
Evaluation of preprocessing, mapping and

postprocessing algorithms for analyzing whole

genome bisulfite sequencing data
Junko Tsuji and Zhiping Weng

Corresponding author: Zhiping Weng, Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation
Street, Worcester, MA 01605, USA. Tel.: þ1-508-856-8866; Fax: þ1-508-856-2392; E-mail: zhipingweng@gmail.com

Abstract

Cytosine methylation regulates many biological processes such as gene expression, chromatin structure and chromosome
stability. The whole genome bisulfite sequencing (WGBS) technique measures the methylation level at each cytosine
throughout the genome. There are an increasing number of publicly available pipelines for analyzing WGBS data, reflecting
many choices of read mapping algorithms as well as preprocessing and postprocessing methods. We simulated single-end
and paired-end reads based on three experimental data sets, and comprehensively evaluated 192 combinations of three
preprocessing, five postprocessing and five widely used read mapping algorithms. We also compared paired-end data with
single-end data at the same sequencing depth for performance of read mapping and methylation level estimation. Bismark
and LAST were the most robust mapping algorithms. We found that Mott trimming and quality filtering individually
improved the performance of both read mapping and methylation level estimation, but combining them did not lead to
further improvement. Furthermore, we confirmed that paired-end sequencing reduced error rate and enhanced sensitivity
for both read mapping and methylation level estimation, especially for short reads and in repetitive regions of the
human genome.

Key words: whole genome bisulfite sequencing; DNA methylation; WGBS analysis step evaluation; read quality trimming;
WGBS mapping software

Introduction

DNA methylation is an important epigenetic modification that
is used to regulate many biological processes such as gene ex-
pression, chromatin structure, imprinting and chromosome sta-
bility [1-3]. In mammals, DNA methylation occurs mostly for
cytosines in the CG context (�80% of CG dinucleotides in both
genomic strands) and rarely in the CHG or CHH contexts (�3%;
H¼A, T, or C) [4]. Because abnormality of DNA methylation is
observed in various diseases, especially cancers, there is a grow-
ing interest in developing novel medical interventions that tar-
get aberrant DNA methylation [5].

Improvements in high-throughput sequencing technologies
have enabled cytosine methylation to be monitored at single-
nucleotide resolution throughout the genome, using a method
called whole genome bisulfite sequencing (WGBS) [6], even in a
single cell [7]. Bisulfite treatment converts unmethylated cyto-
sines to uracils and leaves methylated cytosines intact [8].
When the sequencing reads are mapped back to the reference
genome, methylated and unmethylated cytosines can be identi-
fied computationally. Because bisulfite alters �90% of cytosines
in the genome [9], mapping bisulfite converted reads to the gen-
ome poses major computational challenges. Furthermore, it can
be difficult to distinguish a converted nucleotide (nt) from a
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sequencing error. Thus, it is important to assess the accuracy of
the methods that map reads and estimate methylation levels.

As reviewed by Adusumalli et al. [10], the entire WGBS ana-
lysis workflow is composed of many steps, including adapter re-
moval, read quality trimming, read mapping, postalignment
read filtering, sample heterogeneity assessment and identifica-
tion of differentially methylated regions between two condi-
tions. In this study, we focused on three analysis steps that
most directly impact the performance of methylation level
estimation—read quality trimming (henceforth preprocessing),
read mapping and postalignment read filtering (henceforth
postprocessing).

Many algorithms have been developed to map bisulfite-
converted reads to the reference genome (Table 1) [11-28].
These algorithms are classified into two groups, wild-card and
three-letter aligners [29]. Wild-card aligners treat Cs and Ts in
the reads as matches for Cs in the reference genome, or they
use a modified nucleotide similarity score matrix that contains
a positive match score between a T in a read and a C in the ref-
erence genome. Three-letter aligners first reduce the four-
nucleotide lexicon of DNA (A, C, G, T) into three nucleotides (A, G,
T) by converting all Cs in the reads and both strands of the refer-
ence genome into Ts. After this computational nucleotide con-
version, the reads are mapped to the reference genome using a
standard read mapping algorithm such as BWA and Bowtie [29].

Many preprocessing tools also exist for read quality trim-
ming to eliminate nucleotides of low sequencing qualities
(Table 2). These tools can be grouped into two main classes,
running sum and window based [30]. Running-sum methods
globally scan a read and use a cumulative quality score to deter-
mine the position for trimming the 30-end of the read [30-32].
Window-based methods apply sliding or nonoverlapping win-
dows to locally scan a read and clip off the low-quality regions
[32-38].

As another approach for quality control, a postprocessing
step is often integrated after read mapping and before comput-
ing methylation levels. There are two kinds of postprocessing
methods. Coverage filtering methods discard the cytosines cov-
ered by fewer reads than a preset cutoff. Quality filtering meth-
ods exclude a read from the estimation of the methylation level
of a cytosine if the sequencing quality of the read at the corres-
ponding position is lower than a preset cutoff.

Several studies compared the sensitivity and accuracy of a
panel of read-mapping algorithms using experimental WGBS
data and simulated reads, mostly in the context of assessing a
newly developed algorithm; however, only a few studies eval-
uated the accuracy of computing methylation levels after read
mapping [13, 39]. So far, no study has evaluated the combin-
ation of preprocessing, mapping and postprocessing steps, es-
pecially with regard to estimation of methylation levels.

Paired-end WGBS data are becoming increasingly available,
with a pair of reads sequenced from both ends of each DNA
fragment, as opposed to single-end data with only one end of
each DNA fragment sequenced. Because the length distribution
of DNA fragments is known, paired-end reads are constrained
spatially in genomic coordinates, which allows them to be more
accurately mapped to the reference genome than single-end
reads, especially in repetitive regions [40, 41]. However, no study
has systematically compared the performance of paired-end
and single-end WGBS data sets at an equivalent sequencing
depth.

Compared with earlier studies, which were mainly focused
on the performance of read mapping algorithms, we further
benchmarked various combinations of pre- and postprocessing

methods with read mapping algorithms [42, 43]. Another novel
aspect of our study is that we compared single-end and paired-
end reads at an equal sequencing depth. We simulated single-
end and paired-end reads that incorporated single nucleotide
polymorphisms (SNPs), sequencing errors and DNA methylation
derived from experimental WGBS libraries. We tested five
widely used WGBS mapping algorithms, Bismark [12], BSMAP
[15], GSNAP [20], BRAT-BW [14] and LAST [22], in combination
with three preprocessing methods and two postprocessing
methods each with several thresholds. For Bismark, the most
widely used algorithm, we tested two alignment engines,
Bowtie and Bowtie2, each with two different seed lengths. In
total, we tested 192 combinations.

We found that Mott trimming and quality filtering individu-
ally improved the results of both read mapping and methylation
level estimation, but combining them did not lead to further im-
provements. Furthermore, we confirmed that at equivalent
sequencing depth, paired-end sequencing reduced the error
rate and enhanced the sensitivity on read mapping and methy-
lation level estimation, especially for short reads and repetitive
regions. Bismark and LAST were the most robust mapping algo-
rithms throughout most simulated data sets, and constituted
the best WGBS analysis pipelines when combined with Mott
trimming and no filtering.

Material and methods
Genome annotations and WGBS data sets

We downloaded the genomic sequence of human chromosome
21 (chr21; version hg19), the allele frequencies of SNPs
(snp138Common.txt) [44], annotated repeats (rmsk.txt) [45] and
annotated segmental duplications (genomicSuperdup.txt) [46]
from the UCSC genome database [47]. To simulate bisulfite-
converted reads, we retrieved three WGBS libraries from the
Gene Expression Omnibus: SRR901864 [48] for 101 nt single-end
reads, SRR568015 [49] for 45 nt and 50 nt paired-end reads
(paired-end data set A) and SRR771408 [39] for 100 nt paired-end
reads (paired-end data set B).

Benchmark data

We simulated bisulfite converted reads by randomly drawing
from the human chr21 genome sequence. Taking into account
cytosine contexts (CG, CHG and CHH), we randomly assigned a
methylation level to every cytosine in both strands of chr21. We
used the methylation levels in Table 2 of a previous publication
[22]. The CG context was given higher probability of being
methylated than CHG and CHH. For each allele, we inserted ran-
dom polymorphisms including SNPs and indels based on anno-
tated allele frequencies in the chr21 sequence.

We used the DNemulator algorithm [22] to simulate reads.
We randomly extracted 50 million (50M) fragments, of the same
lengths in the experimental libraries, from the chr21 sequence
with simulated methylation levels and alleles. These corres-
pond to 140-, 130- and 280-fold genome coverage for the single-
end data set and paired-end data sets A and B, respectively. To
simulate paired-end reads, we used a normal distribution of in-
sert lengths with the following mean and standard deviation:
400 nt and 25 nt for the paired-end data set A, and 350 nt and
40 nt for the paired-end data set B. We also simulated a single-
end data set (i.e. all reads were randomly drawn from chr21 in-
dependently) equivalent to each paired-end data set in terms of
read length, total read depth and sequence quality scores to
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compare the benefits of paired-end versus single-end libraries
at equivalent sequencing depth (i.e. equal cost).

We then simulated bisulfite conversion with the efficiency
of 99% on all the reads. After that, we mutated nucleotides in
the simulated reads to account for sequencing errors, according
to the per-base quality scores of the first 50M reads in the ex-
perimental data sets. The quality score distribution of the first
50M reads in each data set is shown in Figure 1A–C. To test data
sets with different sequencing depths, we down-sampled the
data sets from 50M reads (or read pairs) to 10M and 20M reads
(read pairs). Note that the sequencing depth of 10M for chr21
corresponds to 26–56 folds of coverage, which is achieved by
most present-day WGBS experimental data sets.

Preprocessing: trimming methods

To test the performance of preprocessing methods, we imple-
mented the following three trimming algorithms:

• Mott trimming (running sum): The method starts from the 30-

end of each read, subtracts a preset cutoff quality score from the

quality score at each position and adds the remainder to a cumu-

lative score at the position. The 30 portion of the read starting

from the position with the minimum cumulative score is

trimmed [50].
• Dynamic trimming (window based): The method searches for

the longest stretch of positions (window) in each read such that

the quality scores of each position in the window exceed a preset

threshold [32].
• Simple trimming: The method scans from the 50 end of each

read. As soon as it detects a position with quality scores below a

preset threshold, it discards this position and the remaining pos-

itions at the 30-end of the read.

We used the Phredþ33 score as the quality score for all three
trimming algorithms. We set a cutoff of 3 for all three trimming
methods based on an earlier study [51]. The Python scripts im-
plemented for this study can be downloaded from https://
github.com/jnktsj/trim-suppl_BIB100115.

Mapping: bisulfite-seq mapping algorithms

We compared five bisulfite-seq mapping algorithms: Bismark
(v0.14.2) [12], BSMAP (2.74) [15], GSNAP (the 21 January 2014 ver-
sion) [20], BRAT-BW (2.0.1) [14] and LAST (version 548) [22]. We
tested two different alignment engines for Bismark, Bowtie
(1.1.1) [52] and Bowtie2 (2.2.5) [53], each with two different seed
lengths: l¼ 28 or 50 for Bowtie and L¼ 20 or 22 for Bowtie2. The
command lines of each software package used in this study are
summarized in Supplementary Materials.

Postprocessing: filtering methods

Before computing methylation levels, we tested two filtering
methods as postprocessing quality control:

• Coverage filtering: We only computed methylation levels for

cytosines covered by at least n reads. We tested n¼3, 5 and 10.
• Quality filtering: To compute the methylation level for a cytosine,

we only used the reads that covered this cytosine and had qual-

ity scores greater than or equal to q at this position. We tested

q¼ 10 and 20.T
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Evaluation of performance

We evaluated the performance of each mapping algorithm in
isolation for read mapping accuracy, also in combination with
the preprocessing and postprocessing steps for methylation
level estimation accuracy.

To evaluate read mapping accuracy, we took a read-centric
approach and simply counted the fraction of correctly mapped
reads. We defined mapping sensitivity as the fraction of cor-
rectly mapped reads out of all simulated reads and error rate as
the fraction of incorrectly mapped reads out of all simulated
reads. For those mapping algorithms that perform local align-
ments (LAST, Bismark with Bowtie2 and GSNAP), if at least one
base in a read is correctly mapped, the read is considered cor-
rectly mapped.

To evaluate the accuracy of methylation level estimation,
we separated cytosines into two groups and computed their
fractions: cytosines that had one or more simulated reads
and were also covered by one or more mapped reads (hence-
forth, ‘Cs correctly covered’), and cytosines that did not have
simulated reads but were covered by one or more mapped
reads (henceforth, ‘Cs falsely covered’). For Cs correctly cov-
ered, we further computed two metrics: the fraction of Cs
with correctly estimated methylation levels, i.e. zero error
(henceforth, ‘Cs perfectly estimated’) and ‘the error of esti-
mated methylation levels’, determined using the gold stand-
ard methylation levels assigned during simulation. We plot
the cumulative fraction of Cs correctly estimated as a func-
tion of the allowed error of estimated methylation levels. We
calculated the average error of methylation level estimation
for all Cs correctly covered.

Performance in repetitive regions of the genome

In addition to genome-wide performance, we also compared
the performance of read mapping and methylation level esti-
mation in repetitive regions. For Alu elements, we focused on
the AluY subfamily that is the youngest and the least diverged.
Similarly, we focused on the LINE-1P subfamily of the LINE
elements. The fractions of simulated reads in all data sets that
fell in the repetitive regions within chromosome 21 were 0.48–
1.21% in AluY, 2.54–5.34% in LINE-1P, 0.05–0.20% in AT-rich low
complexity regions (LCR), 0.05–0.15% in GC-rich LCR, 0.02–0.10%
in other LCR and 1.70–3.41% in segmental duplications.

Runtime and memory usage

To measure the runtime and memory usage of the mapping algo-
rithms, we used the paired-end data set A. We mapped those
reads in both single-end and paired-end modes with different
coverages: 10M, 20M and 50M reads. The runtime measurement
covered the entire process including reading and outputting files.
Runtime was measured for one CPU (Dell R815 AMD Opteron
6380, 2.50 GHz) with 512 GB RAM (random access memory).

Results
Mott trimming improves mapping accuracy

We tested three read trimming algorithms in preprocessing
step: Mott, dynamic and simple trimming (described in
‘Methods’ section). For all data sets, Mott trimming retained the
most reads and simple trimming retained the fewest reads, and

Figure 1. Quality score distribution of experimental data used for simulation and after trimming. The horizontal axis shows read positions, and colors represent quality

scores. Panels DEF are for the single-end data set. (A) Quality score distribution in the single-end data set. (B) Quality score distribution in the paired-end data set A. (C)

Quality score distribution in the paired-end data set B. (D) Quality score distribution of trimmed regions and discarded reads by simple trimming. (E) Quality score dis-

tribution of trimmed regions and discarded reads by dynamic trimming. (F) Quality score distribution of trimmed regions and discarded reads by Mott trimming. A col-

our version of this figure is available online at BIB online: https://academic.oup.com/bib.
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the differences among them were greater for the single-end
data set than for the two pair-end data sets (Supplementary
Table S1) because the single-end data set had poorer sequenc-
ing quality (Figure 1A).

The impact on read mapping accuracy with preprocessing is
shown in Figure 2A for the single-end data set (with 10M reads)
and in Figure 3A for the two paired-end data sets (each data set
with 10M read pairs). Trimming tended to increase sensitivity,
but sometimes slightly increased error rate (note the different
scales for sensitivity and error rate in Figures 2A and 3A). Mott
trimming showed better performance than simple trimming
and dynamic trimming. In contrast, simple and dynamic trim-
ming algorithms locally trim reads based on a single base with a
quality score below threshold. As shown in Figure 1D–F for the
single-end data set, when there was a single nucleotide with a
poor quality score in the middle of a read that was composed of

mostly high-quality bases, simple and dynamic trimming meth-
ods discarded the downstream bases with high-quality scores.
Thus, we will focus our discussion on Mott trimming.

Mott trimming substantially increased the mapping sensitiv-
ity for most alignment algorithms with minor impact on their
error rates; the sensitivity improvement ranged 1.54–10.9% for
the single-end data set (Figure 2A), 1.19–2.16% for the paired-
end data set A and 1.32–18.3% for the paired-end data set B
(Figure 3A). Read trimming is especially effective in increasing
the sensitivity of mapping longer reads (the 101 nt single-end
data set and the 100 nt paired-end data set B). Read trimming
differed drastically in how it impacted Bismark with the two
search engines (Bowtie and Bowtie2). Large improvement was
seen on Mott trimming for Bismark with Bowtie2, but for
Bismark with Bowtie (especially with seed length l¼ 28) Mott
trimming had small and mixed impacts. The two seed lengths

Figure 2. Evaluation of preprocessing and mapping performance on the single-end data set. (A) The differences in sensitivity and error rate with preprocessing and those

without preprocessing. The order of the bars in each preprocessing method corresponds to the order of alignment algorithms shown in the legend. (B) Mapping accuracy

without trimming (left panel) and with Mott trimming (right panel). A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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Figure 3. Evaluation of preprocessing and mapping performance on paired-end data sets. (A) Differential sensitivity and error rate by preprocessing. (B) Differential

sensitivity and error rate by paired-end information. (C) Comparison of the mapping accuracy of reads after Mott trimming between the paired-end data sets and their

corresponding single-end data sets at equal sequencing depth. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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for Bowtie2 produced nearly identical results for all aspects of
our study. For LAST and GSNAP, Mott trimming had little impact
on mapping quality. These conclusions hold for 20M and 50M
simulated reads (Supplementary Figure S1–S3).

Comparison of the mapping performance of the
mapping algorithms

Among the mapping tools we tested, LAST exhibits the highest
sensitivity (91.8% and 98.9%) and the lowest error rate (0.04%
and 0.07%) in the single-end data set and the paired-end data
set B, likely because these data sets have longer read length
than the paired-end data set A (Figures 2B and 3C). As men-
tioned in the previous section, LAST shows equally good per-
formance on mapping untrimmed reads.

Aided by Mott trimming, Bismark also showed high sensitiv-
ity and low error rate. The four settings of Bismark performed
similarly on Mott trimmed single-end reads, with slightly lower
sensitivities than LAST (Figure 2B). Bismark with Bowtie2
achieved slightly higher sensitivity but slightly increased error
than Bismark with Bowtie on paired-end data sets, and higher
sensitivity than LAST for data set A but lower for data set B
(Figure 3C).

GSNAP achieves nearly as high sensitivity as LAST and
Bismark. Especially for paired-end data set A, GSNAP shows the
highest sensitivity; yet its error rate remains higher than the
other algorithms. Among the five mapping algorithms with
Mott trimming, GSNAP and BSMAP had the highest error rates
and BRAT-BW showed the lowest sensitivity for all three data
sets (Figures 2B and 3C).

Figure 4. Performance of methylation level estimation and improvements by pre- and postprocessing steps. (A) Fractions of CpGs perfectly estimated (left panel) and

average errors (right panel) are plotted for each alignment algorithm (rows, corresponding to the order of alignment algorithms in the legend) in three simulated

benchmark data sets at three sequencing depths (indicated by shapes of the symbols), after Mott trimming and no postprocessing. (B) Difference in the fraction of

CpGs perfectly estimated after Mott trimming compared with untrimmed data sets (the left most column), and after Mott trimming and five options of postprocessing

compared with the data sets just with Mott trimming (remaining columns). Cov. indicates coverage and QS indicates quality score. (C) Like B, but for difference in the

average errors of methylation level estimation. (D) Difference in the fraction of CpGs perfectly estimated (left panels) and difference in average error (right panels) be-

tween the paired-end data sets and their matching single-end data sets at equal sequencing depth. For panels BCD, improved and worsened performance is high-

lighted with a red and a blue bar, respectively, below the X-axis. A colour version of this figure is available online at BIB online: https://academic.oup.com/bib.
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Paired-end information helps accurate mapping
of short reads

To investigate how much paired-end information increases
mapping accuracy, we simulated a single-end data set (called
single-end mode) that matched of each the two paired-end data
sets in read length, total read depth and sequencing quality
scores. For example, the paired-end data set A had 10M pairs of
reads while the matched single-end data set A had 20M reads,
with all the reads randomly drawn from chr21 and then as-
signed matching sequencing quality scores, SNPs, etc.

For shorter reads (the 50 nt and 45 nt paired-end data set A,
Figure 3B, left panel), paired-end information improved the sen-
sitivity for Bismark, GSNAP and LAST, at a small cost of error
rate. For longer reads (the 100 nt paired-end data set B; Figure
3C, right panel), LAST showed a slight improvement and GSNAP
showed a noticeable improvement in the paired-end mode;
however, the other algorithms, including Bismark with all four
options, performed worse in the paired-end mode than in the
single-end mode. Similar results were seen for 20M and 50M
read pairs (Supplementary Figure S2–S3).

BSMAP performed much worse on both paired-end data sets
than on their matching single-end data sets. BRAT-BW achieved
slightly lower error rate at a large cost of 5.68–6.48% sensitivity
in the paired-end mode for both data sets (Figure 3C). Thus, the
mapping algorithms differ in their efficiencies of using paired-
end information.

Mott trimming improves the accuracy of methylation
level estimation consistently

We evaluated the accuracy of methylation level estimation
using three metrics: (i) the fraction of Cs correctly covered, i.e.
cytosines that have one or more simulated reads and are also
covered by one or more mapped reads (Supplementary Table
S2–S4), and the fraction of Cs perfectly estimated, i.e. cytosines
with perfectly estimated methylation levels (Figure 4); (ii) the
average error in estimating methylation levels for the Cs cor-
rectly covered (Figure 4); and (iii) the number of Cs falsely cov-
ered, i.e. cytosines that do not have simulated reads but are
covered by one or more mapped reads (Figure 5).

Although Mott trimming improved the mapping accuracy
of Bismark with Bowtie2, BRAT-BW and BSMAP on the single-
end data set, it only slightly improved the accuracy of methy-
lation level estimation using reads mapped by these three al-
gorithms (Figure 4B, the first column labeled ‘D(Mott
trimming)’). Take Bismark with Bowtie2 at 50M reads as an ex-
ample, the fraction of CpGs with perfectly estimated methyla-
tion levels was 12.82% for untrimmed reads and increased to
13.25% for Mott trimmed reads (green rectangles in Figure 4A
and B and Supplementary Table S2), and the average error in
estimating methylation levels for CpGs correctly covered was
3.21% for untrimmed reads and decreased to 3.09% for Mott-
trimmed reads (Figure 4C and Supplementary Table S2). Mott
trimming did not improve the mapping accuracies for LAST on

Figure 5. Number of CpGs falsely covered. The number of CpGs falsely covered is shown. Upper segments of each bar show higher methylation levels assigned during

simulation of the reads. The trimming and filtering options are indicated on the top of each column of panels. We used the simulated data sets with 10M reads. A CpG

was deemed falsely covered if it was not covered by any simulated reads but was covered by one or more mapped reads. Out of the 760 888 CpGs in chr21, in total 193

CpGs were falsely covered in the single-end data set. In the paired-end data sets A and B, in total 716 and 840 CpGs were falsely covered respectively, and 706 and 783

CpGs were falsely covered in their corresponding single-end data sets with equivalent sequencing depth. Cov. indicates coverage and QS indicates quality score. A col-

our version of this figure is available online at BIB online: https://academic.oup.com/bib.
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the single-end data set, and accordingly slightly worsened the
methylation level estimation accuracy. Mott trimming
decreased the number of Cs falsely covered for most mapping
algorithms on the single-end data set, with the largest de-
creases on the number of the CpGs falsely covered for Bismark
with Bowtie (Figure 5) and for cytosines in the CHG or CHH
contexts (Supplementary Figure S4).

The benefit of read trimming on methylation level estima-
tion is more noticeable for the two paired-end data sets. Mott
trimming consistently improved all algorithms, even for
LAST, which did not show obvious improvement on mapping

accuracy (Figure 4B and Supplementary Tables S3–S4). For
Bismark with Bowtie2 on the paired-end data set B (50M
reads), the fraction of CpGs perfectly estimated increased
from 51.9% to 55.53% and the average error decreased from
1.59% to 1.39% (Figure 4A–C and Supplementary Table S4).
Although Mott trimming did not alter the mapping accuracy
of LAST for this data set, the fraction of CpGs perfectly esti-
mated improved from 44.95% to 55.85% and the average error
decreased from 1.43% to 1.30% (gray rectangles in Figure 4A–
C and Supplementary Table S4). Moreover, Mott trimming
decreased the number of Cs falsely covered for most

Figure 6. Performance of mapping and CpG methylation estimation in repetitive regions. (A) Mapping accuracy in repetitive regions for the paired-end data set B.

(B) Methylation level estimation performance in repetitive regions on the paired-end data set A. The cumulative fraction of Cs correctly covered is plotted against the

error of estimated methylation levels, i.e. the difference in predicted and true methylation levels. A colour version of this figure is available online at BIB online:

https://academic.oup.com/bib.
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algorithms on the two paired-end data sets (Figure 5 and
Supplementary Figures S5 and S6). These results indicate
that trimming the low-quality nucleotides can decrease the
error of methylation level estimation.

Quality filtering improves the accuracy of methylation
level estimation slightly for paired-end data sets

We tested six postprocessing options: filtering out cytosine pos-
ition covered by fewer reads <3, 5 or 10 reads, or discarding the
reads covering a cytosine but with quality scores <10 or 20 at
that position. We then evaluated the accuracy of estimating
methylation levels for each combination of four trimming, eight
mapping and six postprocessing options based on four metrics:
the fraction of Cs correctly covered and the fraction of Cs per-
fectly estimated, the average error and the number of Cs falsely
covered. Supplementary Tables S2–S4 detail the absolute per-
formance of these combinations. Because we have established
in the previous section that Mott trimming generally improves
methylation level estimation, in Figure 4B and C we plot the
relative performance (D) of each postprocessing option com-
bined with Mott trimming in comparison with Mott trimming
alone.

Coverage or quality filtering worsened the performance for
the single-end data set judged by the fraction of Cs correctly
covered, the fraction of Cs perfectly estimated or the average
error (Figure 4B and C and Supplementary Tables S2–S4), but
decreased the number of Cs falsely covered (Figure 5 and
Supplementary Figures S4–S6). Rather, filtering improved the re-
sults for the two paired-end data sets, especially data set B.
Thus, the remaining discussion of this section will pertain to
the paired-end data sets.

Coverage filtering with the cutoffs 3 or 5 had little impact
on the fraction of Cs correctly covered and the fraction of Cs
perfectly estimated, or the average error for most alignment
algorithms (Figure 4B and C); however, the stricter threshold
of 10 reads decreased the fraction of Cs perfectly estimated
and increased the average error compared with the pipeline
without any postprocessing, especially for the paired-end
data set A at the 10M sequencing depth. As expected, cover-
age filtering reduced the number of Cs falsely covered for all
alignment algorithms in all data sets (Figure 5). Based on
those observations, we concluded that gentle coverage filter-
ing with the cutoff of 3 reads slightly decreased falsely cov-
ered Cs with little impact on the accuracy of estimating
correctly covered Cs.

Quality filtering increased the fraction of Cs perfectly esti-
mated and decreased the average error for most alignment algo-
rithms on the paired-end data sets, especially data set B (Figure
4B and Supplementary Tables S3–S4). The results for the two
quality filtering cutoffs (10 or 20) led to highly similar results. As
expected, quality filtering also reduced the number of Cs falsely
covered for all alignment algorithms in all data sets without
read trimming (Figure 5).

When combined with Mott trimming, quality filtering did
not further improve the results for the single-end data set, and
only improved the results slightly for the paired-end data sets
(the last two columns in Figure 4B and C; note the small ranges
of the axes), suggesting that Mott trimming and quality filtering
targeted the same set of low-quality reads. Because Mott trim-
ming led to overall a slightly better and more stable improve-
ment than quality filtering, we suggest Mott trimming without
any filtering, which will be the focus of our discussion for the
rest of the ‘Results’ section.

Comparison of the methylation level estimation
performance of the mapping algorithms

LAST achieved the highest fraction of Cs perfectly estimated
and the lowest average error on the two longer read data sets—
the 101 nt single-end data set and the 100 nt paired-end data set
B (Figure 4A and Supplementary Tables S2 and S4). After Mott
trimming and no filtering, Bismark with Bowtie2 was a close se-
cond to LAST on these data sets. On the paired-end data set A,
LAST and Bismark with Bowtie2 performed equally well (Figure
4A and Supplementary Table S3). GSNP and BSMAP performed
slightly worse than LAST and Bismark for the three data sets.

Paired-end sequencing led to more accurate
methylation level estimation for shorter reads

LAST, Bismark and GSNAP performed better on the shorter, 45 nt
and 50 nt, paired-end data set A than its single-end data set with
matching sequencing depth (Figure 4D). In contrast, the perform-
ance of all algorithms was worse on the 100 nt paired-end data
set B than its matching single-end data set (Figure 4D). This is
consistent with the higher mapping rate in the single-end mode
for data set B (Figure 3B). Thus, with sufficiently long sequencing
length (e.g. the 100 nt paired-end data set B), it is more cost-ef-
fective to perform single-end sequencing than paired-end
sequencing if the overall methylation level estimation is the goal.
In the next section, we show that paired-end sequencing
achieves more accurate methylation level estimation than single-
end sequencing in repetitive regions, even for data set B.

Read mapping and methylation level estimation in
repetitive regions

We also compared the performance of read mapping and
methylation level estimation in repetitive regions. Consistent
with the overall results mentioned above, Mott trimming sub-
stantially increased mapping sensitivity for most mapping algo-
rithms in repetitive regions, at the cost of increased error rates
for LCR (Supplementary Figure S7–S9). In particular, there were
consistent improvement in AluY, LINE-1P and segmental dupli-
cations (sensitivity increase¼ 1.33–13.28%; error rate de-
crease¼ 0.06–0.55%; Figure 6A).

Paired-end information improved mapping accuracy in re-
petitive regions. Even though paired-end information did not
improve the overall mapping accuracy for the paired-end data
set B, it improved mapping sensitivity in repetitive regions by
13.28% with slightly worse error rates for LCR (Figure 6A; filled
symbols versus open symbols). Paired-end information also im-
proved methylation level estimation, indicated by the much
higher fraction of Cs correctly covered across the entire range of
estimated methylation levels (Figure 6B and Supplementary
Tables S5–S7). In particular, we observed the greatest improve-
ment in estimated methylation levels for AluY, LINE-1P and seg-
mental duplication, concomitant with the improved mapping
accuracy for these families of repeats.

For the single-end data set, LAST and Bismark with Bowtie2
showed higher sensitivities yet lower error rates than the other
mapping algorithms for most repeat families (Supplementary
Figure S7). Accordingly, these two algorithms performed the
best for methylation level estimation, especially for AT-rich re-
peats (Supplementary Table S5).

For the paired-end data set A, Bismark with Bowtie2 performed
the best in both mapping and methylation level estimation in re-
petitive regions, with the exception of LCR. Bismark with Bowtie,
LAST and GSNAP showed nearly the same performance on both
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mapping and methylation level estimation in segmental duplica-
tions (Supplementary Figure S8 and Table S6). Bismark and
GSNAP exhibited better mapping and methylation level estima-
tion accuracies in AluY and LINE-1P, respectively.

For the paired-end data set B, LAST showed the most robust
performance on mapping of all repeats (Figure 6A and
Supplementary Figure S9). For methylation level estimation,
LAST and Bismark performed better than the other alignment
algorithms (Supplementary Table S7).

Running time and memory usage of mapping
algorithms

We measured running time and peak memory usage for each
mapping algorithm in single-end and paired-end modes on the
paired-end data set A (Table 3). The runtime measurement in-
cludes the entire process such as reading and outputting files.

BSMAP was the fastest on both single-end and paired-end
mapping but used a large amount of memory. Bismark with
Bowtie ran faster than with Bowtie2, 1.67 and 1.77 times faster
in the single-end and paired-end mode, respectively. Bismark
used the least memory through the entire mapping process.
The runtime and the memory usage of LAST were approxi-
mately 20% and 30% worse than those of Bismark with Bowtie.

We tested the latest version of Bismark (v0.14.2), which
added the functionality of running Bowtie using multiple CPUs.
(This functionality existed for Bowtie2 in the previous version of
Bismark already.) However, as pointed out in Bismark’s manual,
Bowtie running in parallel consumes more memory than
Bowtie2 running in parallel, with the difference proportional to
the total number of CPUs. Because most WGBS data sets are
very large (hundreds of millions of reads for each human data
set), Bowtie2 is a more practical option for most users.

Discussion
Overall recommendation

It would be desirable to analyze experimental WGBS data sets
directly; however, the true methylation levels are not known.
Therefore, we simulated single-end and paired-end benchmark
data sets by incorporating error profiles in experimental data sets
and experimentally measured frequencies of SNPs and indels.
Judging by the performance on the three simulated data sets, we
recommend Mott trimming for preprocessing combined with
Bismark or LAST for mapping without any further filtering as the
best approach for accurate methylation level estimation.
However, the data sets we used did not completely simulate

experimental data as discussed in the next section, “Limitation of
benchmark data sets”. Thus, the other alignment algorithms
may still be useful in practice. For paired-end data sets, Bismark
requires the user to input the mean and standard deviation of
fragment lengths. One advantage of LAST is that it does not re-
quire such user input because it can directly estimate fragment
length distribution after mapping reads. Because the fragment
length distribution may be unavailable or may not be measured
accurately, this feature of LAST can be desirable. Paired-end
sequencing achieves better performance than single-end
sequencing for short read lengths (e.g. 50 nt). For long reads (e.g.
100 nt), single-end sequencing yields slightly higher overall ac-
curacy for methylation level estimation; yet, paired-end sequenc-
ing achieves higher accuracy at repetitive regions.

Limitation of benchmark data sets

Although our benchmark data sets were based on experimental
data, we did not accounted for all sources of experimental noise.
For example, our simulated data sets did not contain any con-
taminant DNA sequences, nor did they contain entire or parts of
adapter sequences at the end of reads that experimental data
sets usually contain. Another factor that may need to be con-
sidered during the simulation is the degree of DNA degradation,
because low-quality DNA samples can adversely impact the en-
tire WGBS analysis. In the simulated paired-end data sets, we
assumed that fragment lengths followed a uniform distribution
while extracting reads from the reference genome; however, the
distributions of fragment lengths in experimental data sets may
vary depending on experimental protocols and sequencers.
Another aspect that may improve the simulated data sets is to
consider differential methylation levels of CpGs in different loca-
tions of the genome, specifically the low levels in promoters and
CpG islands. One possible approach is to first estimate the
methylation levels of an experimental data set and use these as
the gold standard methylation levels for simulating reads.

Preprocessing methods

We observed that Mott trimming weeded out sequencing errors
and improved the performance of both mapping and methylation
level estimation. The Mott trimming algorithm determines a
trimming position in a read by computing the global minimum of
a cumulative quality score. This global evaluation is more effect-
ive than other trimming algorithms because it preserves the larg-
est possible portion of the read with high quality (Figure 1D–F).
Although Mott trimming did not improve the mapping accuracy
for LAST, it improved the subsequent methylation level estima-
tion for both paired-end data sets. This indicates that although
low-quality reads can be mapped to the correct locations of the
genome, their errors affect methylation level estimation, and
trimming these erroneous nucleotides can lead to better results.

Mapping algorithms

Among the five algorithms for mapping bisulfite converted
reads that we tested, LAST, BSMAP and GSNAP belong to the
wild-card class of aligners while Bismark and BRAT-BW belong
to the three-letter class. We found LAST to achieve the best per-
formance over all. LAST uses a modified scoring matrix with a
positive score between a C and a T (match¼ 6; C/T match¼ 3;
mismatch¼ –18) [22]. The unique aspect of LAST is that it con-
structs adaptive seeds that are of variable lengths, determined
after taking into account their rareness in the reference genome
[54]. In comparison, BSMAP and GSNAP use fixed-length seeds

Table 3. Running time and peak memory usage on the paired-end
data set A in 10M pairs

Methods Memory usage (MB) CPU time (min)

Single
end

Paired
end

Single
end

Paired
end

Bismark (Bowtie, l¼ 28) 104.12 105.06 100.51 105.12
Bismark (Bowtie, l¼ 50) 104.14 105.63 87.61 90.58
Bismark (Bowtie2, L¼ 20) 104.14 104.13 146.00 160.54
Bismark (Bowtie2, L¼ 22) 104.14 105.33 130.90 149.74
BRAT_BW 538.72 538.74 17.34 16.20
BSMAP 943.11 942.82 6.33 7.51
GSNAP 1724.90 1752.40 75.40 207.86
LAST 131.31 129.05 141.92 134.82
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and evaluate an alignment based on the number of
mismatches between any types of nucleotides [15, 20]. The
mismatch-oriented evaluation of BSMAP and GSNAP tend to
discard or incorrectly align T-rich sequences in bisulfite-con-
verted reads against CT-rich regions in the reference genome.
Furthermore, BSMAP has a stringent scheme that checks a seed
match only at the beginning of each read, which may also im-
pact its accuracy. Bismark showed comparable performance
with LAST when combined with read trimming. Although
Bismark also assesses the best alignment for each read by tally-
ing up mismatches, the evaluation is based on the number of
mismatches between the nucleotides that are not bisulfite-con-
verted [12, 55]. Overall, these penalty and alignment evaluation
schemes in LAST and Bismark for bisulfite-converted reads may
contribute to their better performance.

Postprocessing methods

We observed that the stricter thresholds of coverage filtering
with the cutoff 10 decreased sensitivity and increased the aver-
age error. Coverage filtering with a gentle threshold such as the
cutoff 3 can eliminate inaccurate methylation estimation origi-
nating from a few wrongly mapped reads. Quality filtering with
quality score cutoff 10 is the most effective postprocessing
method, when not combined with Mott trimming.

Possible enhancement for methylation level estimation
at low sequencing depth

In this study, we simulated three data sets with �30-fold or
greater genome coverage, following the recommendations of
the ENCODE and IHEC consortia [56, 57]. Despite the rapid devel-
opments of sequencing technologies, it remains challenging for
WGBS libraries to achieve 30-fold coverage of mammalian gen-
omes. In addition to sequencing cost, the amount of DNA sam-
ple can also be limiting because bisulfite treatment can lead to
fragmentation of DNA and substantial loss of sample DNA [58].

For the WGBS libraries that have low genomic coverage, a
possible enhancement for methylation level estimation is inte-
grating methods like BSmooth [16] as a postprocessing step.
BSmooth assumes that cytosines in genomic blocks (e.g. CpG is-
lands and CpG island shores) have similar methylation levels,
and conducts a local likelihood smoothing to rescue the cyto-
sines with low read coverage. Although the smoothing may miss
individual cytosines that exhibit sharp changes in methylation
levels within the genomic block, it can greatly aid the detection
of differentially methylated regions in low-coverage samples.

Summary

In summary, we created three benchmark data sets based on
three experimental WGBS data sets. Using these data sets, we
compared choices of preprocessing methods, mapping algorithm
and postprocessing methods on accurate mapping and methyla-
tion level estimation. We also showed how the paired-end infor-
mation improved the performance of WGBS analysis, especially
in repetitive regions. This comprehensive evaluation of WGBS
pipelines should provide a practical guide for researchers to
choose the most suitable methods with the optimal parameters.

Key Points
• Whole genome bisulfite sequencing (WGBS) analysis

steps that included 192 combinations of preprocessing,
mapping and postprocessing methods were evaluated

using simulated single-end and paired-end data sets
that closely matched experimental WGBS data sets.

• Mott trimming for preprocessing combined with
Bismark or LAST for mapping without any further
postprocessing showed the best accuracy on methyla-
tion level estimation.

• Paired-end sequencing reduced error rate and
enhanced sensitivity for both read mapping and
methylation level estimation, especially for short reads
and in repetitive regions of the human genome.

Supplementary Data

Supplementary data are available online at https://academic
.oup.com/bib.
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