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Abstract

Enhancers are cis-acting DNA elements that play critical roles in distal regulation of gene expression. Identifying enhancers
is an important step for understanding distinct gene expression programs that may reflect normal and pathogenic cellular
conditions. Experimental identification of enhancers is constrained by the set of conditions used in the experiment.

This requires multiple experiments to identify enhancers, as they can be active under specific cellular conditions but not in
different cell types/tissues or cellular states. This has opened prospects for computational prediction methods that can be
used for high-throughput identification of putative enhancers to complement experimental approaches. Potential functions
and properties of predicted enhancers have been catalogued and summarized in several enhancer-oriented databases.
Because the current methods for the computational prediction of enhancers produce significantly different enhancer pre-
dictions, it will be beneficial for the research community to have an overview of the strategies and solutions developed in
this field. In this review, we focus on the identification and analysis of enhancers by bioinformatics approaches. First, we de-
scribe a general framework for computational identification of enhancers, present relevant data types and discuss possible
computational solutions. Next, we cover over 30 existing computational enhancer identification methods that were de-
veloped since 2000. Our review highlights advantages, limitations and potentials, while suggesting pragmatic guidelines

for development of more efficient computational enhancer prediction methods. Finally, we discuss challenges and open
problems of this topic, which require further consideration.
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Introduction transcription start sites (TSSs) of their target genes or they can

even be on different chromosomes relative to their targets, (b)
they may exhibit tissue-specific properties and (c) they may ini-

Gene expression in eukaryotes is governed by complex proc-
esses orchestrated by the interplay of various elements located

in DNA regulatory regions [1-4]. Enhancers represent one of the
better-characterized regulatory elements. Enhancers increase
the transcriptional output in cells manifesting distinct proper-
ties, which are summarized as follows [5-8]: (a) enhancers res-
ide thousands of base pairs upstream or downstream from the

tiate RNA polymerase II transcription, producing a new class of
non-coding RNAs called enhancer RNAs (eRNAs).

Previous gene regulation studies have emphasized the role of
enhancers in transcription initiation [9]. Analysis of enhancer
properties has also raised key questions about mechanisms that
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govern the fate of temporal and tissue-specific gene expression.
In addition, several studies [10, 11] have linked variations in en-
hancer sequences to cancer and other diseases. In particular,
identifying enhancers and understanding their mechanisms
of functioning is an area of great interest that may enrich our cur-
rent knowledge about diseases and therapeutic strategies [12, 13].

So far, some review articles have focused on different as-
pects of enhancer functions that characterize cell identity or
pathogenic states [14, 15]. In addition, the enhancer mechanis-
tic properties aimed at identifying active enhancers are well
documented in several studies and reviews, including advances
in high-throughput experimental technologies [16-18].
However, because active enhancers are characterized by spe-
cific cellular properties and because there are numerous cellular
conditions, experimental identification of enhancers faces cer-
tain limitations [17]. For this reason, computational identifica-
tion of enhancers has been well studied in recent years and has
resulted in a number of computational methods that comple-
ment the experimental techniques [19, 20]. Moreover, the gener-
ation of new types of high-throughput data helped to improve
prediction models for enhancers. However, despite the efforts
to develop accurate enhancer prediction methods [21-55], the
current solutions generate significantly different enhancer pre-
dictions. In Table 1, we present the pairwise intersection of en-
hancer predictions as obtained in [S0] by five state-of-the-art
methods across six ENCODE (Encyclopedia of DNA Elements)
cell lines. It is apparent that the overlap of computationally pre-
dicted sets of enhancers is relatively small. Consequently, it will
be beneficial for the research community to have an overview
of the strategies and solutions developed in this field.

With this issue in mind, we focused our efforts on bioinfor-
matics approaches for enhancer identification published
from 2000 to 2015, characterized by the use of data from high-
throughput experiments for the development of enhancer predic-
tion models. First, we present the basic principles of a general
framework for enhancer identification. Next, we cover a compre-
hensive list of over 30 existing enhancer recognition tools and
methods that have been developed in the considered period. Our
aim is to analyse the existing approaches to provide useful com-
ments regarding the data sets used and the prevalent computa-
tional solutions. In a separate section, we comment on obstacles
that the existing methods face, address challenges and open ques-
tions related to enhancer identification and hint on promising dir-
ections for future research. Finally, we summarize available
enhancer resources and suggest pragmatic guidelines for using the
available computational solutions and relevant enhancer data.

Computational identification of enhancers: the
framework

The problem of computational identification of enhancers can
be formulated as follows: ‘Given a DNA region described by mul-
tiple data types, determine if it can function as an enhancer’.
Figure 1 depicts an overview of a general enhancer identifica-
tion process.

The first step concerns integration of different data types com-
ing from different data sources and preprocessing to generate fea-
ture vectors that serve as input for the enhancer identification
and analysis system. The feature vectors contain information that
describes data instances. Typically, these feature vectors capture
information about evolutionary conservation [20] (e.g. regions or
motifs that are highly conserved across different species), and/or
chromatin profiles of histone marks as derived from ChIP-seq

(chromatin immunoprecipitation with massively parallel DNA
sequencing) data [28] and/or chromatin accessibility information
as derived from DNase I hypersensitivity sites (DHS). The previous
data types are frequently combined with transcription factor-
binding sites (TFBSs) for identifying different classes of regulatory
elements (e.g. enhancers, promoters, etc.) [25]. Note that with the
acronym TFBSs, we refer to both the actual and the predicted
DNA-binding sites of DNA-binding proteins that facilitate tran-
scription, including transcription factors (TFs) and additional bind-
ing proteins or protein complexes such as the nucleosome
remodelling complex (e.g. SWI/SNF), or histone acetyltransferases
(HATs; e.g. P300 from HATs) and histone methyltransferases
(HMTs; e.g. ASHIL from HMTs). Recently, enhancer-screening
data, as well as expression of eRNAs, can serve as input for iden-
tifying enhancers and analysing their properties. In Table 2, we
present an overview of the features used by different computa-
tional methods for enhancers’ identification. The process of gen-
erating feature vectors may include additional steps of
normalization or rescaling of the feature values.

In the second step, different computational models use feature
vectors to annotate DNA regions. The computational models
are developed by computational methods, unsupervised or super-
vised, using the same feature vectors to describe the data. The
methods used include state-of-the-art clustering algorithms such
as K-means [21] or bi-clustering [24], probabilistic graphical models
(PGMs) such as Hidden Markov Models (HMMs) [30] or Dynamic
Bayesian Networks (DBNs) [31], regression models such as least ab-
solute shrinkage and selection operator [53] and more advanced
supervised classification systems, such as support vector ma-
chines (SVMs) [34], artificial neural networks (ANNs) [33], decision
trees (DTs) [38] and random forests (RFs) [37]. The most important
difference between supervised and unsupervised techniques is the
fact that supervised methods require prior knowledge (e.g. some
representative enhancers and when available, non-enhancer ex-
amples) for training. In contrast, this is not the case for unsuper-
vised methods, where enhancer regions (and other regulatory
elements in general) can be identified ab initio and without any
prior knowledge. Unsupervised techniques rely strongly on some
ad hoc rules for assigning regions to the class of enhancers, and
thus their predictive abilities have some limitations. An example is
identification of enhancers using only H3K4me1 profiles, which of
course is correct, but is insufficient because there is no guarantee
that they can characterize in the same way enhancers from differ-
ent cell lines and tissues can.

The main outcome of an enhancer identification system
is a catalogue of predicted enhancers. The identified enhancers
can be further analysed computationally for their properties,
deciphering their regulatory roles and associating them with
target genes and eRNAs.

A conceptually simple way to classify enhancer identifica-
tion methods can be based on the available data sources (e.g.
grouping together all methods that rely on evolutionary conser-
vation). However, this is not readily applicable because different
methods rely on a mixture of different data sets/features, and
frequently the deployed algorithms combine supervised and
unsupervised components. In this review, we group the avail-
able methods into three categories. The first category includes
computational methods that identify DNA regulatory elements
(including enhancers) using epigenetic signatures such as ChiP-
seq of histone marks, DHS peaks and/or TFBSs mainly through
unsupervised learning and clustering techniques [21-29]. The
second category represents systems based on supervised ma-
chine learning (ML) classification that use mainly ChIP-seq data
of histone marks frequently combined with sequence motifs, to


Deleted Text:  
Deleted Text: since
Deleted Text: ,
Deleted Text: since
Deleted Text:  
Deleted Text: in 
Deleted Text:  of
Deleted Text: -
Deleted Text: -
Deleted Text:  in order
Deleted Text: ,
Deleted Text: ``
Deleted Text: ''
Deleted Text: .
Deleted Text:      
Deleted Text: -
Deleted Text:  in order
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text:  
Deleted Text: ,
Deleted Text: (
Deleted Text: ,
Deleted Text: (
Deleted Text: ,
Deleted Text:  
Deleted Text: -
Deleted Text:  (LASSO)
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: , since
Deleted Text: -
Deleted Text: ,
Deleted Text: since
Deleted Text:  
Deleted Text: tilize

cation | 969

ifi

Progress and challenges in approaches for enhancer ident

(s8ejusdiad se)

xapur AJLIe[IWIS pIedd.( dY) U0 Paseq ¢ POYISN pue T POYIdN jo suondipaid jo Aurefrwuts 310dal am ‘UWIN[OD PIIY] 9Y3 U] 'Z POUYII pue T POYISN Aq pauIeIqo Se Saseq UOI[[IW UT SUONDIpaId I9DUBYUS SUIeS Y] 0} Spuodsaliod uwn
-100 def12A0 Y L, 'z POUISIN Aq pa1d1paid s1sdueyua 03 spuodsariod g 93e19A0D S[TYM ‘T POYISIN Aq paid1paid s1sdueyua 03 Spuodsaiiod T 93e19A0D ‘s1dueyua 0} 3urduo[aq se pa3dIpaid SUOI[IW UI S9SBQ JO Iaquinu [e30} 33 10dat am

9’681 £0¢ec 8¥vcl S'¢8¢ 6707 S6rl Kem3ag
SYL ¥'0e snsLAY6e YA T'81  SNSIdA G0V YA 00T snsIsA'9'9¢ 99 V.61 SNSISA §'HE €0 €1 sSnsAT6L S9 08 snsidA /01 SNSISA NNV-ISD
9’681 €0¢ec 8¥cl 414 6707 S61l Kem3ag
0'0s 066 SNSIdAT'/OT 8'cC €95 SNSISABYTL LSy ¥'19 SnsvAE0L cve 9'00T SnSIBAHITT et S'CS  SnsSI_dAS08 9% 8'€9  SNSIaA /'C8 SNSISA WNHWOIYD
¢'L0T 88'¢CL 6°0L i 508 £'C8 ININHWOIYD
L'61 8'SCc  SnSIdAY6Y 90T 60T  SNSIdA GO €9 8'S  SnsIsA9'9¢ 68 oct SNSISA §'HE 91 9T snsivAT6L 89 09 snsidaAa /0T SNSISA NNV-ISD
9’681 £0¢ec 8¥vcl S'¢8e 6707 S6ll Kem3ag
0'ce ¥'C6 snsidAgTeL 16l 8L, SNSIBAT'ESC L'1e Tl1s snsdA{/8 (474 S'08 'SNSIdA90CT 60T €'CS SNSIdA L%l ¢'81 9T/ SNSIBAT'¥HE SNSIsA SDIJY
¢'L0T 88'¢CL 6°0L i 508 £'C8 INNHWOIYD
Lce £'e/ SNSIdATTEL [ac=)* C'SY  SNSIdAT'ESC 19¢ 1¢cy snsLAy /8 £9¢ T'1s SNSISA §'HE v've €0¥ snsidA L'pCl 0'sT 6°'SS  SNSISA T'Hhe SNSISA SDIIY
c'16l Tese v'/8 9°0€T yA74% 1%4%3
00T 6'lC  SNSIdAY6Y vy 9Cl  SnSIdA GOV [ 1/'S snsdA99¢ VL a2 SNSISA §'FE ST ¢'C sSnsIdAT6L LT 19 snsidA /0T SOIJYSNSISA NNV-ISD
Ty e X474 8¢ S9S 69°CY uonejouue 3JGODNI
L6l T'6e 'S 9681 Y 9'TT SNSIdA E°0EC £ce Ty SNSIdAZHCT L6 9'/T SNSIdA S'CRC oY €'0C SNSIdA 6'%0V L1E T'6€ SNSIBAGELIT snsiaa Aem3sg
A4 e 6°Ch 8¢ S9S 69°CY uonejouue 3GODNI
0'se 00y sns1dAT'/0T 9Cl 8'0T SNSISABY'CL 9% 09¢  SNSIdAE0L 9'Te 8¥C 'SNSBAFITL 8'9¢ 6'9¢  SNSIdAS'08 (0274 L'[E  SNSIdA /'C8 snsisA WNHWOIYD
A4 e X474 8¢ S9s 69°CY uonejouue 3JGODNI
¥91 9'¢e  SNSIdAT'T6L SY Cl SNSIdAT'EST ¥'Se ¥'9¢ snseAy/8 Ter S'8T SNSIdAQ0ET v'el S'6C SNSIdA L'pCl 68 9'lE SNSISA T'HiE snsIsA SOILY
A4 e X474 8¢ S9S 69°CY uonejouue 3GODNI
€8e €1 sns@AEeY 0TI 79 SnsPAgOR €38 €5 snsPA'99Z gl 08  SNSIASYE o€ TT sns@AT6EL 0TI €S SnsA /0T SNSI9A NNV-ISD
(saseq (saseq (saseq (seseq (soseq (seseq
uor[[rw) uor[[rw) uor[[rw) o) ¢ uorqIw) uorqIw)
(%) (ssseq ¢ a3eranon (%) (seseq ¢ a3eranon (%) (ssseq ¢ a3eranon (%) (ssseq a3e1an0D (%) (ssseq ¢ oa3eranod (%) (seseq ¢ oa3eranod
Xapul  uorIw) SNSISA  XdpUl UOI[[IW) SNSISA  X9pul UOI[[IW) SNSISA  XdpUl UOI[[IW) SNSISA  XdpUl UOI[Iw) SNSI9A  XdpUl UOI[IwI) ‘SnsIaA
preode( depaaQ T o8erdaoD piedde( depeaQ T aSerdnon piedde( depaag 1 a8erdao) piedde( depLaQ 198eron0n piredde( depaag 1 oSeidaoD piedde( depLaQ T 98eran0d
T POUIBIN
DIANH zodsH eToH 29531 2S9UTH 8/87TWD SNISISA T POYISIN

saul[ [[22 IAODNI XIS SSOIdE SPOYIdW JUISYJIp £q paurelqo suondipaid I9d0Uueyus Jo sisA[eue uostredwo) T S[qe.L



970 | Kleftogiannis et al.

Data sources

Evolutionary
conservation data

Feature
selection
Feature

B Vector | gy

-

i
;

Screening data

Computational
Methods

Clustering Enhancer

Classification I
Graphical

models Analysis of

Regression

Figure 1. This figure shows basic components of a general enhancer identification system. The first block on the left (lille colour) handles integration and preprocessing
of different data types. These data types (summarized in Table 2) can be combined in different ways to generate feature vectors that describe DNA regions. The feature
values can be normalized or rescaled (second block-red colour). Then, FS techniques can be applied to reduce the number of features and select smaller sets of features
with higher discriminative capabilities. The feature vectors feed computational models that make decisions using unsupervised and/or supervised algorithms (third
block-green colour). Outcome is a list of identified enhancer regions (fourth block-orange colour), which can be analysed further using computational techniques.

distinguish enhancers from non-enhancers and identify fea-
tures that characterize enhancers in an optimized way [33-39].
In this category, we also cover methods based on PGMs that are
in the group of supervised learning methods [30-32]. As the
third category, we consider recent bioinformatics methods that
identify enhancers using as input experimental enhancer-
screening data and data from some more targeted experiments.
Although these methods are in principle experimental, the ana-
lysis of the results relies strongly on advanced bioinformatics
methods combined with ML algorithms for deciphering the en-
hancer context [42-49]. Figure 2 gives the outline of existing bio-
informatics approaches for enhancer identification. In Table 3,
we further highlight the most popular approaches and mark
those that are accessible and functional.

Identification of enhancers based on clustering
of epigenetic profiles, DHS and TFBSs

Over the past years, advances in high-throughput experiments
such as ChIP-seq have generated vast amounts of data describ-
ing the epigenetic landscape of different human and non-
human cells and tissues [55-57]. The produced data characterize
profiles of different epigenetic marks, identify or estimate many
TFBSs and describe the chromatin accessibility of DNA.
Systematic analysis of these data generated global epigenetic
maps for different cell lines and tissues and enabled inference
of the core principles that characterize different categories of
DNA regulatory elements [58]. For example, based on data from
ChIP-seq experiments, it is found that active enhancers are fre-
quently associated with H3K27ac, while active and poised en-
hancers are associated with H3K4me1l [17]. Such information
made space for the development of several computational
methods for identification of enhancers and other regulatory
elements in a cell-line-/tissue-specific context. Essentially, all of
the methods that fall into this category initially estimate the
profiles (therefore called epigenetic signatures) of histone
marks and/or the profile of DHS from different genomic regions.

In a later step, these genomic regions are assigned into different
regulatory classes via unsupervised learning techniques (e.g.
grouping of similar epigenetic profiles) or by the binding finger-
print of enhancer-related TFBSs [59-61].

Methods based on Clustering of Chromatin Profiles

Typical example of this subcategory is the bioinformatics analysis
presented in Heintzman et al. [21], which studied the chromatin
landscape of promoters and enhancers in Hela cell line from
ENCODE experiments [62]. In the first stage, the analysis revealed
that promoters are characterized by H3K4me3, while enhancers
are characterized by H3K4mel, but not H3K4me3. In the second
stage, the outcome of this analysis served as a basis for develop-
ing a two-step algorithm that scans genomic regions from new
cell lines and classifies genomic segments as promoters and en-
hancers based on the similarity of chromatin profiles with exist-
ing annotated segments. Although the reported enhancers [21]
were derived from a single data set, the main findings have
served as a baseline for many subsequent studies for enhancers
characterized by the presence of P300-binding sites. Another ex-
ample is ChromasSig [22] that uses signatures of nine core chro-
matin marks to generate groups of distinct histone modification
profiles that can be further assigned to different classes of regula-
tory elements. Analysis over HeLa and CDA4T cells identified 8 and
16 clusters of chromatin profiles, respectively, that were enriched
in enhancer- and promoter-related TFBSs. Overall, ChromaSig is
sensitive enough to distinguish different classes of enhancers,
and the results are in agreement with the enhancer lists reported
by previous studies [21].

Following the above-mentioned concepts, several other
methods [23, 24] used diverse data sets and different clustering
techniques to identify enhancers. As an example, clustering of
TFBS profiles from 67 binding factors and 9 histone marks from
ENCODE Gm12878 and K562 cell lines revealed that between
those two cell lines, H3K4me1l marker is more frequent in en-
hancer clusters compared with P300 or H3K27ac [23]. The main
outcome of this study indicates that an adequate selection of
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Table 2. Overview of data and features used for enhancer identification

Representative methods

Disadvantage

Advantage

Feature example

Data sources

[20]

Insufficient information for predicting enhancer’s

Easy to compute

Conserved motifs

Evolutionary

tissue-specific activity
Different cell lines/tissues are associated

across species
ChIP-seq from H3K4mel

conservation
Histone marks

[21, 28, 33, 34]

Provides cell-line-/tissue-specific information

with different combination of histone marks

that characterize enhancers and also different

categories of enhancers (e.g. poised versus active)
Provides cell-line-/tissue-specific information that

[23,29]

Not available for many cell lines/tissues

ChlIP-seq from P300

TFBSs

characterize enhancers. High-resolution data

for testing activity of enhancer-related TFs
High discriminative capacity when combined

[25]

Regions with enriched DHS activity do not

DHS

Open chromatin

necessarily correspond to enhancers
Insufficient information for predicting enhancers’

with other data types, e.g. P300-binding sites

Easy to compute

39, 51]

Kmers of size 5

Sequence characteristics

activity across different tissues
eRNA regulation mechanisms are unknown,

[40]

High accuracy

CAGE data

eRNA expression

and not all of the enhancers are known to

produce eRNAs
Not useful for ab initio discovery of enhancers

[42, 43, 52]

High accuracy for testing enhancer activity

STARR-seq

Enhancer-screening data
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TFs may be used to identify different regulatory elements in the
genome. In another study, the problem of describing more ef-
fectively combinatorial histone modification patterns is
tackled using a novel algorithm for clustering called CoSBI
(Coherent and Shifted Bicluster Identification) [24]. CoSBI fol-
lows the concept of coherent bi-clustering applied to 39 chro-
matin modification maps from CDAT cells [63]. The algorithm
reported 843 patterns of core chromatin modification marks
that effectively distinguish different regulatory elements,
including the category of enhancers.

Methods based on Chromatin Accessibility and TFBSs

There are several other studies for enhancer recognition that rely
mainly on the effective combination of DHS footprints with
TFBSs of enhancer-related binding factors like P300 or CREBBP
(therefore called CBP) [64, 65]. Here, we highlight the high-
resolution identification of DNA regulatory elements in seven
lymphoblastoid cell lines and other five human cells/cell lines
with diverse characteristics [K562, HeLa, HUVEC, NHEK and em-
bryonic stem cells (ESCs)] [25]. Active enhancers were found to
overlap with DHS. Note that not all highly accessible DNA regions
correspond to enhancers. To mitigate the above-mentioned limi-
tation, DHS information can also be combined with more
advanced algorithms such as CENTIPEDE [26] and Wellington [27]
for identifying binding sites of enhancer-related binding factors.
We note that TFBSs and ChIP-seq data from histone marks, com-
bined with PGMs and clustering techniques, have been success-
fully applied to studies of the mouse genome [28, 29]. Finally,
an algorithm called Prestige [66] uses histone H3K4me1 profiles
from ChIP-seq data, combined with gene expression from RNA-
seq, to identify enhancers and associate variations of the enhan-
cer region sequences with diseases through genome-wide
association studies.

Identification based on ML classification
methods

Methods of this category reformulate the enhancer identifica-
tion problem as a binary classification task for predicting en-
hancer regions as being different from non-enhancer (negative
control) regions. So far, SVMs, ANNs, DTs, RFs, PGMs and en-
semble techniques have successfully been applied. All these
methods have found use in bioinformatics [67-69] and could be
applied to enhancer prediction problems [30-38]. We also note
that ensemble-learning methods have documented advantages
for the class-imbalance problem, which is also present in en-
hancer identification [69]. Briefly, the class-imbalance problem
occurs when the number of samples from the class of interest
(e.g. enhancers) differs significantly from the number of sam-
ples from other classes (e.g. non-enhancers).

Typically, supervised ML classification systems are com-
bined with feature selection (FS) techniques to extract small
sets of features (in our case, histone modification marks and/or
sequence characteristics and/or TFBS/binding motifs), which,
all together, are capable of maximizing the separation between
enhancers and non-enhancers [70, 71]. In addition, a combin-
ation of supervised classification systems with global optimiza-
tion techniques such as Genetic Algorithms (GA) or Simulated
Annealing can be used for tuning the model parameters and
optimizing several steps of the enhancer recognition process
[72].
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Figure 2. The figure presents the roadmap of existing approaches for enhancer identification. We have categorized the methods into three basic streams, which we par-
titioned further into subcategories based on the underlying computational solutions and the combination of relevant enhancer data.

Solutions that use PGMs

The methods we survey here are used for genome-wide annota-
tion purposes. In principle, some of these tools [30, 31] segment
genomes into intervals and develop PGMs from large numbers
of chromatin modifications coming from multiple cell lines and
tissues. The identified chromatin states are then grouped and
annotated as enhancers, promoters, repressed regions or tran-
scribed regions based on the known functional sites.

The most popular genome-wide annotation tool for genome
segmentation in the above-mentioned manner proposed by the
ENCODE consortium is ChromHMM [30]. ChromHMM uses a
probabilistic model based on a multivariate HMMs. ChromHMM
segments the genome into 200 bp intervals, and a single model
is trained on data from six available cell lines. Segway [31], on
the other hand, is an alternative genome annotation tool based
on DBNs. Segway offers a higher-resolution analysis because it
annotates the genome for every single base (e.g. has 1bp reso-
lution). In addition, it trains cell-specific models and is more
computationally demanding than ChromHMM.

Although ChromHMM and Segway were developed independ-
ently, the ENCODE consortium combined these programs to anno-
tate the human genome in a more comprehensive way. The
annotation proposed by Hoffman et al. [73] combines the results
produced by ChromHMM and Segway with other relevant experi-
mental data such as DHS, FAIRE (Formaldehyde-Assisted Isolation
of Regulatory Elements) assays and several ChIP-seq data sets for
transcription regulators (e.g. CTCF, POL II, P300) to generate anno-
tation maps for Gm12878, K562, H1, HeLa, HepG2 and HUVEC cell
lines. Note that this annotation serves as the baseline annotation
proposed by the ENCODE consortium. Specifically, the integrative
annotation categorizes enhancers into three states, Enh, EnhF
and EnhWF, with Enh representing the class of enhancers with
the strongest enrichment of TFBS (therefore called strong enhan-
cers) [73]. Finally, other probabilistic graphical methods for enhan-
cer identification exist, as well as many independent genome
annotation tools [32, 54, 74, 75]. Here, we highlight ChroModule
[32], which annotated human genome characteristics for eight cell
lines and reported higher recognition performance compared
with [30] as indicated by the area under curve (AUC).

Solutions that use ANNs

In particular, CSI-ANN [33] is one of the first enhancer classifica-
tion systems that rely on an ANN using chromatin signatures as
input. Putative enhancers derived from human CDA4T cell data

from Wang et al. [63] based on P300 ChIP-seq peak distal to TSS
overlapping with computationally predicted enhancers from
PreMod database [76]. The FS component of CSI-ANN, based on
Fisher Discriminant Analysis (FDA), reported several histone
marks such as H3K4me3, H4Ac and H3, which separate enhan-
cers from background sequences in an optimized way. In terms
of recognition performance, CSI-ANN reported higher Positive
Predictive Value (PPV) on untreated HelLa cells (maximum PPV
of 66.3% based on the overlap of predictions with P300- or DHS-
or TRAP220-binding sites) as compared with [21] and [54].

Solutions that use SVMs

ChromaGenSVM [34] is a typical enhancer classification system
that uses SVMs. ChromaGenSVM is trained on Hela enhancer
data (the authors also developed a second model on CD4'T cells
from [63]) from Heintzman et al. [21] using core ChIP-seq histone
modification markers. For FS and SVM parameter optimization,
ChromaGenSVM uses a global optimization technique based on
GA. The optimal ChromaGenSVM model identified histones H3,
H3K4mel and H3K4me3 as the most prominent features for
describing enhancers versus the background sequences. In
terms of recognition performance, ChromaGenSVM reported
PPV ~90% on CD4'T and on untreated HelLa cells achieved com-
parable PPV with [21], [33] and [54] (maximum PPV of ~57%
based on the overlap of predictions with P300- or DHS- or
TRAP220-binding sites).

The idea of integrating diverse data sets from multiple sources
to accurately identify developmental enhancers is the main con-
tribution introduced by EnhancerFinder [35]. EnhancerFinder’s
underlying classification method is based on the use of Multiple
Kernel Learning (MKL), with the training data sets derived from
VISTA database [77]. EnhancerFinder also investigates the dis-
criminative power of different data sets and features, concluding
that sequence motifs, combined with functional genomics data
(e.g. H3K4mel or P300), are capable of identifying enhancers.
This, of course, relates only to a subset of enhancers. In terms of
recognition performance, when applied to the entire genome,
EnhancerFinder predicted 84031 developmental enhancers and
achieved much higher recognition performance compared with
[30] and [31].

To achieve better generalization capabilities in unknown tis-
sues and cell lines, DEEP (Dragon Ensemble Enhancer Predictor)
[36] introduces a two-layer classification algorithm based on SVMs
and ANNs and training based on data from multiple cell lines and
tissues. In its first step, DEEP trains multiple SVM models on data
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from different cell lines and tissues, which are combined in a se-
cond step via an ANN for finally distinguishing enhancers from
non-enhancers. DEEP uses putative enhancers from the ENCODE
annotation proposed by Hoffman et al. [73], actively transcribed
enhancers from FANTOMS (Functional Annotation of the
Mammalian Genome) Atlas [40], and a small set of developmental
enhancers achieved in VISTA database [77]. An exhaustive search
technique applied on the set of 11 core histone modification
markers revealed that different ENCODE cell lines are character-
ized by different optimized sets of histone marks. In these sets,
only H3K4me1 characterizes enhancer regions from different cell
lines studied in DEEP. In terms of performance, DEEP reported
higher PPV compared with [30, 31, 33 and 37] on HeLa and K562
cell lines (PPV was computed based on the overlap of predictions
with P300-binding sites or DHS). When considering the number of
predicted enhancers that overlap with promoters, DEEP achieved
lower or comparable overlap with the competitor methods.

Solutions that use DTs and RFs

For reducing the effects of class-imbalance between enhancer/
non-enhancer samples and eliminating limitations coming from
the small size of the training data, RFECS (Random Forest-based
Enhancer identification from Chromatin States) [37] introduces a
RF-based classification system trained on H1 and IMR90 data
from the NIH Epigenome Roadmap project [78]. RFECS introduces
additional novelties in the way putative enhancer regions are se-
lected and in the way genome-wide predictions are validated.
Overall, RFECS tested on CD4"T and H1-hESC cell lines achieves
higher true-positive rate and lower false-positive rate compared
with state-of-the-art enhancer recognition systems [33, 34, 54]
(RFECS achieved true-positive rate of ~70% and ~82.5% and false-
positive rate of ~7% and ~4.9%, respectively). We note that the
true-positive rate was measured by the overlap of predictions
with DHS-, P300- and CBP-binding sites and the false-positive rate
was measured by the overlap of predictions with TSSs as anno-
tated by UCSC Genome Browser. In addition, an out-of-bag FS
technique reported histone marks H3K4me3, H3K4mel and
H3K4me?2 as the most important features for the enhancer’s rec-
ognition problem by this approach. DTs have been successfully
applied in another method called DELTA (Distal Enhancer
Locating Tool based on AdaBoost) [38]. DELTA is based on the
AdaBoost algorithm applied to a set of features characterizing the
shape of ChIP-seq peaks of core chromatin markers. In terms of
performance, DELTA further improved the prediction accuracy on
CD4'T and H1-hESC cell lines, achieving a misclassification rate
of 2% and 1.6%, respectively.

Solutions that use classification algorithms to study the
enhancer DNA sequence context

The problem of identifying enhancers based solely on sequence
characteristics (e.g. motifs or kmers) is tackled in [79]. In another
study [51], sequence features capable of discriminating mamma-
lian enhancer sequences from random genomic loci are system-
atically identified. The proposed ‘kmer-frequency vector’ [39],
which captures the full set of kmers of varying length (3-10 nu-
cleotides), and its refined version called ‘gapped kmer-vector’ [80]
were used in SVM models to predict enhancers.

Identification of enhancers using high-
resolution data

The presence of deep sequence data has enabled development
of a variety of bioinformatics methods to detect active

enhancers and test directly their ability to trigger transcription
in messenger RNA (mRNA) promoters. Nowadays several en-
hancer-testing and in vivo-screening methods exist for human,
mouse, flies and yeast, such as STARR-seq [44], CRE-seq [45],
FIREWACh [46] and several others [47-49], which are surveyed
comprehensively in [17].

Methods based on Enhancer Screening Data

This subcategory of methods describes bioinformatics analyses
for investigating mechanisms that trigger regulation activities
related to enhancers and promoters, combining several high-
throughput data sets, sequence characteristics or TFBSs and
more targeted mutation experiments [81, 82]. A typical example
is an analysis based on MPRA-derived data (massively parallel
reporter assay) from K562 and Hep cell lines that reconfirmed
previously published results for cell type specificity of enhancer
chromatin states [42]. In a similar fashion, functional testing of
computationally predicted enhancers with CRE-seq data in
K562 cell line revealed that previously reported chromatin
states can distinguish active enhancers from negative samples,
but TFBS motifs also have high discriminative power and char-
acterize in a better way the most active enhancer regions [43].
Note that an analysis based on STARR-seq data from Drosophila
cells reported interesting mechanistic properties of enhancers
and can serve as a paradigm for similar studies in humans [52].

Identification based on Quantification Analysis of RNA

A popular subcategory identifies enhancer regions using high-
throughput techniques that measure the production of RNA
based on Cap Analysis of Gene Expression (CAGE) or calculation
of transcription rate using Genomic Run-on (GRO-seq). In particu-
lar, using bidirectional CAGE tags, over 135 tissues and 241 cell
lines were analysed in FANTOM experiments [83]. A total of 43011
putative enhancer regions that were depleted in CpG islands were
reported [40]. The so-called ‘Atlas of actively transcribed enhan-
cers’ also reported core differences between enhancers and
mRNA promoters, whereas the results complement findings re-
ported by the ENCODE consortium. Note that another CAGE ana-
lysis from FANTOMS data revealed that transcription in enhancer
regions is the earliest event that leads to many subsequent tran-
scriptional changes during cellular differentiation [84]. Finally, a
high-throughput recognition system called dREG [41] uses GRO-
seq data [85] and Support Vector Regression (SVR) to identify and
characterize effectively active transcriptional regulatory elem-
ents, including the category of enhancers.

Challenges and obstacles in computational
identification of enhancers

Here, we address several challenges and open questions related
to the enhancer identification.

Challenges and open questions

Computational prediction of enhancers does not guarantee that
the identified enhancers are real. Because there exists no large,
sufficiently comprehensive and experimentally validated en-
hancer set for humans (or other species), one of the major
issues related to enhancer identification is how to assess
the correctness of predictions. One possible way of validation is
to link the predicted enhancers to their target genes. This, com-
plementary to computational prediction of enhancers, is
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without a doubt the most difficult challenge. Below, we sum-
marize the most important streams for enhancer target identifi-
cation, and we discuss relevant sub-problems:

i. Enhancers can be located relatively close (e.g. few thou-
sands of bases) or much further away (e.g. hundred thou-
sands of bases) to the genes they affect [86]. Consequently,
some methods identify enhancer targets based on their
relative location to enhancers (e.g. an enhancer interacts
with its neighbouring mRNA promoter). These models are
oversimplified because there are no clear distance bounda-
ries for the enhancer-promoter interactions. Some of the
existing approaches [87] have defined arbitrary thresholds
for the relative location of enhancers and mRNA promoters
(e.g. minimum distance 5000 bases and maximum 125000
bases). Although these approaches are easy to implement,
they generate a trade-off between distance threshold and
number of true and false positives.

ii. More sophisticated approaches for identifying enhancer
targets can be based on correlated activity of enhancers and
mRNA promoters. This category is promising because it is
based on cell-line-/tissue-specific information. However,
the largest obstacle stems from the limited knowledge
about enhancer and mRNA promoter co-activity [40, 65].
One possible solution can be based on the identification of
all possible pairs of enhancers and promoters within a
predefined distance threshold combined with correlation
analysis and representative data sets and markers (e.g. cor-
related expression activity between eRNAs and target genes
or correlated DHS activity) [84]. However, this is also chal-
lenging because enhancers and mRNA promoters have
many-to-many relationships, meaning that one promoter
can be associated with multiple enhancers, and one enhan-
cer can be associated with different promoters. Thus, the
problem becomes computationally expensive, and efficient
pruning techniques are required to restrict the number of
candidate associations between enhancers and promoters.

iii. The most promising direction for identifying enhancer-
promoter associations can be based on chromatin conform-
ation data as captured by 3C/5C [88] or ChIA-PET
(Chromatin Interaction Analysis by Paired-End Tag
Sequencing) [89]. These data sets can be used to identify as-
sociations of enhancers with known mRNA promoters in
the three-dimensional space. A typical example of this cat-
egory is the method introduced in [86], which combines
ChIA-PET data with supervised learning based on RFs for
linking enhancers to their target genes. With all these
methods, there are still areas for improvements, such as
noise and bias removal in chromatin conformation data
sets or utilization of additional features to link enhancer—
promoter associations with regulatory functions with much
higher confidence.

Except for the enhancer target identification, identifying the
tissue-specific activity of enhancers is another promising area
of research. For example, histone modification mark data,
DHSs, different TFBSs as derived from ChIP-seq experiments
and expression of eRNAs can characterize enhancers in a cell-
line-/tissue-specific context. In contrast, sequence characteris-
tics or evolutionary-conserved motifs do not contain sufficient
information to describe enhancer activity in different tissues.
Consequently, methods that rely solely on ChiP-seq data from
histone marks, DHS and/or TFBSs may maximize the enhancer
recognition performance in specific cell lines and tissues, but
frequently the developed models achieve lower generalization

capabilities in unknown cell lines [21, 33-36]. To mitigate this
trade-off, mixtures of cell-specific features and sequence char-
acteristics appear to be a promising direction [35, 36].

Another important challenge related to the enhancer identi-
fication problem concerns the role of eRNAs in transcription
regulation. Recent evidence [90] indicates that many TSSs of
eRNAs and protein-coding genes present similar architecture
that is differentiated only at the post-transcriptional regulatory
layer. Consequently, understanding the functional mechanisms
of eRNAs and inferring rules that link eRNA transcription with
transcription initiation through mRNA promoters [84] is a ques-
tion warranting further exploration.

Obstacles of existing approaches

Many obstacles derive from the input data sets that existing
methods use and the fact that an optimal combination of fea-
tures for describing enhancers across different cell-lines and tis-
sues does not exist. [36]. There are also specific technical
limitations introduced by the existing computational solutions.
Regarding the used data sets and features, it is documented
that information on evolutionary conservation cannot help
much [91] in the prediction of enhancers’ activity because few
non-coding elements and motifs appear to be well conserved in
other species, and because enhancers are largely tissue specific.
On the other hand, ChIP-seq data for histone marks and TFBSs
capture cell-line-/tissue-specific information. Using these ChIP-
seq data, however, requires a demanding data preprocessing
phase. This preprocessing phase usually segments genome into
small intervals (e.g. 1000r 200 bp), but a clear answer to the opti-
mal way of selecting this interval size does not exist. The step of
identifying significant ChIP-seq peaks (therefore called the peak-
calling step), as derived from programs like MACS (Model-based
Analysis of ChIP-Seq) [92] or SICER (Spatial clustering approach
for the identification of ChIP-enriched regions) [93], is sensitive to
the selection of parameters, which are usually data set depend-
ent and different among different cellular conditions (e.g. HeLa
versus K562). Guidelines about the optimal selection of publicly
available peak-calling programs for ChIP-seq data can be found in
[94] and [95]. Note that some of the existing approaches for en-
hancer prediction recommend use of specific ChIP-seq peak-call-
ing programs [34, 37], which represent a limitation because
different and possibly better solutions for peak calling could be
available in future. Furthermore, ChIP-seq data are not available
for many of the existing cell lines and tissues. This represents a
real obstacle, as it limits the scope of potential studies that rely on
such information. To mitigate this problem, data imputation tech-
niques for histone modification marks have been proposed [96].
Moreover, methods that rely on DHS footprints for finding
regulatory elements usually lack specificity between different
functional categories (e.g. promoters versus enhancers versus
insulators) [97]. In other words, DNA regions with enriched DHS
activation are not necessarily enhancers. Also, the identifica-
tion step of TFBSs is also problematic because not all of the en-
hancers are marked by the same combination of regulatory
proteins or present similar histone modification patterns. This
simply means that genomic regions with enrichment in specific
histone marks (e.g. H3K4mel) or binding factors (e.g. P300) are
not necessarily enhancers. To complicate the problem even
more, even the antibodies that are used by ChIP-related experi-
ments may not be always available because enhancers are char-
acterized by different (and maybe unknown) combinations of
enhancer co-activators [4]. On the other hand, identification of
binding sites based on the Positional Weight Matrices (PWMs)
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prediction models faces limitations and frequently achieves
poor recognition performance [98, 99].

Further, supervised and unsupervised ML methods also face
limitations. For the unsupervised clustering of histone mark pro-
files, rules that have been applied for identifying enhancers are
not general enough because different combinations of histone
markers and enhancer-related TFBSs characterize enhancers in
different cell lines and tissues. This argumentation raises several
questions that need to be addressed. For example, to what extent
chromatin-defined enhancers in multiple cell lines/tissues have
exactly the same chromatin states? Or which cell lines and tis-
sues have exactly the same sets of active enhancers?

In addition, the main challenge that all of the ML-based classi-
fication methods face is the selection of high-quality samples to
represent adequately the positive (enhancers) and negative classes
(non-enhancers). In the absence of a ‘ground truth enhancer’ data
set, the first ML-based classification systems introduced rules to
select enhancer regions for training [33, 34, 37]. The most promin-
ent rule is the selection of DNA segments distal to protein-coding
TSSs, characterized by open chromatin as indicated by DHS data
that are also enriched in enhancer-related TFBSs (e.g. P300 and/or
CBP). For the selection of negative samples, random sequences not
annotated as enhancers or promoters are frequently used. An al-
ternative way to generate negative control samples is to shuffle
the genomic content of existing enhancer regions (e.g. scrambled
enhancers). However, with the recent advances on computational
and experimental techniques, the ENCODE integrative annotation
[70], the Atlas of actively transcribed enhancers [40], the VISTA en-
hancer browser [75] and the outcome of individual studies based
on enhancer-screening data (similar to those we summarized be-
fore) can serve as baseline sources for implementing more reliable
ML-based recognition systems [35, 36].

Finally, the class-imbalance problem [36, 37], tuning of clas-
sification model parameters (e.g. number of neurons or hidden
layers for ANNs or parameter C and gamma for SVMs) [34], over-
fitting issues, poor generalization capabilities of the developed
models in unknown cell lines/tissues and ad hoc rules for vali-
dating genome-wide predictions of enhancers are some tech-
nical problems related to enhancer recognition via ML-based
classification systems.

Enhancer-related resources

In this section, we report available online resources related to
enhancers, which include databases, repositories of experimen-
tal data, computational tools and other material useful for sub-
sequent enhancer identification studies.

Regarding the enhancer databases, PReMod [76] (http:/
genomequebec.mcgill.ca/PReMod/) and PEDB (Mammalian
Promoter/Enhancer DataBase) [100] (http://promoter.cdb.riken.jp/)
are two of the first resources that archived computationally pre-
dicted enhancers in human and mouse. Currently, the state-of-
the-art database for enhancers is the ‘Human Transcribed
Enhancer Atlas’ that contains actively transcribed enhancers
based on the analysis of eRNA expression [40] (http://enhancer.
binf.ku.dk/enhancers.php). Except for the list of human enhan-
cers in multiple tissues and organs, the Atlas contains utilities
for downstream analysis, such as TF motif enrichment in en-
hancer sequences, as well as a selection of enhancers based on
expression levels. In addition, all the results are publicly avail-
able as flat files or can be visualized in the Genome Browser. On
the other hand, VISTA enhancer browser (http://enhancer.lbl.
gov/) contains a set of developmental enhancers ex-
tremely conserved in mouse and human [77]. This list of

developmental enhancers is experimentally validated in
mouse [77]. There are also some other enhancer sources that arch-
ive enhancers in an integrative way. Examples are dbSUPER
(http://bioinfo.au.tsinghua.edu.cn/dbsuper/index.php), which con-
tains 66033 super enhancer regions predicted [101] from 96
human and 5 mouse tissues, and DENdb (Dragon Enhancer
DataBase) [50] (http://www.cbrc.kaust.edu.sa/dendb/), which is the
first online repository of putative enhancers, from 15 ENCODE cell
lines computationally predicted by five state-of-the-art ML enhan-
cer recognition systems. DENdDb also incorporates utilities such as
overlap of enhancers with TFBS from ChIP-seq data or predictions
of TFBSs obtained by PWM from HOCOMOCO (Homo Sapiens
Comprehensive Model Collection) database [102], interactions of
enhancers with other genomic loci as captured by chromatin con-
formation technologies such as 3C/5C or ChIA-PET archived in
4DGenome database [103] (http://4dgenome.int-med.uiowa.edw/)
and overlap of enhancers with open chromatin regions via DHS.

Conclusion

Bioinformatics approaches for enhancer identification are valu-
able for validating hypotheses and assumptions in gene regulation
studies. Here, we went through >30 bioinformatics approaches
that have been developed over the past few years. We covered
three basic streams of computational methods including: (a)
methods that identify DNA regulatory elements via clustering of
histone marks profiles, open chromatin information and TFBSs;
(b) ML-based classification systems; and (c) bioinformatics ana-
lyses based on high-resolution enhancer-screening data sets.

During our review process, we identified and reported limi-
tations and advantages of the existing computational methods.
In addition, we summarized a comprehensive list of enhancer
resources that include databases for enhancers, data reposito-
ries and open-source programs useful for further analyses.
A large-scale comparison analysis of the performance of the
existing methods may provide meaningful insights about the
discriminative capacity of different genomic and epigenetic
data sets that feed different computational solutions.

We also commented on some promising areas of research,
and we reported challenges that require further investigation.
Among them, linking enhancers with their in vivo target genes
and understanding the role of eRNAs for transcription regula-
tion are among the most challenging topics for future research.

To conclude, we anticipate that our review will complement
subsequent gene regulation studies aimed at resolving questions re-
garding the role of enhancers into cellular transcriptional activities.

Key Points

* Interplay between histone modification profiles, open
chromatin information and TFBSs can characterize en-
hancer regions with increased accuracy in a cell-line-/
tissue-specific content.

Developed models based on SVMs, ANNs, RFs, use
with various level of success, features such as binding
sites of P300, CBP, TRAP220 proteins, sequence com-
positional properties, DHS, different chromatin marks.
The effectiveness of ML models critically depend on
the selected set of features, and the most promising
solutions use combinations of features deriving from
genomic and epigenomic data.
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