later sections,wewill provide evidence that both gibber-

ellin and auxin pathways are affected in the cand1-1 mutant.

35S Promoter–Driven FLAG-CAND1 Partially

Complements the cand1-1Mutation

To further confirm that the phenotypes observed are indeed

attributable to cand1 mutation, we constructed a chimeric gene

using the constitutive 35Spromoter ofCauliflowermosaic virus to

drive expression of aCAND1 cDNA,with three copies of flag tags

at the N terminus of CAND1 protein. This construct was in-

troduced into a cand1-1 mutant background to test functional

complementation. Because the homozygous cand1-1 mutant

produces very few seeds and is severely dwarfed, we first stably

transformed the transgene into Arabidopsis plants heterozygous

for cand1-1mutation. In T1 generation, we selected plants resis-

tant to antibiotic markers for both the transgene and the T-DNA

and further confirmed their genotypes through PCR-based

genotyping and segregation in their selfed progenies (data not

shown).

We examined expression levels of the FLAG-CAND1 fusion

protein from the transgene as well as the endogenous CAND1

protein using total flower protein extracts. As shown in Figure 2A,

although it’s driven by a strong constitutive promoter, the level of

FLAG-CAND1 protein is lower than endogenous CAND1 (lines

3-12 and 5-2). The FLAG-CAND1 expression is not enhanced in

the cand1-1 mutant background either (Figure 2A, lines 5-4 and

6-7). As a likely result of this low expression level of the FLAG-

CAND1, cand1-1 mutant phenotypes are only partially rescued

by the transgene. Nevertheless, all of the key defects of cand1

mutants discussed in the previous section, including late flower-

ing time, low fertility, reduced plant size, loss of apical domi-

nance, andother features, are partially rescued to various extents

(Figure 2B, lines 5-4 and 6-7).

Furthermore, we identified several cosuppression lines, in

which endogenous CAND1 protein abundance is downregulated

by the presence of the transgene, and no FLAG-CAND1 fusion

protein is expressed (Figure 2A, lines 5-22 and 6-2). Remarkably,

like the partially rescued lines, the cosuppression lines also

display intermediate phenotypes compared with wild-type and

cand1 mutants (Figure 2B). Thus, this observation supports the

notion that FLAG-CAND1 is fully active and that the partial rescue

in lines 5-4 and 6-7 is because of the low levels of the FLAG-

CAND1 protein. Taken together, our data corroborates the

linkagebetween thephenotypes and the cand1mutations. These

Figure 2. Complementation and Cosuppression Effect of the 35S:FLAG-CAND1 Transgene.

(A) Expression of the FLAG-CAND1 fusion protein. Flower protein extracts from wild-type Arabidopsis, cand1-1mutant, and various 35S:FLAG-CAND1

transgenic Arabidopsis lines (line numbers labeled at the top) were subjected to immunoblot analysis with anti-CAND1 and anti-RPN6 antibodies. Lines

marked as þ/� are heterozygous for cand1-1 mutation, and lines marked as �/� are homozygous for the cand1-1 mutation. Arrowheads indicate

protein positions. The asterisk marks a cross-reacting band. RPN6 is used as a loading control.

(B) Comparison of partial complementation phenotypes and cosuppression phenotypes. An arrow is put at the top of each line with the name as labeled

above. Plants shown next to the indicated lines are other transgenic Arabidopsis lines that are heterozygous for the cand1-1 mutation. Pictures were

taken when the plants were 7 weeks old.
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results also indicate that the level ofCAND1 is critically important,

suggesting that CAND1 may act as a rate-limiting factor in some

cullin-containing ubiquitin E3 ligase function.

CAND1 Preferentially Interacts with Unmodified

CUL1 in Vivo

Because FLAG-CAND1 is functional, it was used in an initial

attempt to detect in vivo association of CAND1 and CUL1 by

immunoprecipitation.Whenwepulled down FLAG-CAND1 using

anti-FLAG antibody in extracts from the transgenic seedlings, we

were able to detect the presence of unmodified CUL1 in the

precipitate (Figure 3A). This result suggests that, like in mam-

mals, CAND1 interacts with unmodified CUL1 in Arabidopsis.

Because of the low ratio of RUB-modified CUL1 to unmodified

CUL1 in the transgenic seedlings, the lowsensitivity of thiscoimmu-

noprecipitation does not allow a conclusion to be drawn as to

whether the RUB-modified CUL1 was excluded from precipita-

tion or whether it was simply below the detection threshold

(Figure 3A).

Next, to determine the specificity of the CAND1/unmodified

CUL1 interaction, we took advantage of wild-type Arabidopsis

plants that express the CUL1 protein with a modified tandem

affinity purification (TAP) tag fused at either the N or C terminus.

Whereas nearly half of the TAP-CUL1 (N-terminal fusion) is

modified by RUB, all of the CUL1-TAP (C-terminal fusion) exists

in the unmodified form (Figure 3B). Because RUB modification

takes place at the CUL1 C terminus, a big C-terminal fusion such

as TAP (34 kD) presumably blocks RUB conjugation. On the

other hand, an N-terminal TAP fusion has no spatial conflict with

RUB conjugation and for some unknown reason slows down

RUB deconjugation. The different properties of these two fusion

proteins provide an ideal system for testing their differential

associations with CAND1 in vivo. Indeed, CAND1 can be readily

detected in the IgG precipitate of CUL1-TAP but not in TAP-

CUL1 (Figure 3B). Additionally, consistent with observations in

human cells (Liu et al., 2002; J. Zheng et al., 2002), CAND1 is not

coimmunoprecipitated with ASK1-TAP (C-terminal fusion) in vivo

(Figure 3C). This observation demonstrates that CAND1does not

interact with the C-terminal TAP tag itself, and the association

between CAND1 and CUL1-TAP is specific.

To further characterize the interaction between Arabidopsis

CAND1 and CUL1, we tested their interaction in a yeast two-

hybrid assay. Wild-type CUL1 interacts with CAND1 in yeast, as

shown by an eightfold increase in b-galactosidase (b-gal) activity

over the vector control (Figure 3D). When the RUB modification

site on CUL1 (del Pozo and Estelle, 1999) is mutated from Lys to

Arg (K682R), the b-gal activity is further increased by 10-fold

(Figure 3D). It is shown in Figure 3E that Arabidopsis CUL1 is

indeed modified by RUB in yeast, whereas the mutant CUL1

protein is not. Moreover, it appears that the amount of the

mutated CUL1(K682R) and the total amount of the modified and

unmodifiedwild-typeCUL1 are of similar levels (Figure 3E). Thus,

Figure 3. CAND1 Selectively Interacts with Unmodified CUL1 in Vivo.

(A) Unmodified CUL1 was precipitated together with FLAG-CAND1.

Seedling protein extracts prepared from wild-type Arabidopsis and

35S:FLAG-CAND1 transgenic Arabidopsis (line 6-7) were incubated with

anti-FLAG antibody conjugated agarose (a-FLAG). The precipitates and

the total extracts were subjected to immunoblot analysis with antibodies

against FLAG, CUL1, and TATA binding protein (TBP).

(B) and (C) CAND1 associates with CUL1-TAP but not with TAP-CUL1 or

ASK1-TAP in vivo. Total flower protein extracts prepared from wild-type

Arabidopsis, 35S:CUL1-TAP, 35S:TAP-CUL1, and 35S:ASK1-TAP

transgenic Arabidopsis were incubated with IgG-coupled sepharose.

The precipitates and the total extracts were subjected to immunoblot

analysis with antibodies against CAND1, TATA binding protein (TBP),

and CUL1 (B) or MYC (C).

In (A) to (C), arrowheads indicate protein positions, and T indicates total

protein extract. Anti-TBP (TATA binding protein) antibody is used as

a pull-down control.

(D) CAND1 interacts with RUB modification site mutated CUL1 more

strongly than with wild-type CUL1 in yeast two-hybrid assays. b-gal

activity resulted from CUL1(K682R) and CAND1 interaction is set to

100%. Error bars represent standard deviation (n ¼ 4).

(E) Arabidopsis CUL1 is modified by RUB in yeast, which can be

abolished by a point mutation at its RUB modification site. Yeast strains

used in two-hybrid assays (labeled at the top) were subjected to

immunoblot analysis with antibodies against CUL1 and CAND1. Arrow-

heads indicate protein positions. The asterisk marks a nonspecific band

cross-reacting with anti-CUL1 antibodies, which is also used as a loading

control of the total protein amount in each lane.
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the residual interaction observed between wild-type CUL1 and

CAND1 could be because of the presence of a fraction of the

wild-type CUL1 in the unmodified form in yeast. It is also

interesting to note that in this yeast two-hybrid assay, the N

terminus of CUL1 is fused to LexA (25 kD), which argues against

the possibility that N-terminal TAP tag might prevent TAP-CUL1

and CAND1 from interacting with each other in vivo. Collectively,

our studies show that CAND1 preferentially interacts with un-

modified CUL1.

Loss of CAND1 Results in an Aberrant Vegetative-to-

Reproductive Transition and Flower Development

As described earlier, cand1 mutants flower later than wild-type

plants, with an increased number of rosette leaves before bolting

(Figures 1D and 4A). Even after they begin to flower, many more

cauline leaves are still produced on the shoots, as comparedwith

wild-type plants (Figure 1D). Furthermore, aerial rosettes are

found in normal axillary branch positions (Figures 4B to 4E). The

formation of aerial rosettes is attributable to the failure of axillary

branch internodes to elongate immediately as they normally do in

Columbia-0. This phenotype is observed in the late-flowering

Arabidopsis ecotype Sy-0 (from Isle of Skye, UK), reflecting

a defect in the vegetative/reproductive growth switch in the

axillary meristem (Poduska et al., 2003).

The cand1 mutant flowers have all the right organs, although

they are much smaller (Figure 4F). We found that the mutant

flower is poorly pollinated (data not shown). As a result, the

silique of the mutant is very short and contains hardly any seeds

(Figure 4G).

ArabidopsisUFO is required for the expression of B-class floral

organ identity genes that control petal and stamen development

and encodes an F-box protein that incorporates into an SCF-

type ubiquitin E3 ligase (Samach et al., 1999; Wang et al., 2003).

We have previously reported a 35S:UFO-MYC overexpression

line (UM), in which B-functions become ectopic and greatly

enhanced, causing enlarged petal size, increased number of

stamens, and filamentous carpels (Wang et al., 2003; Figure 4I).

We introduced theUFO-MYC transgene into the cand1-1mutant

background by genetic crossing. The cand1-1mutants express-

ing UFO-MYC were selected by protein gel blot analysis (Figure

4H), and their flower phenotypes were compared with UM and

cand1-1. Essentially, the flowers of UM/cand1-1 are identical to

those of cand1-1 mutant and drastically different from those of

UM (Figure 4I). Consistent with the phenotype observation, the

UFO-MYC protein level is greatly downregulated in UM/cand1-1

flowers (Figure 4H). Evidently, SCFUFO activity is suppressed

in the cand1-1 mutant, implying a positive regulatory role for

Figure 4. Abnormal Development of Shoot Apex and Flower in the

cand1-1 Mutant.

(A) Flowering time of wild-type Arabidopsis and cand1-1 mutant, as

indicated by average number of rosette leaves at the time of bolting. The

identities of the plants are labeled at the bottom. Error bars represent

standard deviation (n ¼ 6).

(B) to (E) Aerial rosettes are formed in the axils of the cand1-1 mutant.

Samples were taken from different parts of the same plant, including the

bottom (B), the middle (C), and the tip of the axillary branch ([D] and [E]).

(F) Comparison of wild-type and cand1-1 flowers. The flowers were

dissected to reveal the floral organs. Pictures were taken under the same

magnification.

(G) Comparison of wild-type and cand1-1 siliques.

(H) UFO-MYC protein level is greatly reduced in the cand1-1 mutant

background. Protein samples were extracted from flowers of wild-type

Arabidopsis, 35S:UFO-MYC transgenic Arabidopsis (UM), cand1-1

mutant expressing 35S:FLAG-CAND1 transgene (UM/cand1-1), and

cand1-1 mutant. The extracts were then subjected to immunoblot

analysis with anti-CAND1, anti-MYC, and anti-RPN6 antibodies. Arrow-

heads indicate protein positions. The asterisks mark two cross-reacting

bands. RPN6 is used as a loading control.

(I) UFO overexpression phenotypes are overridden by cand1-1mutation.

The identities of the flowers are indicated at the bottom. The flowers were

dissected to reveal the floral organs.
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CAND1 in maintaining SCFUFO ubiquitin E3 ligase activity during

floral organ development.

The cand1-1Mutant Has Reduced Responsiveness

to Jasmonate and Auxin

Another well-studied F-box protein in Arabidopsis is COI1, the

central regulator of the jasmonate pathway (Xie et al., 1998; Xu

et al., 2002). The cand1-1 mutant shows a dosage-dependent

resistance to the root growth inhibition effect caused by jas-

monates, especially at low concentrations of jasmonates (2

and 5 mM), where cand1-1 has an;50% increase in resistance

compared with the wild type (Figure 5A). The cand1-1 coi1-1

double mutant has no enhanced resistance to jasmonates

compared with the coi1-1 single mutant (data not shown). This

supports the idea that SCFCOI1 controls most of the jasmonate-

triggered responses (Feng et al., 2003) and that CAND1 acts to

optimize its activity. However, unlike UFO-MYC, the COI1 pro-

tein level is not changed in the cand1-1mutant (data not shown).

Thus, further evidence is required to substantiate that the

enhanced resistance to jasmonates observed in cand1-1 is

because of the reduction in SCFCOI1 activity.

The loss of apical dominance in the cand1 mutants is remi-

niscent of some auxin pathwaymutants. Indeed, wewere able to

demonstrate that root growth inhibition by auxin in cand1-1

mutant is moderately relieved, which is comparable to axr1-3,

aweak axr1mutant (Figure 5B). In an independent study, Chuang

et al. (2004) identified a point mutation for Arabidopsis CAND1,

which also causes an auxin-resistant phenotype and has syner-

gistic effects with the tir1-1 mutation. Like UFO and COI1, TIR1

also encodes an F-box protein, and SCFTIR1 is required for auxin

responses (Gray et al., 1999). Together, these data provide

evidence that optimal SCFTIR1 activity requires CAND1 function.

CAND1 Is Required for Proper Gibberellin Signaling

As mentioned earlier, the dwarf phenotype of cand1 mutants

might be caused by defects in gibberellin pathways. To test this

hypothesis, we examined whether loss of CAND1 impairs

gibberellin (GA) signaling pathways that also involve a specific

SCF-type ubiquitin E3 ligase. SCFSLY1 is suggested to be re-

sponsible for targeting the GA pathway repressor of ga1-3 (RGA)

for degradation in Arabidopsis (McGinnis et al., 2003). Indeed,

whereas RGA protein in wild-type Arabidopsis is barely visible in

protein gel blot analysis, sly1-10, a mutant of the F-box protein in

SCFSLY1, can accumulate a high level of RGA (McGinnis et al.,

2003; Figure 6A). Noticeably, the RGA protein level is also

elevated in the cand1-1 mutant (Figure 6A), which likely contrib-

utes to the mutant dwarf phenotype.

RGA protein is destabilized rapidly upon addition of GA

(Silverstone et al., 2001; McGinnis et al., 2003; Figure 6B, lanes

1 and 2). However, in the cand1-1mutant, the GA-induced RGA

protein reduction is partially compromised (Figure 6B, lanes 3

and 4). Therefore, it is conceivable that CAND1 is a positive

regulator of SCFSLY1 and that in cand1mutants, SCFSLY1 cannot

achieve optimal activity, which results in a reduction of GA

signaling.

It is interesting to note that GA responses regulate floral

pathway integrators (Simpson and Dean, 2002), which could

provide a possible explanation for the late flowering phenotype

of cand1 mutants. In addition, GA is also essential for petal and

stamen development in Arabidopsis (Harberd et al., 1998),

indicating another potential cause of the cand1 mutant flower

phenotypes.

CAND1 Represses Photomorphogenesis by Promoting

HY5 Degradation in Darkness

As stated earlier, loss of CAND1 does not affect germination and

seedling stage growth under normal conditions. However, when

cand1-1 seedlings are grown in darkness, they exhibit mild

constitutive photomorphogenic phenotypes, with short hypoco-

tyls and opened cotyledons (Figure 7A). It has been shown that

the extent of photomorphogenic development is directly corre-

lated with the abundance of HY5, a photomorphogenesis-

promoting transcription factor (Osterlund et al., 2000).

Figure 5. Jasmonate and Auxin Responses Are Affected in the cand1-1

Mutant.

The root growth inhibitions conferred by jasmonate (A) and auxin (B) are

reduced in the cand1-1 mutant. Arabidopsis lines used in the experi-

ments are indicated at the right. Concentrations of hormones used in MS

medium are indicated at the bottom. Root length on MS medium without

jasmonates or auxin was set as 100%, which did not show any significant

difference among the wild type and various mutant lines. Error bars

represent standard deviation (n > 10). MeJA, methyl jasmonate.
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Consistent with this, we found that dark-grown cand1-1 mutant

seedlings, whose degree of photomorphogenesis is in between

light-grown and dark-grown wild-type seedlings, also accumu-

late an intermediate level of HY5 protein (Figure 7C, lanes 1 to

3). HY5 is degraded by the 26S proteasome upon transfer from

light to dark (Osterlund et al., 2000; Figure 7D, lanes 1 to 3).

Evidently, HY5 protein is more stable in the cand1-1 mutant

(Figure 7D, lanes 4 to 6).

The targeted degradation of HY5 in darkness requires COP1,

a ubiquitin E3 ligase for HY5 (Saijo et al., 2003), and COP10, an

E2 ubiquitin-conjugating enzyme variant (Suzuki et al., 2002). We

crossed the cand1-1 mutant with cop1-6 and cop10-4, both of

which are nonlethal alleles, to obtain genetic evidence for the

functional interactions of CAND1 with COP1 and COP10. Re-

markably, the dark-grown double mutants cop1-6 cand1-1 and

cop10-4 cand1-1 have shorter hypocotyls than their parental

single mutants (Figure 7B) and accumulate higher levels of HY5

as well (Figure 7C, lanes 4 to 7). These data suggest that CAND1

has synergistic effects with COP1 and COP10 in promoting HY5

degradation and in repressing photomorphogenesis in darkness.

Considering that human COP1 has most recently been indicated

to be an integral part of a CUL4A-containing ubiquitin E3 ligase

(Wertz et al., 2004), it will be interesting to find out if this function

of CAND1 is dependent on Arabidopsis CUL4.

DISCUSSION

In this study, we characterized Arabidopsis CAND1, a crucial

player in the regulation of cullin-containing ubiquitin E3 ligases.

We demonstrated that CAND1 has the ability to selectively inter-

act with unmodified CUL1 in vivo. The Arabidopsis cand1-1

null mutant exhibits serious defects in various aspects of

development, and we showed that many of these defects are

caused by compromised activities of CUL1-containing SCF-type

ubiquitin E3 ligases. Therefore, CAND1 functions as a positive

Figure 6. Proper GA Signaling Requires CAND1.

(A) The GA pathway negative regulator RGA accumulates in the cand1-1

mutant. Flower protein extracts from wild-type Arabidopsis, cand1-1,

rga-24 (negative control), and sly1-10 mutants were subjected to

immunoblot analysis with anti-RGA and anti-RPN6 antibodies.

(B) The cand1-1 mutant fails to rapidly destabilize RGA upon GA

treatment. Eight-day-old wild-type and cand1-1 seedlings were treated

with GA3 for 2 h. Subsequently, protein extracts were prepared from

treated (þ) and untreated (�) seedlings and subjected to immunoblot

analysis with anti-RGA and anti-RPN6 antibodies.

The arrowheads in (A) and (B) indicate protein positions. RPN6 is used as

a loading control.

Figure 7. CAND1 Functions in Photomorphogenesis by Regulating HY5

Degradation.

(A) and (B) Loss of CAND1 leads to constitutive photomorphogenesis in

dark and enhances phenotypes of weak cop alleles. Different Arabidop-

sis lines (labeled at the top) were grown in complete darkness for the

indicated number of days. All pictures were taken under the same

magnification.

(C) The cand1-1 mutation causes hyperaccumulation of HY5 in dark-

grown seedlings. Seedling protein extracts from 4-d-old light-grown

wild-type Arabidopsis, dark-grown wild-type Arabidopsis, and various

dark-grown single mutants and double mutants (labeled at the top) were

prepared and blotted by anti-HY5 and anti-RPN6 antibodies.

(D) HY5 is degraded less efficiently in the cand1-1 mutant than in wild-

type Arabidopsis. Four-day-old light-grown seedlings of wild-type Ara-

bidopsis and cand1-1 mutant were transferred to complete darkness.

Samples were collected at different time points starting from the transfer

(indicated at the top) and blotted with anti-HY5 and anti-RPN6 anti-

bodies.

The arrowheads and asterisk in (C) and (D) indicate protein positions and

a cross-reacting band, respectively. HY5 has two forms: unphosphory-

lated (bottom band) and phosphorylated (top band). RPN6 is used as

a loading control.
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regulator of cullin-containing E3s. In addition, we found that

CAND1 also works together with COP1 and COP10 to promote

HY5 degradation, which sheds new light on the control of

photomorphogenesis.

Physical Interaction between CAND1 and CUL1

Here, we provide three lines of direct in vivo evidence supporting

that Arabidopsis CAND1 is an unmodified CUL1-interacting

protein, similar to its human counterpart (Liu et al., 2002; J.

Zheng et al., 2002; Hwang et al., 2003;Min et al., 2003; Oshikawa

et al., 2003). First, only the unmodified form of CUL1 is detected

in the immunoprecipitate of FLAG-CAND1 (Figure 3A). Second,

CAND1 can be pulled down together with the unmodified CUL1-

TAP; contrarily, TAP-CUL1, which is hyper-RUB modified, does

not pull down any CAND1 (Figure 3B). Third, when the RUB

modification site on Arabidopsis CUL1 is mutated and its RUB

modification in yeast is prevented (Figure 3E), the interaction

between Arabidopsis CUL1 and CAND1 in yeast increases by

10-fold (Figure 3D). It is interesting to note that in yeast approx-

imately half of the wild-type CUL1 actually exists in the un-

modified form, yet its ability to interact with CAND1 decreases

;10-fold compared with CUL1(K682R) mutant protein, despite

the fact that the two CUL1 proteins have almost equal abun-

dance (Figures 3D and 3E). In Arabidopsis, TAP-CUL1 has a high

rate of RUB modification in comparison with CUL1-TAP (Figure

3B). If this causes a similar scale of decrease in the interaction

between the unmodified form of TAP-CUL1 and CAND1, the

interaction might fall below the detection limit of our IgG pull-

down experiment (Figure 3B).

The observation mentioned above can be taken as an in-

dication that the interaction between CUL1 and CAND1 may be

labile and dynamic in vivo. What is consistently observed in both

Arabidopsis and yeast is that if CUL1 is not able to undergo RUB

modification or if its capacity for RUBmodification is reduced, its

interaction with CAND1 is strong. On the contrary, when CUL1 is

hyper-RUB modified or with a high capacity for RUB modifica-

tion, the interaction between CUL1 and CAND1 decreases

dramatically, to an extent much below expectation based on

the abundance of the remaining CUL1 in the unmodified form

(Figure 3). Taken together, it suggests that the binding of CAND1

to unmodified CUL1 is quickly turned over by RUB modification,

and only when RUB modification cannot take place, CAND1

binding to CUL1 will be sustained.

In vivo, when a target protein somehow signals a need for

degradation, the substrate/SKP1/F-box protein subcomplex

promotes RUB/Nedd8 modification of CUL1, which leads to

CAND1dissociation fromCUL1. Reciprocally, whenRUB/Nedd8

is cleaved from modified CUL1 by CSN, CAND1 binds unmod-

ified CUL1 with high affinity, displacing the SKP1/F-box protein.

Therefore, through CAND1, the RUB/Nedd8 conjugation and

deconjugation cycle can be directly linked to the assembly/

disassembly of cullin-containing ubiquitin E3 ligases. This model

implies that although CAND1 binding is an important step in the

RUB/Nedd8 conjugation and deconjugation cycles, it may not

affect the RUB/Nedd8 modification status of cullins, which is

supported by our data (Figure 1C).

Regulation of SCF-Type Ubiquitin E3 Ligases by CAND1

The unique binding characteristic of CAND1 turns out to be the

key to its biological function. It prevents the formation of

functional cullin-containing ubiquitin E3 ligases by sequestering

ROC1/cullin. Consistently, various in vitro assays show that

CAND1 acts as a negative regulator of SCF ubiquitin E3 ligase

activities (Liu et al., 2002; J. Zheng et al., 2002; Min et al., 2003).

However, CAND1 binding of unmodified cullins should be

considered as an intermediate step in the cullin-containing

complex dynamic assembly/disassembly cycles; hence, CAND1

is an integral component in the overall ubiquitin/proteasome-

mediated degradation of protein substrates (Cope andDeshaies,

2003; Serino and Deng, 2003; Wei and Deng, 2003; Wolf et al.,

2003). This would suggest a positive role for CAND1 in ubiquitin

E3 ligase–mediated developmental processes.

We revealed the physiological and developmental roles of

CAND1 in Arabidopsis through examination of T-DNA insertional

mutants. Multiple SCF-type ubiquitin E3 ligases are likely to be

compromised in the cand1-1mutant, including SCFUFO, SCFTIR1,

SCFCOI1, and SCFSLY1. SCFUFO promotes the expression of AP3

and PI, the B-class floral organ identity genes (Samach et al.,

1999). Flower phenotypes ofUFO overexpression are overridden

by cand1-1 mutation, which suggests that SCFUFO requires

CAND1 for its optimal activity (Figure 4I). SCFCOI1 and SCFTIR1

control jasmonate and auxin pathways, respectively (Gray et al.,

1999; Xu et al., 2002). Loss of CAND1 seems to affect their

activities, because the cand1-1 mutant has reduced responses

to both jasmonate and auxin (Figure 5). Reduction of SCFTIR1

activity is also indicated by the loss of apical dominance in cand1

mutants (Figure 1D). SCFSLY1 targets the GA pathway repressor

RGA for degradation, stimulating the GA response (McGinnis

et al., 2003). The cand1-1 mutant accumulates a higher level of

RGA protein than the wild type (Figure 6A) and fails to rapidly

degrade RGA upon GA treatment (Figure 6B). Adult cand1

mutant plants are dwarfed, with severely reduced stem elonga-

tion (Figure 1D). This evidence suggests that CAND1 is neces-

sary for normal SCFSLY1 function and proper GA response.

Collectively, our genetic studies have undoubtedly established

CAND1 as a positive regulator of CUL1-containing SCF-type

ubiquitin E3 ligases.

It is clear that RUB/Nedd8 conjugation and deconjugation

cycles are important for many CUL1-containing SCF-type ubiq-

uitin E3 ligases because loss or reduction of RUB/Nedd8

modification, RUB/Nedd8 cleavage, or absence of CAND1 will

impair their activities. Why is dynamic assembly/disassembly

important for the activity of cullin-containing E3? One theory

is that F-box proteins assembled in the SCF complexes are

subjected to the E3’s self-ubiquitination activity (Zhou and

Howley, 1998; Wirbelauer et al., 2000; Li et al., 2004). By limiting

their incorporation into the complexes, they canbe stabilized and

work more efficiently when needed (J. Zheng et al., 2002; Cope

and Deshaies, 2003; Wei and Deng, 2003). In the cand1-1

mutant, we observed a drastic decrease of UFO-MYC over-

expression level (Figure 4H), but the endogenous COI1 level is

not changed (data not shown). Obviously, there is no simple

answer to this question.
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The nonlethal nature and relative absence of a phenotypic

defect during embryonic and seedling development of the null

cand1mutant suggested that CAND1 is not required for all SCF-

type ubiquitin E3 ligases because the cul1 null mutant itself is

embryonic lethal (Shen et al., 2002). Also, considering the fact

that defects in RUB conjugation (Dharmasiri et al., 2003) or

deconjugation (Serino and Deng, 2003; Wei and Deng, 2003)

cause severe seedling growth retardation and adult lethality,

CAND1 may not be an absolutely essential component in

mediating RUB/Nedd8 conjugation and deconjugation cycles

of all cullin-containing ubiquitin E3 ligases.

Control of Flowering and Photomorphogenesis by CAND1

We successfully related several cand1mutant phenotypes to the

activities of known CUL1-containing SCF-type ubiquitin E3

ligases. There are other abnormities of cand1 mutants that

cannot be readily explained in this way, for example, the late

flowering phenotype and aerial rosettes (Figures 1D and 4A to

4E). Reduction of SCF-type ubiquitin E3 ligase activities in cand1

mutants may play a part in this because GA pathwaymutants, as

well as mutants for the two F-box proteins ZTL and FKF, which

are involved in circadian clock control, are late flowering. Both

GA and circadian clock pathways act upstream of floral pathway

integrators that regulate flowering time (Nelson et al., 2000;

Somers et al., 2000; Simpson and Dean, 2002). However,

mutations in these pathways alone do not cause formation of

aerial rosettes. Another example is the flower phenotype (Figures

4F and 4G), which apparently cannot be attributed to the in-

activity of any single cullin-containing ubiquitin E3 ligase known

in Arabidopsis. A quick explanation is that a combination of

defects inmultiple ubiquitin E3 ligase activities eventually causes

cand1 phenotypes, keeping in mind that there are at least

694 putative F-box proteins in the Arabidopsis genome for

CUL1-containing SCF-type ubiquitin E3 ligases (Gagne et al.,

2002) and that there aremany other cullins yet to be examined. In

addition, we cannot eliminate a role for cullin-independent

CAND1 function in flower timing and flower development.

Photomorphogenesis is repressed in darkness through the

proteasomal degradation of photomorphogenesis-promoting

transcription factors, such as HY5 (Osterlund et al., 2000). In this

pathway, the E3 is COP1, a different RING family ubiquitin E3

ligase (Saijo et al., 2003; Seo et al., 2003). COP10, a ubiquitin-

conjugating enzyme variant, is also necessary for HY5 degrada-

tion (Suzuki et al., 2002). Surprisingly, CAND1 has a role in

promoting HY5 degradation, as shown by the high level of HY5 in

the dark-grown constitutive photomorphogenic cand1-1mutant

(Figures 7A and 7C), and in the failure of the cand1-1 mutant to

rapidly destabilize HY5 upon transfer from light to dark (Figure

7D). Furthermore, CAND1 has synergistic genetic interactions

with both COP1 and COP10 (Figures 7B and 7C), supporting its

direct involvement in repressing photomorphogenesis. Interest-

ingly, human COP1 has recently been shown to assemble into

a CUL4A-containing ubiquitin E3 ligase for c-Jun (Wertz et al.,

2004), and Arabidopsis COP1 does form complexes in vivo (Saijo

et al., 2003). Therefore, it is reasonable to speculate that

CAND1’s regulation of photomorphogenesis is realized by mod-

ulating an orthologous ubiquitin E3 ligase in Arabidopsis that

contains COP1 and CUL4 and targets photomorphogenesis-

promoting transcription factors. Alternatively, it is possible that

another cullin-containing ubiquitin E3 ligase may be indirectly

involved in regulating COP1 E3 activity.

METHODS

Plant Materials, Growth Conditions, and Hormone Treatments

The axr1-3, axr1-12 (Lincoln et al., 1990), coi1-1 (Xie et al., 1998), rga-24

(Silverstone et al., 1998), sly1-10 (McGinnis et al., 2003), cop1-6 (McNellis

et al., 1994), and cop10-4 (Suzuki et al., 2002) mutants and the 35S:UM

(Wang et al., 2003) transgenic plants were described previously. The

wild-type Arabidopsis thaliana plants used in this study were of the

Columbia-0 ecotype.

To grow Arabidopsis seedlings, seeds were surface sterilized, put on

MS plates (Gibco, Cleveland, OH) containing 1% sucrose, and cold

treated at 48C for 3 to 5 d before being placed in a standard, continuous

white light growth chamber or in complete darkness at 228C. To obtain

adult plants, 7- to 9-d-old light-grown seedlings were transferred to soil

and grown in a standard long-day (16 h light/ 8 h dark) growth room.

For root growth inhibition assays, Arabidopsis seedlings were first

grown on normal MS medium for 4 d and then transferred to MS medium

containing different concentrations of methyl jasmonate (Bedoukian,

Danbury, CT) or 2,4-D (Sigma, St. Louis, MO). Root length was measured

4 d after the transfer. GA treatment experiments were performed as

previously described (Silverstone et al., 2001).

Cloning of Arabidopsis CAND1 and Isolation of cand1 T-DNA

Insertional Mutants

Full-length ORF of CAND1 was amplified by RT-PCR from wild-type

Arabidopsis seedlings with forward primer (59-CGCGGATCCGCATGGC-

GAACTTACAAGTTTC-39) and reverse primer (59-ATAAGAATGCGG-

CCGCTTACTCATTCCGGATTGTC-39). The BamHI/NotI fragment of the

PCR product was cloned into pEG202 (Origene, Rockville, MD) and then

sequenced. This construct is named as pEG-CAND1, which served as the

PCR template for subsequent cloning of CAND1 into other vectors.

Based on a database search, we found one T-DNA insertion line for

CAND1 in the GABI-Kat collection (Line ID 134H10; Rosso et al., 2003).

Plants homozygous for the T-DNA insertionwere identifiedbyPCR-based

genotyping. This insertional mutant is named cand1-1. The mutation

cosegregates with the T-DNA insertion through a backcross to wild-type

plants. Two additional T-DNA insertional mutants, cand1-2 and cand1-3,

were found in the Salk collection (from Salk_099479 and Salk_110969,

respectively; Alonso et al., 2003). Themutant plants were identified within

segregating populations by phenotype resemblance to the cand1-1

mutant and confirmed by PCR-based genotyping. When not specified,

we use cand1 to indicate all three mutants throughout the text.

Generation of Transgenic Arabidopsis Plants

AKpnI/SalI fragment containing full-lengthCAND1ORFwas inserted into

pF3PZPY122 (Feng et al., 2003). Then, an XbaI/SalI fragment with the

inserted DNAwas subcloned into pJIM19(BAR), a plant binary vector that

has basta-resistancemarker and the 35S promoter ofCauliflower mosaic

virus.

Arabidopsis plants heterozygous for cand1-1 mutation were used in

the transformation of 35S:FLAG-CAND1 transgene. Transgenic plants

were selected with sulfadiazine (100 mg/mL; Sigma) and gulfosinate-

ammonium (20 mg/mL; Riedel-de Haën, Seelze, Germany). The cand1-1

mutants carrying 35S:FLAG-CAND1 transgene were identified by PCR-

based genotyping.
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Full-length ORFs of Arabidopsis CUL1 and ASK1 were cloned via

Gateway reactions (Invitrogen, Carlsbad, CA) into plant binary vector with

either N-terminal or C-terminal modified TAP tag fusion (Saijo et al., 2003).

The transgenes were individually introduced into wild-type Arabidopsis.

Transgenic plants were selected with gentamicin (200 mg/mL; Sigma).

Immunoblot Assays and Antibodies

Arabidopsis tissues were homogenized in an extraction buffer containing

50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM MgCl2, 0.1% Nonidet

P-40, 1 mM phenylmethylsulfonyl fluoride, and 13 complete protease

inhibitor (Roche, Indianapolis, IN). The extracts were centrifuged twice at

48C for 10min each, and the protein concentration in the supernatant was

determined by Bradford assay (Bio-Rad, Hercules, CA). Protein samples

were boiled in sample buffer, run on SDS-PAGE gels (8, 12, or 17.5%),

and blotted onto polyvinylidene difluoride membranes (Millipore, Bed-

ford, MA). The blots were probed with different primary antibodies.

A BamHI/NotI fragment containing the first 630 nucleotides of CAND1

ORF was cloned into pET-28a (Novagen, Madison, WI). This construct

encodes a fusion protein with 6X His tags and CAND1’s N-terminal 210

residues. The fusion protein was expressed in Escherichia coli and

purified with nickel-nitrilotriacetic acid agarose beads (Qiagen, Valencia,

CA). Polyclonal antibodies were raised by immunizing rabbits using

purified fusion protein as antigen.

Other primary antibodies used in this study include anti-CUL1 (Wang

et al., 2002), anti-RGA (Silverstone et al., 2001), anti-HY5 (Osterlund et al.,

2000), anti-COI1 (Xu et al., 2002), anti-RPN6 (Kwok et al., 1999), anti-TBP

(Schwechheimer et al., 2001), anti-MYC (Saijo et al., 2003), and anti-FLAG

(Sigma).

Yeast Two-Hybrid and in Vivo Pull-Down Analyses

Procedures for yeast two-hybrid assays and bait construct for CUL1 have

been described previously (Schwechheimer et al., 2001; Wang et al.,

2002). To create a CUL1(K682R) construct, the adenosine at position

2045 of CUL1 ORF was mutated by PCR method to guanosine. A SalI

fragment containing full-length CAND1 ORF was cloned into pJG4/5

(Origene) tomake the CAND1 prey construct. For protein expression level

detection, yeast cells were boiled directly in sample buffer and subjected

to immunoblot analysis.

The FLAG antibody pull-down and IgG pull-down experiments were

performed as previously described (Feng et al., 2003; Saijo et al., 2003)

with minor modifications. The recipe of lysis/binding/washing buffer was

50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM MgCl2, 1 mM EDTA,

10 mM NaF, 2 mM Na3VO4, 25 mM b-glycerolphosphate, 10% glycerol,

0.1% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride, and 13 com-

plete protease inhibitor (Roche). The acid elution and concentration steps

were omitted.

Sequence data for the protein sequences used in the phylogenetic

analysis have been deposited with the EMBL/GenBank data libraries

under accession numbers XP_125901 (mouse), NP_060918 (human),

NP_609389 (Drosophila), NP_178360 (Arabidopsis), NP_507244 (C.

elegans), and NP_593286 (S. pombe). The Arabidopsis CAND1 gene

has been deposited under the accession number AY099857.
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