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Abstract

Technology and collaboration enable dramatic increases in the size of psychological and 

psychiatric data collections, but finding structure in these large data sets with many collected 

variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 

2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome 

variables which are often of interest in psychology. To find and interpret structure in data sets with 

multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a 

multivariate extension to a decision tree ensemble method called gradient boosted regression trees 
(Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric 

regression that is useful for identifying important predictors, detecting predictors with nonlinear 

effects and interactions without specification of such effects, and for identifying predictors that 

cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, 

tune, and interpret the resulting model, which extends the implementation of univariate boosting in 

the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate 

the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). 

Simulations verify that our approach identifies predictors with nonlinear effects and achieves high 

prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple 

regression and multivariate decision trees over a wide range of conditions.
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Technology and collaboration enable dramatic increases in the size of psychological and 

psychiatric data collections, in terms of both the overall sample size and the number of 

variables collected. A major challenge is to develop and evaluate methods that can serve to 

leverage the information in these growing data sets to better understand human behavior. Big 

data can take many forms, such as audio and video recordings, website logs, genetic 

sequences, and medical records (Chen, Chiang, & Storey, 2012; Howe et al., 2008; 

Manovich, 2012). In psychology and psychiatry, big data often take the form of large 

surveys with hundreds of individual questionnaire items comprised of many outcomes and 

predictors. In this context, however, it can be difficult to know what types of models to 
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consider or even which variables to include in the model. As a result, it is often the case that 

many possible models need to be explored to find the model that most adequately captures 

the structure in the observed data. Although parametric models such as multivariate multiple 

regression and SEM can be used in this model selection, these methods make strong 

structural and distributional assumptions that limit exploration. To address this limitation, 

the current paper describes multivariate tree boosting, a machine learning alternative to 

comparing different parametric models. It more easily allows discovery of important 

structural features in observed variables, such as nonlinear or interaction effects, and the 

detection of predictors that affect only some of the outcome variables.

Finding structure in observed data even in the absence of strong theory is particularly 

important for enhancing construct and external validity and for examining possible validity 

threats (Shadish, Cook, & Campbell, 2002). For instance, in the context of psychological 

testing, it is important to discover grouping variables (such as age or gender) that influence 

particular items in a test, indicating differential item functioning (Holland & Wainer, 1993). 

For observational studies, it is important to identify predictors with nonlinear effects or 

predictors that interact because presence of these effects makes the interpretation of main or 

linear effects misleading. In an experimental design, interactions between a treatment and 

other covariates can indicate limits of generalization (Shadish et al., 2002). More broadly, 

detecting and interpreting nonlinear and predictor specific effects can enhance the 

development of theory.

The usual approach for finding structure among many predictors and outcomes is to fit and 

compare a limited number of parametric models (Burnham & Anderson, 2002). These 

parametric models can involve latent variables (e.g. SEM, factor analysis) or only observed 

variables (e.g. canonical correlation analysis, multivariate multiple regression). However, 

there are significant problems with using parametric models for data exploration, including 

exploration in big data sets. First, in addition to distributional assumptions, models often 

make the strong assumption that a system of linear equations can sufficiently capture the 

important structure in the observed data. This ignores nonlinear effects and possible 

interactions, unless they are explicitly specified. Second, because the structure of the data is 

typically unknown, the number of models that must be included in a comparison for a 

thorough exploration can easily become unwieldy. Even if some nonlinear or interaction 

effects are included in the model, it can be difficult to specify all of the potentially relevant 

direct effects, nonlinear effects, and interactions in a parametric model a priori. In addition, 

it is impossible to estimate these effects simultaneously if the number of effects is larger 

than the sample size. Third, model selection is usually ad hoc rather than systematic and is 

not guaranteed to capture all of the important structural features. Even automatic procedures 

such as step-wise regression and best subsets analysis are known to be unable to identify a 

correct set of predictors of a given size and capitalize on sampling error (Hocking & Leslie, 

1967; Thompson, 1995). Finally, conducting inference after this type of model selection 

inflates Type I Error and leads to results that are difficult to replicate (Burnham & Anderson, 

2002; Gelman & Loken, 2013).

An alternative to model selection using parametric models is to use a nonparametric 

approach such as decision trees (Breiman, Friedman, Stone, & Olshen, 1984). Decision trees 
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are powerful because they can approximate nonlinear effects and interactions and handle 

missing data in the predictors. This is done without making parametric assumptions about 

the structure of the observed data. Decision trees are also easily interpretable in terms of 

decision rules, which are defined by the splitting variables. Each decision rule is in the form 

of a conditional effect (e.g., if x1 < c and x2 < d then…), which defines groups of 

observations with similar scores. Although decision trees are flexible and easy to interpret, 

the estimated structure varies considerably from sample to sample. Bagging (bootstrap 

aggregation, Breiman, 1996) and random forests (Breiman, 2001), which includes bagging, 

improve on single decision trees by fitting many decision trees to bootstrap samples, 

forming an ensemble that is more robust against random sampling fluctuation (Strobl et al., 

2009).

Decision trees and random forests have been successfully used in observational studies in 

psychology to identify predictors of mid- and later-life stress (Scott, Jackson, & Bergeman, 

2011; Scott, Whitehead, Bergeman, & Pitzer, 2013), well-being in later life (Wallace, 

Bergeman, & Maxwell, 2002) and caregiver stability (Proctor et al., 2011). Decision trees 

have been used clinically to predict suicide attempts in psychiatric patients (Mann et al., 

2008) and in experimental designs to analyze the effects of competence on depressive 

symptoms in children (Seroczynski, Cole, & Maxwell, 1997).

There are several ways to extend decision trees to multivariate outcomes, including many 

variants of multivariate decision trees (Brodley & Utgoff, 1995; Brown, Pittard, & Park, 

1996; De’Ath, 2002; Dine, Larocque, & Bellavance, 2009; Franco-Arcega, Carrasco-Ochoa, 

Sánchez-Díaz, & Martínez-Trinidad, 2010; Hsiao & Shih, 2007; Struyf & Džeroski, 2006) 

and decision trees for longitudinal outcomes (Loh & Zheng, 2013; Segal, 1992; Sela & 

Simonoff, 2012). Decision tree methods can also be extended to multivariate outcomes by 

combining decision trees with parametric models, in which model parameters are allowed to 

differ in groups defined by split points on covariates (Zeileis, Hothorn, & Hornik, 2008). 

Structural Equation Model Trees (Brandmaier, von Oertzen, McArdle, & Lindenberger, 

2013) are an example of this approach, in which parameters of a structural equation model 

are allowed to differ in each partition. SEM trees can be used to address possible sources of 

measurement non-invariance, to detect group differences on factors, or to detect group 

differences in trajectories for longitudinal data (Brandmaier et al., 2013).

A natural extension to multivariate decision trees is a multivariate decision forest (Hothorn, 

Hornik, & Zeileis, 2006; Segal & Xiao, 2011). Like decision ensembles for single response 

variables, the multivariate random forest provides critical improvements to predictive 

performance compared to multivariate decision trees by combining predictions from many 

decision trees. Another example of a multivariate decision forest is a SEM forest with a fully 

saturated model for the covariance matrix, with the only difference being that the SEM 

forest uses a maximum likelihood criterion for split evaluation (Brandmaier et al., 2013). 

However, one of the limitations to ensembles of multivariate trees is that they are difficult to 

interpret. In general, decision tree ensembles exchange interpretability for prediction 

performance.
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To address the limitations of exploratory analyses with parametric models and the difficulty 

of interpreting multivariate tree ensembles, we propose a new approach for exploratory data 

analysis with multivariate outcomes called multivariate tree boosting. Multivariate tree 

boosting is an extension of boosting for univariate outcomes (Bühlmann & Hothorn, 2007; 

Bühlmann & Yu, 2003; Freund & Schapire, 1997; Friedman, 2001, 2002). It fits univariate 

trees to multivariate outcomes by maximizing the covariance explained in the outcomes by 

predictors. Multivariate tree boosting addresses the problem of model selection with 

multivariate outcomes by smoothly approximating nonlinear effects and interactions by 

additive models of trees without requiring specification of these effects a priori. The method 

is suitable for truly big data scenarios in which the number of predictors is only limited by 

available memory and computation time. Its flexibility also makes it useful for exploratory 

analyses involving only a few variables. Our method differs from SEM trees or forests by 

not requiring a model to be specified for the outcome variables. It differs from multivariate 

decision forests (or saturated SEM forests) by allowing easier interpretation of nonlinear 

effects of predictors on individual outcome variables.

Our approach specifically addresses the issue of interpretation of multivariate tree ensembles 

because interpretation of the model is critical for applications in psychology and other 

sciences. We describe in detail how to use the model to select important variables, visualize 

nonlinear effects, and detect departures from additivity. Multivariate tree boosting also 

allows estimation of the covariance explained in pairs of outcomes by predictors, a novel 

interpretation we think will be relevant for exploratory analyses in psychology. Our R 

package called ‘mvtboost’ makes it easy to fit, tune, and interpret a multivariate tree 

boosting model and extends the implementation of univariate boosting in the R package 

‘gbm’ (Ridgeway et al., 2015) to multivariate outcomes.

Below, we introduce the approach by describing decision trees and univariate boosting, 

followed by introducing multivariate tree boosting. We demonstrate how to estimate, tune, 

and interpret the multivariate tree boosting model using functions in ‘mvtboost’. 
Specifically, we use multivariate tree boosting to identify predictors that contribute to 

specific aspects (subscales) of psychological well-being in aging adults. This example 

illustrates how multivariate tree boosting can be used to answer exploratory questions such 

as: Which predictors are important? What is the functional form of the effect of important 

predictors? How do predictors explain covariance in the outcomes? Finally, we use a 

simulation to evaluate the prediction error and predictor selection performance of our 

approach compared to other model-based and exploratory approaches.

Decision Trees and Ensembles

Decision Trees

Decision trees use a series of dichotomous splits on predictor variables to create groups of 

observations (nodes) that are maximally homogeneous with respect to the outcome variable. 

Nodes in a tree are created by finding both the predictor and the optimal split point on that 

predictor that result in maximally increased homogeneity in the daughter nodes. For 

continuous outcome variables, this means choosing predictors and split points that minimize 

the sums of squared errors within each daughter node. This process of finding a splitting 
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variable and split point is then repeated within each daughter node, and is called recursive 

partitioning (Strobl et al., 2009).

There are several different ways to understand decision trees, which emphasize different 

properties. Decision trees are often represented as tree diagrams (Figure 1A), which show 

the set of variables and split points used to form the nodes. These diagrams represent the 

decision rules used to identify groups that are similar with respect to the outcome variable. 

Trees can also be viewed as models of conditional effects: the predictor with the largest main 

effect is selected for the first split, and each subsequent split is an effect conditional on all 

previously selected predictors. Thus trees can capture interactions between predictors. From 

a geometric perspective, a decision tree is a piecewise function (Figure 1B). The decision 

rules or splits form regions or nodes (denoted Rj) in the predictor space, and the predicted 

values of a tree are the means within each of these regions. Algebraically, a tree can be 

represented by the piecewise function  where θ contains the 

split points and predictors defining J regions Rj, and γj are the predictions in each region 

(Friedman, 2001). The indicator function, I(X ∈ Rj) denotes which observations in X fall 

into region Rj. Thus the tree, T(X,θ), is a piecewise approximation of the unknown but 

potentially complex and nonlinear function F(X) relating the outcome variable y to a set of 

predictors X.

In addition to capturing interactions and approximating nonlinear functions, decision trees 

also handle missing values in the predictors using a procedure called ‘surrogate splitting’. If 

there are missing values on the splitting variable, a second (or surrogate) variable is selected 

that best approximates the original split. Individuals with missing values are then classified 

according to the split on the surrogate rather than the original splitting variable.

Controlling the bias-variance tradeoff—One of the dangers of recursive partitioning is 

overfitting, which refers to a model fitting the idiosyncrasies of the sample in addition to the 

population structure. Overfitting is a result of fitting an overly complex model and results in 

high prediction error (Hastie et al., 2009). The prediction error is a function of the bias and 

variance of the tree, which are in turn a function of model complexity. Highly complex 

models have low bias but high variance, whereas low complexity models have high bias and 

low variance. For example, the most complex tree model is created by recursively 

partitioning the sample until only one observation remains in each node, achieving low bias. 

However, the structure of this tree changes drastically from sample to sample (it has high 

variance), which results in high prediction error. The complexity of a decision tree can be 

reduced by removing unnecessary splits after a full tree is fit (pruning) or by constraining 

the total number of splits of the tree (Hastie et al., 2009).

Decision Tree Ensembles

A better way to reduce the prediction error of individual trees is by using decision tree 

ensembles. Ensembles reduce the prediction error of individual trees by aggregating the 

predictions from many trees. There are two primary methods to create ensembles of decision 

trees: bagging (Breiman, 1996), as used in random forests (Breiman, 2001; Strobl et al., 

2009), and boosting (Freund & Schapire, 1997; Friedman, 2001). In bagging, a set of trees is 
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fit to bootstrap samples, and the prediction of the ensemble is the average prediction across 

all trees. This improves prediction error by increasing the stability of the model (decreasing 

variance) and decreasing the influence of extreme observations. In random forests, bagging 

is extended by randomly selecting the set of predictors evaluated for each split in the tree, 

making the trees less correlated. This has the effect of further reducing the variance of the 

ensemble compared to bagging. Both Breiman (2001) and Strobl et al. (2009) describe 

random forests in more detail. We focus on a different approach for creating decision tree 

ensembles called boosting, which builds a tree ensemble by fitting trees that incrementally 

improve the predictions of the model.

Boosting

The idea behind boosting is to iteratively create an ensemble of decision trees so that each 

subsequent tree focuses on observations poorly predicted by the previous trees. This is done 

by giving greater weight to observations that have been poorly predicted in previous trees 

and decreasing the weight of well predicted observations (Freund & Schapire, 1996, 1997). 

Subsequent trees in the model ‘boost’ the performance of the overall model by selecting 

predictors and split points that better approximate the observations that are most poorly 

predicted. This procedure of iteratively fitting trees to the most poorly predicted 

observations was later shown to estimate an additive model of decision trees by gradient 
descent (Friedman, Hastie, & Tibshirani, 2000; Friedman 2001; Friedman, 2002). This 

additive model of decision trees is represented by:

(1)

Where the model for an outcome variable y is some unknown function of the predictors 

F(X). The goal is to approximate F(X) using an additive model of m=1,…, M decision trees 

Tm (X, θm) (Friedman et al., 2000). Each tree m has split points and splitting variables θm. 

Because model (1) is a linear combination of decision trees, it retains their helpful 

properties: it can approximate complex, nonlinear functions F(X), capture interactions 

among the predictors, and handle missing data.

The parameters that are estimated in (1) are the splitting predictors and split points (θm) in 

each tree. The parameter ν is called the step-size and controls how quickly the model fits the 

observed data. The number of trees M, the depth of the trees, and the step-size ν are meta-

parameters that control the complexity of the model and are tuned to minimize prediction 

error (usually by cross-validation). In the following sections, we describe how this model is 

estimated, tuned, and interpreted.

Estimation by Gradient Descent

A critical problem with model (1) is that the parameters, θm, cannot be estimated in all trees 

simultaneously (Friedman, 2001). This is because there is no closed formula or any 

procedure for estimating the best possible splitting variables and split points for a single tree 

except by an inexhaustible computational search (Hyafil & Rivest, 1976). Estimating 
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parameters jointly in M trees is even more difficult. Because of this difficulty, the additive 

model of decision trees (Equation 1) is estimated by a stagewise approach called gradient 
descent. Stagewise procedures update the model one term at a time without updating the 

previous terms included in the model (Hastie et al., 2009). We illustrate gradient descent by 

first drawing a connection to multiple regression.

In multiple regression, the goal is to find the estimates of the regression weights β that 

minimize the sums of squared errors. This goal is equivalent to minimizing the squared error 

loss function:

(2)

Where the parameter β is a vector of regression weights, y is the dependent variable vector 

and X is a matrix of predictors for i=1, …, N observations. The usual least-squares formulas 

that minimize the squared error loss function can be obtained by taking the first derivative 

(or gradient) of the loss function with respect to the parameters β, setting it equal to zero, 

and solving for β.

Estimating the additive model of decision trees (Equation 1) is done similarly by choosing 

the parameters θm so that the first derivative (or gradient) of the squared error loss function 

is minimized. In this case, the parameters are the splitting variables and split points of each 

tree in the model. Minimizing the loss function can be done stagewise by fitting each tree to 

the first derivative of the loss function, or the gradient (Friedman, 2001). For continuous 

outcome variables with squared error loss, the gradient of the squared error loss function is 

the vector of residuals:

(3)

Where L(.) is the loss function, y is the vector of observations, and F(X) is the unknown 

function mapping the predictors X, to y. The derivative of the squared error loss (times the 

constant ½) is taken with respect to F(X) at the current step m, so that the loss function L is 

iteratively minimized by each tree (for details, see Friedman, 2001). Thus, estimation of the 

additive model of decision trees by gradient descent is equivalent to iteratively fitting 

decision trees to the residuals of the previous fit (Friedman, 2000, 2001). Intuitively, this 

corresponds to giving greater weight to the observations that are most poorly predicted. The 

estimation procedure can be summarized as:
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Algorithm 1

Boosted Decision Trees for Continuous Outcomes Minimizing Squared Error Loss 

(Friedman, 2000; 2001)

For m = 1, …, M steps (trees) do:

1 Fit tree m to residuals

2 Update residuals by subtracting the predictions of tree m multiplied by step-size ν.

In the first step, the prediction of the model is the mean of the outcome variable, and the 

residuals are the deviations of the outcome around its mean.

In contrast to random forests in which trees are fully grown, individual trees are constrained 

to have a fixed number of splits. This is done to allow the user to directly control the degree 

of function approximation provided by each tree as well as the computational complexity. 

Empirical evidence suggests that a tree depth of 5 to 10 can capture the most important 

interactions (Friedman, 2001) while being relatively quick to estimate. Tuning the tree depth 

often improves performance. We recommend standardizing continuous predictors prior to 

estimation, which makes comparisons of the relative importance of these predictors to each 

other more interpretable (described in more detail later).

Resampling—Resampling is an important improvement to the boosting procedure in 

which each tree is fit to a subsample of the observations (that is, a sample of observations 

drawn without replacement) at each iteration of the algorithm. Friedman (2002) showed that 

incorporating this stochastic subsampling dramatically improves the performance of the 

algorithm. As with random forests, this improvement results from diminishing the impact of 

outlying observations (Friedman, 2002). However subsampling is an improvement over 

bootstrapping because it is valid under fewer regularity conditions (Politis & Romano, 

1994). The fraction of the data used to fit each tree is called the bag fraction and is 

conventionally set at .5.

Tuning the model by choosing the number of trees and step-size—A critical part 

of successfully building this model by gradient descent is controlling the model complexity 

to achieve an optimal bias-variance tradeoff and low prediction error. The complexity of the 

model is a function of the number of trees (M), and the goal is to choose a minimally 

complex model that describes the data well. An overly complex model with many trees can 

fit the data too closely, resulting in high variance, whereas a model that is too simple will fail 

to approximate the underlying function well, resulting in high bias (Hastie et al., 2009).

There are two primary methods for choosing the best number of trees: splitting the sample 

into a training and test-set, or by k-fold cross-validation. In the first approach, the model is 

fit to the training set and then the number of trees is chosen to minimize prediction error on 

the test-set. But in this approach, the user needs to choose the fraction of the sample used for 

training and testing. It is often unclear how much of the sample should be used for each task. 

The second approach, k-fold cross-validation, provides a better estimate of the prediction 
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error while still using the entire sample (Hastie et al., 2009). In k-fold cross-validation, the 

sample is divided into k groups (called folds, usually 5 or 10). The model is trained on (k−1) 

of the groups, and the prediction error is computed for the kth group. This is done for all k 
groups so that each observation is in the test set once. The cross-validation error is the 

average prediction error over all k groups at each step (or tree). The number of trees is then 

selected that minimizes the cross-validation error. Once the number of trees is chosen, the 

model is then retrained on the entire sample with the selected number of trees.

The step-size ν is a meta-parameter set between 0 and 1 that indirectly affects the number of 

trees. It is sometimes called shrinkage because it shrinks the residuals at each iteration, and 

is sometimes called the learning rate because it affects how quickly the model approximates 

the observed data. Smaller step-sizes (e.g. .0001, .0005, or less) require many trees, but may 

provide better fit to the observed data (Friedman, 2001; Hastie et al., 2009). A larger step-

size (e.g. .1, .5, or larger) requires fewer trees and fits the data more quickly, but can also 

more rapidly overfit. A typical strategy for choosing the step-size is to fix it to a small value 

(e.g., .001, .005, or .01) and then choose the optimal number of trees (Hastie et al., 2009). 

Note that the step size is a constant that cannot be factored out algebraically from (1) 

because trees are fit sequentially, with each tree conditional on the previous trees. Because 

the step size affects the residual that serves as the outcome when fitting the next tree, 

changing the step size results in different boosting models. The step size is fixed because 

computing an optimal step length based on the second derivative of the loss function (3) 

with respect to the parameters of tree m is very difficult.

Implementation—The procedure of fitting an ensemble of decision trees by gradient 

descent is referred to as ‘gradient boosted trees’ (Elith et al., 2008) or ‘gradient boosting 

machines’ (Friedman, 2001). For univariate outcomes, the model can be estimated and tuned 

using the R package ‘gbm’ (Ridgeway et al., 2015), which is an open source version of 

Friedman’s proprietary implementation ‘MART ™’ and ‘TreeNet™’ procedures available 

through Salford Systems. Another open-source implementation is available in Python 

(Pedregosa et al., 2011).

Although outside the scope of this paper, ensembles of decision trees can also be fit to 

binomial, poisson, multinomial, and censored outcomes by choosing an appropriate loss 

function (Friedman, 2001; Ridgeway, 1999, 2015). The general procedure of fitting 

generalized additive models by gradient descent is known as ‘boosting’ which has a rich 

literature with many developments and extensions (see e.g. Bühlmann & Hothorn, 2007; 

Bühlmann & Yu, 2003, 2006; Freund & Schapire, 1996, 1997; Friedman, 2001, 2002; 

Friedman et al., 2000; Groll & Tutz, 2011, 2012; Ridgeway, 1999). The R package ‘mboost’ 
(Hothorn, Buehlmann, Kneib, Schmid, & Hofner, 2015) implements boosting algorithms to 

estimate a wide variety of high dimensional, generalized additive models by specifying 

different base procedures (e.g. splines and trees) and loss functions. For interested readers, a 

hands-on tutorial using ‘mboost’ is also available (Hofner, Mayr, Robinzonov, & Schmid, 

2014).
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Multivariate Tree Boosting

One goal in learning about structure with multiple outcome variables is to understand which 

predictors explain correlations between outcome variables. This is an important question for 

psychologists when multiple items are used to measure unobserved latent constructs. In 

factor analysis and structural equation models, the covariance between outcome variables 

results from a dependence on unobserved latent variables. However, in a big data context 

when a potentially a large number of predictors have been measured, it may be the case that 

the covariance between outcomes results from a dependence on some of the measured 

predictors. Examining the associations between predictors and multivariate outcomes can 

reveal, for example, whether predictors have similar or unique effects across the different 

aspects of a construct. It may also provide a different way of understanding a construct in 

terms of other observed or latent variables and thus provide a basis for subsequently building 

large confirmatory SEMs.

We propose an extension of boosting to multivariate outcomes that maximizes the 

covariance explained between pairs of outcomes by predictors. This is done by maximizing 

a criterion called the covariance discrepancy, denoted by D, at each gradient descent step. 

Maximizing this criterion directly corresponds to selecting predictors that explain covariance 

in the outcomes. To motivate this criterion, note that a single gradient descent step with 

squared error loss corresponds to replacing an outcome, y(q), with its residual at each step 

(Algorithm 1). In the simplest case with one dichotomous predictor and no shrinkage, the 

gradient descent step removes the effect of that predictor from y(q). If the predictor has an 

effect on multiple outcomes (e.g., y(1,2,3)), the covariance between these outcomes and y(q) 

will decrease after the gradient descent step. Thus, if a predictor causes multiple outcomes to 

covary, there will be a discrepancy between the sample covariance matrices before and after 

each gradient descent step.

Formally, the covariance discrepancy D is given by:

(4)

Which is the discrepancy between sample covariance matrix of the outcomes at the previous 

step, Σ̂(m−1), and the sample covariance matrix at step m, Σ̂(m,q), after fitting a tree to 

outcome q. The discrepancy Dm,q quantifies the amount of covariance explained in all 

outcomes by the predictor(s) selected by the tree fit to y(q) in step m. At the first step, Σ̂(0) = 

S, the sample covariance matrix. D corresponds to the improvement in how closely the 

model fits the sample covariance matrix at each step. There are many possible norms for 

equation (4). We employ the L2 norm, which is simply the sums of squared differences 

between all elements of the two covariance matrices. Maximizing D can be incorporated into 

the original boosting algorithm for squared error loss, giving Algorithm 2:
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Algorithm 2

Multivariate Tree Boosting with Covariance Discrepancy Loss

For m in 1, …, M steps (trees) do:

1 For q in 1, …, Q outcome variables do:

a. Fit tree m(q) to residuals, and compute the amount of covariance 
discrepancy Dm,q(4)

2 Choose the outcome q* corresponding to the tree that produced the maximum covariance 
discrepancy Dm,q(4)

3 Update residuals by subtracting the predictions of the tree fit to outcome q*, multiplied by step-
size.

In the first step (m = 1), the predictions of the model are the means of the outcome variables, 

and the residuals are the deviations of the outcome variables from their means. As before, 

the decision trees are estimated for each outcome variable by minimizing squared error loss. 

At each gradient descent step m, one tree is chosen whose selected predictors maximize the 

covariance discrepancy Dm,q (4). Equivalently, the tree is chosen that maximally explains 

covariance in the outcome variables, or maximally improves the model implied covariance 

matrix. The resulting model is an ensemble of trees where the selected predictors explain 

covariance in the outcomes. As noted previously, we recommend standardizing continuous 

predictors and outcomes for interpretability and numerical stability.

Implementation

We have developed an R package (R Core Team, 2015) called ‘mvtboost’ which efficiently 

maximizes the covariance discrepancy (4) indirectly by explaining variance in each 

outcome. Our work directly extends the implementation of univariate boosted decision trees 

in the R package ‘gbm’ (Ridgeway, 2015) such that fitting an ensemble of decision trees to a 

single outcome variable corresponds to using the original ‘gbm’ function directly. Both 

‘gbm’ and ‘mvtboost’ are freely available on CRAN (https://cran.r-project.org).

In the following sections, we further describe methods to tune and interpret the multivariate 

tree boosting model using the mvtboost package in a step-by-step tutorial. For the tutorial, 

we use real data on the factors that predict aspects of psychological well-being in aging 

adults. We describe the well-being data and the research context in more detail below.

Application to Psychological Well-Being

Psychological Well-Being

Identifying the factors that impact well-being in aging adults is an important step to 

understanding successful aging and decreasing the risk for pathological aging (Wallace et 

al., 2002). Previous research has identified that high resilience, coping strategies, social 

support from family and friends, good physical health, and the lack of stress and depression 

are important to successful aging (Wallace et al., 2002). In our exploratory analysis, we 

included these predictors as well as several additional ones—control of internal states, trait-

ego resilience, and hardiness—and investigated the extent to which these predictors 
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influenced particular aspects of well-being. Most research has focused on a well-being 

aggregate score, and little is known about whether the influence of these predictors varies 

across the different subscales of well-being.

A sample of 985 participants from the Notre Dame Study of Health & Well-being 

(Bergeman & Deboeck, 2014) filled out the surveys that were used in this analysis. The data 

were cross-sectional, and the age of participants ranged from 19–91 with median age 55 and 

with 50% of the participants falling between the ages of 43–65. More of the participants 

were female (58%) than male (42%).

The Psychological Well-Being Scale (Ryff & Keyes, 1995) has six subscales: autonomy, 
environmental mastery, personal growth, positive relationships with others, purpose in life, 
and self-acceptance. These were used as dependent variables in the analysis. Gender, age, 

income, and education were included as demographic predictors. The primary predictors of 

interest were chronic, somatic, and self-reported health, depression (separated into positive 

and negative indicators), perceived social control, control of internal states, subscales of 

dispositional resilience (commitment, control, and challenge), ego resilience, social support 

(separately for friends and family), self-reported stress (problems, emotions), and loneliness. 

Scale summary statistics, reliability, and missingness rates are included in Table 1, and the 

correlations among the well-being subscales are shown in Table 2. Each subscale is 

continuous and approximately normally distributed. In total, 20 predictors were included in 

the analysis. All continuous predictors and the dependent variables were standardized.

Well-being items were 0.3%–1% missing, with 82.6% of the participants having 

measurements on all items. One participant who was missing on 95% of the well-being 

items was removed from the analysis. Well-being subscales were created by averaging 

scores over the items ignoring missingness. The predictors had low missingness rates (1–

5%), except for chronic and somatic health problems, which were not measured on the 

youngest cohort included in the study. Overall missingness rates were similar across gender, 

education, and income levels.

A modified version of the data set adding additional noise to all variables has been provided 

in the package ‘mvtboost’ to illustrate use of the software while protecting privacy. The 

results reported here are from the original data and will differ slightly from the results 

obtained from the data provided in the package. The original data are available upon request.

Fitting the Model Using mvtboost

The ‘mvtboost’ package can be installed and loaded directly in an interactive R session. The 

well-being data set described above is included in the package and can also be loaded into 

the workspace using the ‘data’ command. These steps are shown below:

install.packages(“mvtboost”)

library(mvtboost)

data(wellbeing)
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To fit the model, we first assign the dependent variables to the matrix ‘ Y’ and the predictors 

to the matrix ‘ X’ using their respective column indices. After standardizing the continuous 

outcomes and predictors (‘ Ys’, ‘ Xs’ respectively) the multivariate tree boosting model can 

then be fit using the function mvtb:

res <- mvtb(Y=Ys,X=Xs)

Documentation for the function is available from the command ? mvtb, which describes its 

use in greater detail.

Choosing the number of trees—As with the univariate procedure, the number of trees 

can be chosen to minimize a test or cross-validation estimate of the prediction error. For 

multiple outcomes, a useful criterion is the multivariate mean-squared error:

(5)

Where Yi is the vector of observations for each individual i=1,…, n not used in training the 

model obtained for Q outcome variables, and Ŷi are the predicted values from the 

multivariate additive model of decision trees for these individuals.

The default number of trees and shrinkage values for the function mvtb are 100 and .01 

respectively. These defaults are chosen to provide a quick initial fit, and further tuning is 

most likely necessary. For the well-being data we set the shrinkage to .005 and the 

maximum number of iterations to 10K. The best number of trees (2482) was chosen by five-

fold cross-validation and can be obtained using the summary function:

res5 <- mvtb(Y=Ys,X=Xs,n.trees=10000,shrinkage=.005,

          cv.folds=5)

summary(res5)

Interpreting the Multivariate Additive Model of Decision Trees

One of the challenges of using multivariate decision tree ensembles is that the model is more 

difficult to interpret than a single tree. Although tree boosting can be used to build a very 

accurate predictive model, it is potentially more important for researchers to interpret the 

effects of predictors. Below, we describe approaches that have been developed to 1) identify 

predictors with effects on individual outcome variables, 2) identify groups of predictors that 

jointly influence one or more outcome variables, 3) visualize the functional form of the 

effect of important predictors, and 4) detect predictors with possible interactions or 

nonlinear effects.

Predictor selection by relative influence—The first goal in interpretation is to 

identify which predictors influence which outcome variables. The influence (or variable 
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importance) of each predictor from the tree ensemble has been defined as the reduction in 

sums of squared error due to any split on that predictor, summed over all trees in the model 

(Friedman, 2001). Predictors can then be ranked by their influence or their relative 
influence, which is expressed as a percent of the total reductions in error attributed to all 

predictors. Predictors with large relative influence contribute more to the model than 

predictors with small influence. For the case of multivariate outcomes, the univariate 

influence is obtained for each predictor for each of the outcome variables. Summing the 

importance over all outcomes creates a global importance for the predictor across outcomes. 

To decide whether to retain a variable for further modeling, we suggest simply ranking the 

predictors using the influence score and retaining a practical number of predictors higher 

than a given rank for any or all outcome variables. In analyses of real data it is often clear 

which predictors should be considered for further modeling and may be a theoretical rather 

than an empirical decision.

To illustrate, consider the well-being data. The relative or raw influences of the predictors 

for each outcome variable can be computed using summary or the function mvtb.ri:

mvtb.ri(res5)

The results are shown in Figure 2. We see that control of internal states affects all aspects of 

psychological well-being except positive relationships with others. Like control of internal 

states, perceived stress-problems affects three aspects of well-being: self acceptance, 

purpose in life, and environmental mastery. Personal growth is driven by control of internal 

states and ego-resilience. Other patterns in the influences can be interpreted similarly and 

conform to theoretical expectations (e.g. Wallace et al., 2002; Ryff & Keyes, 1995).

There are some potential issues with selecting variables based solely on the relative 

influence, because variable selection in trees is biased (Strobl, Boulesteix, Zeileis, & 

Hothorn, 2007). This bias occurs because predictors with large variances or many categories 

will be selected more frequently than predictors with smaller variances or fewer categories 

even if the effect sizes are equal. This is because predictors with larger variances or more 

categories have a larger number of possible splits and can fit more readily to idiosyncrasies 

in the sample. There are various approaches to correct this in random forests, and the most 

common is to record the difference in accuracy before and after permuting a predictor 

(Strobl et al., 2007). Important predictors will show large discrepancies. Like with random 

forests, this permutation-based procedure is available for boosted tree ensembles as well. In 

addition to permutation, we suggest standardizing continuous predictors to ensure that they 

get selected with equal priority. Standardization can also improve the interpretability of the 

final model by ensuring the relative influences are on the same scale.

The second issue is the case when all the predictors have zero effects in the population. In 

this case, predictors will still be selected into the model and will report nonzero relative 

influence. As before, predictors with many categories or large variances may also be 

arbitrarily selected more frequently. Using the permutation procedure above can mitigate 

this, but the problem can be avoided altogether by assessing the fit of the model before 
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variable selection. If the model explains little or no variance in the outcomes, there is no 

reason to use the model for variable selection. For the well-being data, we compute the R2 

for each dependent variable below. To do this, we obtain the predicted values of the model 

using the R function predict:

yhat <- predict(res5,newdata=Xs)

r2 <- diag(var(yhat)/var(Ys))

Computing the variance explained on a test-set of n=200 observations, the results are as 

follows: autonomy (22%), environmental mastery (70%), personal growth (42%), positive 
relationships with others (51%), purpose in life (57%), and self acceptance (50%). Other 

measures of model fit for multivariate outcomes can be considered as well (e.g. η2). The 

model explains substantial variance in all outcomes, further substantiating our interpretation 

of the relative influence scores.

Grouping predictors and outcomes by covariance explained—In addition to 

selecting predictors for inclusion into a subsequent multivariate model (e.g. a multivariate 

regression model or SEM), it may also be informative to select the outcome variables that 

are associated with the set of predictors. One criterion for selecting outcome variables is to 

choose the outcome variables whose covariance can be explained by a function of a common 

set of predictors. This approach, for example, could be used to 1) identify a set of 

demographic predictors that similarly affect particular symptoms of a disorder, or 2) indicate 

to what extent covariance in subscales of a construct is due to effects of predictors.

The covariance explained in the outcomes by a predictor can be estimated directly by 

Algorithm 2. At each gradient descent step, we record the covariance discrepancy (4) 

without taking the norm (resulting in a matrix) and the predictor Xj with the largest 

influence. Summing the raw discrepancy over all trees with each predictor approximates the 

covariance explained by each predictor. A covariance-explained matrix can then be 

organized as a Q(Q+1)/2 x p table, where each element is the covariance explained in any 

pair of outcomes by predictor Xj, j = 1, …, p. When the outcomes are standardized to unit 

variance, each element can be interpreted as the correlation explained in any pair of 

outcomes by predictor Xj. This decomposition is similar to decomposing R2 in multiple 

regression. When the trees of the ensemble are limited to a single split and the predictors are 

independent, this decomposition is exact, otherwise it is approximate. The covariance-

explained matrix can be used to identify groups of predictors that explain similar patterns of 

covariance in the outcomes. The covariance explained can be interpreted directly, or can be 

informative for building larger SEMs.

For the well-being data, the covariance explained matrix is obtained directly from the fitted 

model:

covex <- mvtb.covex(res5, Y=Ys, X=Xs)
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Figure 3 shows how the predictors explain correlation in pairs of subscales. We see that 

negative affect and stress problems have widespread effects on well-being. Control of 

internal states explains correlations across all dimensions and is the primary explanatory 

predictor for autonomy. Similarly, stress, which can be detrimental to well-being, most 

strongly affects purpose in life and environmental mastery. Unsurprisingly, loneliness and 

social support from friends primarily affect positive relationships with others. Ego resilience 

mainly affects personal growth.

Clustering the covariance explained matrix—For a small number of outcomes or 

predictors, interpreting the covariance explained matrix is straightforward (e.g. Figure 3). 

However, when the number of predictors or outcomes becomes large, patterns become less 

obvious. It can be helpful to group predictors that explain similar patterns of covariance 

together using clustering procedures. The covariance explained matrix can be clustered by 

first computing the distance between columns (predictors) and the rows (pairs of outcomes), 

respectively. Predictors that explain similar patterns of covariance in the outcomes will be 

closer together (have smaller distance), as will pairs of outcomes that are functions of a 

similar set of predictors. The resulting distance matrices computed for the rows and columns 

can then be used to group rows or columns by hierarchical clustering (Johnson, 1967). This 

corresponds to grouping the predictors that explain covariance in similar pairs of outcomes 

and grouping pairs of outcomes dependent on similar sets of predictors.

Clustering the covariance explained matrix can be done via the function mvtb.cluster. 

This function allows different distance metrics to be used (e.g. Euclidean, Manhattan) and 

different ways to cluster the distance matrices. Heatmaps or network diagrams may be useful 

visual aids for further interpretation. A heatmap in which the rows and columns are clustered 

can be obtained using the function mvtb.heat. The commands to cluster the covariance 

explained matrix for the well-being data are shown below.

mvtb.cluster(covex)

mvtb.heat(covex)

Different clustering procedures can produce alternative arrangements of the predictors and 

outcomes, which may suggest novel interpretations of effects. We found that grouping the 

rows (pairs of outcomes) without clustering produced the most interpretable solution for 

well-being (Figure 3) because the effects of several of the predictors concerned a single 

outcome variable. Examples of different clustering solutions for the covariance explained 

matrix are available in a package vignette. Additionally, we note that with many predictors 

and outcomes, it may also be helpful to cluster the matrix of relative influences. This can 

also be done using mvtb.cluster and mvtb.heat.

Visualizing nonlinear effects—Another important method for interpreting the additive 

model of trees is to visualize predictors with nonlinear effects or interactions. These plots 

effectively complement interpretations of relative influence by showing the direction and 

functional form of the effect of the predictor. Identifying nonlinear effects with plots can 

also help prevent model misspecification if a parametric model is the final goal.
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Nonlinear effects can be inspected visually by plotting the fitted values of the model against 

individual predictors in a partial dependence plot (Friedman, 2001; Friedman & Meulman, 

2003). In a partial dependence plot, the fitted values of the model are obtained by allowing 

one predictor to vary, while averaging over (or integrating out) the effects of the rest of the 

predictors. This plot can be extended to show the model implied effects of two variables 

jointly using a similar procedure. In this case, a three-dimensional perspective plot of the 

fitted values of the function is obtained. The fitted values are plotted jointly over a grid of 

the two predictors and are obtained by averaging over the other predictors. As others have 

noted, these plots do not perfectly represent the effects of individual predictors, but they are 

still useful for interpretation (Elith, Leathwick, & Hastie, 2008; Friedman & Meulman, 

2003).

Univariate and multivariate plots can be easily obtained from the ‘mvtboost’ package using 

the base R function plot. For the well-being data, we plot the effect of control of internal 

states on personal growth (Figure 4a). From the plot we see that above-average control of 

internal states corresponds to larger personal growth.

plot(res5,predictor.no=11,response.no=3)

Similarly mvtb.perspec can be used to produce a perspective plot involving two 

predictors. The following code produces Figure 4b, which shows the nonadditive effect of 

control of internal states and perceived stress problems on self-acceptance.

mvtb.perspec(res5,predictor.no=c(11,18),response.no=6)

Detecting nonadditive effects and possible interactions—Although decision trees 

are models of interactions, it is difficult to detect and interpret interaction effects from a 

decision tree ensemble. To address this issue, we again analyze the fitted values of the 

model. Following Elith et al. (2008), possible two-way interactions can be detected by 

checking whether the fitted values of the approximation as a function of any pair of 

predictors deviates from a linear combination of the two predictors. Such departures indicate 

that the joint effect of the predictors is not additive and indicate a nonlinear effect or a 

possible interaction. A check of departures from additivity can be accomplished by 

computing the fitted values for any pair of predictors, over a grid of all possible levels for the 

two variables. For continuous predictors, 100 sample values are taken. The fitted values are 

then regressed onto the grid. Large residuals from this model indicate the fitted values are 

not a linear combination of the predictors, demonstrating nonlinearity or a possible 

interaction. For computational simplicity with many predictors, this might be done only for 

pairs of important variables.

Computing the departures from additivity from the multivariate tree boosting model can be 

accomplished using the mvtb.nonlin function:
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res.nl <- mvtb.nonlin(res5,Y=Ys,X=Xs)

This produces a large table showing the departures from additivity involving all pairs of 

predictors (available in a ‘mvtboost’ vignette). This table can be further interpreted by 

plotting pairs of predictors that produced the largest departures from additivity. In the well-

being example, control of internal states and stress-problems produced a high ranking 

departure from additivity for the dependent variable self-acceptance. This is plotted in 

Figure 4b. We note that this approach is primarily a heuristic for interpreting the model. A 

variable with a nonadditive effect (e.g. a nonlinear effect like control of internal states) can 

produce bivariate departures from additivity which are not necessarily interactions.

Other Multivariate Boosting Approaches

To conclude the description of multivariate tree boosting, we describe here other approaches 

for boosting with multivariate outcomes. For example, it is possible to use boosting to 

estimate a high dimensional multivariate multiple regression model by updating one 

component of the regression weight matrix at a time (Hothorn, Bühlmann, Kneib, Schmid, 

& Hofner, 2010; Lutz & Bühlmann, 2006; Obozinski, Taskar, & Jordan, 2006). It is also 

possible to use boosting to estimate generalized additive mixed effect models (Groll & Tutz, 

2012) and nonlinear time-series models (Robinzonov, Tutz, & Hothorn, 2012; Shafik & 

Tutz, 2009). These parametric approaches update the models one component at a time and 

can use splines to transform the predictors to capture nonlinear effects (Hastie & Tibshirani, 

1990; Wood, 2006).

Other approaches for multivariate boosting consider the problem of classification with 

multiple related tasks, or multi-task learning. Instead of viewing multiple classification tasks 

as separate problems, these algorithms seek to exploit commonalities between classification 

tasks to improve prediction performance (Faddoul, Chidlovskii, Torre, & Gilleron, 2010). 

Boosting algorithms in this setting can be used for web search ranking (Chapelle et al., 

2010), facial recognition from images and videos (Wang, Zhang, & Zhang, 2009), and 

classification of documents or email (Faddoul et al., 2010). A C++ software package called 

multi-boost implements popular approaches (Benbouzid, Busa-Fekete, Casagrande, Collin, 

& Kégl, 2012). Our approach of estimating a model of decision trees for multivariate 

outcomes offers more flexibility than the parametric approaches and is more suitable for 

exploration with continuous, multivariate outcomes compared to these multi-task 

approaches.

Variable Selection and Prediction Performance of Multivariate Tree Boosting

We have shown how to estimate, tune and interpret the model using the R package 

‘mvtboost’ using the well-being data as an example. In this section we show how well the 

algorithm performs in comparison to other methods for effect and sample sizes that are 

common in psychology using simulated data. Additionally, we demonstrate the performance 

of the algorithm in a more traditional big data context in which the number of predictors 

exceeds the sample size.
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The performance of the algorithm is quantified in terms of variable selection performance 

and prediction error. The performance of multivariate tree boosting is compared to model-

based and exploratory approaches that are often used for data exploration. The model-based 

approaches are MANOVA and the multivariate Lasso. The exploratory approaches are 

multivariate classification and regression trees (De’Ath, 2002), as well as a bagged ensemble 

of these trees. The model-based approaches are expected to perform optimally when the 

model is correct, but to perform poorly when the model is specified incorrectly (i.e. in the 

presence of nonlinear effects). In these scenarios, multivariate tree boosting and (bagged) 

multivariate Classification and Regression Trees (CART) are expected to perform better. 

Below we briefly review the methods used in the simulation to select variables and build 

predictive models with multiple outcomes when the number of predictors is larger than the 

sample size.

Approaches to Identifying Important Predictors with Multiple Outcomes

MANOVA—Multivariate Analysis of Variance (MANOVA) tests for mean differences in the 

outcomes due to predictors (e.g. Bray & Maxwell, 1985). This is done by specifying that the 

multivariate response Y is multivariate normally distributed with mean vector μ and 

covariance matrix Σ. Test statistics can be formed such as Wilk’s Λ, which is a ratio of 

determinants of the within and total sums of squares and cross product matrices. For one 

predictor, the distribution of Λ is known and can be used to test whether the mean vectors 

are significantly different between the levels of the predictor. In high dimensional settings 

with many predictors, predictors can be tested one at a time. This approach has been 

recommended for genetic association studies with multiple outcomes in statistical genetics 

(Ferreira & Purcell, 2009). For high dimensional contexts, CCA applied one predictor at a 

time is equivalent to this approach (van der Sluis, Posthuma, & Dolan, 2013).

Multivariate Lasso—The Lasso (Tibshirani, 1996) can be used to address the problem of 

estimating β in the multiple regression model y = Xβ + ε when the number of predictors 

exceeds the sample size. It obtains estimates of β using least squares plus an additional 

penalty on the sum of the absolute sizes of the estimates β̂j, which serves to shrink some 

coefficients to zero. A larger penalty results in more coefficients being reduced to 0, which is 

useful for variable selection and reduces the variance of the estimator (Hastie et al., 2009). 

The trade-off however, is that all resulting estimates are biased (Tibshirani, 1996).

The Lasso for a single outcome variable can be generalized to the case of multiple outcomes 

by penalizing rows of B in the multivariate linear model Y = XB + E. As with the univariate 

Lasso, the stringency of the penalization is controlled by the meta-parameter λ. An 

implementation for the multivariate Lasso is available in the R package glmnet (Friedman, 

Hastie, & Tibshirani, 2010). Although the multivariate Lasso evaluates all predictors jointly 

even if the number of predictors exceeds the sample size, it still assumes that each outcome 

variable depends linearly on the predictors. To relax this assumption, spline transformations 

of the predictors and product terms can be added into the model to account for nonlinear 

effects and interactions respectively. But because multivariate tree boosting does not require 

specification of these effects a priori, we do not include these terms in the comparison. That 

is, we compare the methods on the basis of identical a priori knowledge.
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Multivariate CART—Multivariate CART (De’Ath, 2002) is a comparable exploratory 

procedure to multivariate tree boosting.1 A multivariate decision tree is fit in a similar 

fashion to a univariate decision tree. However, instead of selecting predictors that minimize 

the univariate sums of squared errors, predictors are selected that minimize the sums of 

squared errors about the multivariate mean vector (De’Ath, 2002). The predictions of the 

multivariate tree are simply the mean of each outcome variable within each node. Because of 

the benefits of ensembles, a bagged version of multivariate CART was also employed, where 

multivariate trees were fit to 1,000 bootstrap samples. Predictions from the ensemble were 

averaged over all trees. Splits in multivariate trees were pruned by 10-fold cross-validation. 

As noted previously, other methods such as saturated SEM Trees (Brandmaier et al., 2013), 

or multivariate conditional inference trees (Hothorn et al., 2006) are also relevant 

comparisons. It should be noted, however, that only this implementation was both 

computationally feasible for big data sets and admitted an easy to compute measure of 

influence.

Simulation Experiments: Variable Selection and Prediction Error

Two simulations were carried out to quantify the performance of multivariate tree boosting 

for predictor selection and prediction error relative to these comparable methods. In each 

experiment, data were generated under a model linear in the predictors and three models that 

were not linear in the predictors. For each scenario, multivariate tree boosting was compared 

to MANOVA testing one predictor at a time, the multivariate Lasso, and (bagged) 

multivariate CART. The methods were compared in terms of their variable selection 

performance as well as their multivariate prediction error.

Meta-parameter selection—For the multivariate Lasso, a value for the penalty parameter 

λ (which controls the amount of penalization) was chosen using 10-fold cross-validation. 

For (bagged) multivariate CART, splits in each tree were only considered if they improved 

the fit of the tree by a fixed amount. This amount was considered as a meta-parameter and 

set to {.001,.0025,.005,.0075,.01,.015,.02}. Trees were then pruned by 10-fold cross-

validation. For multivariate tree boosting, the maximum number of trees was fixed to 20,000 

and 5 different step-size values were used {.1, .01, .005, .001, .0005}. The tree depth was set 

to either 1 or 3, resulting in 5 × 2 = 10 conditions. Each tree was fit to a randomly selected 

half the sample. The best number of trees was selected by 5-fold cross-validation.

Data generation—Linear data were generated under the multivariate multiple regression 

model:

(6)

Each of p = 50 or p = 2,000 predictors in the matrix X were independent, standard normal 

variables, and each error vector in the matrix E was distributed standard normal. The number 

of outcome variables in the matrix Y was five. For the case where p = 50, the matrix of 

1The implementation of multivariate CART described in (De’Ath, 2002) was not available from CRAN at the time of publication. The 
archived version 1.6–2 was compiled and used for the following simulations.
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regression weights B(50 × 5) was sparse: 15 rows each had two nonzero elements, so that 

each of these 15 predictors caused two outcomes to covary. When p = 2,000, the matrix of 

regression weights was generated similarly with 100 significant predictors. The pattern of 

nonzero coefficients in B was allowed to vary randomly across replications. The values of 

the coefficients were chosen to control the item-wise R2. The sample size N was fixed at 

1,000 and all observations were independent. 100 data sets were generated in this fashion.

Nonlinear data were generated under the multivariate multiple regression model (6) for p = 
50 predictors, with quadratic, cubic, and exponential transformations of the predictors. Plots 

of the nonlinear functions are shown in Figure 5. As shown, only the exponential 

transformation can be well approximated by a linear model. As was the case in the linear 

model, the nonzero coefficients in B were chosen randomly, and each predictor affected two 

randomly chosen outcomes. Instead of choosing the values of B to control the effect size, the 

error variance was chosen to control a given item-wise R2.

Variable selection performance—For each method, the following statistics were used 

for variable selection:

• MANOVA: The p-value from the F-test of Wilk’s Λ for each predictor

• Multivariate Lasso: Penalized regression coefficients

• Multivariate CART: relative influence (the reduction in multivariate SSE 

attributed to splits on each predictor)

• Bagged Multivariate CART: Influence averaged over 1000 trees

• Multivariate tree boosting: The influence summed over all outcome 

variables.

If the test statistic was larger than a cutoff τ (smaller for MANOVA) the variable was 

selected. Comparing this indicator to the known true predictors produces a 2×2 table with 

true positives, false positives, true negatives and false negatives for a particular cutoff value 

(Table 3). The true positive rate is the ratio of true predictors that were identified by the 

model over the total number of true predictors. The false positive rate is the number of 

incorrectly selected predictors over the total number of predictors with truly zero effects. 

Ideally, a method will have a true positive rate close to 1 as well as a false positive rate close 

to 0. Most empirical analyses are less ideal and choosing the cutoff τ becomes important: A 

liberal cutoff will lead to a high true positive rate, but also a higher false positive rate. A 

conservative cutoff will lead to a low false positive rate, but also a lower true positive rate.

Measuring variable selection performance using the area under the ROC curve: To 

summarize the variable selection performance independent of the threshold chosen, an ROC 

curve can be used (Hanley & McNeil, 1982). The curve is created by computing the true 

positive rate and false positive rates resulting from allowing the cutoff to take all realized 

values of the statistic. The true positive rates are then plotted against the false positive rates. 

If a procedure selects variables according to chance, the curve will be a line along the 

diagonal of the plot, with the true positive rate increasing along with the false positive rate. 

If the procedure selects variables perfectly, the true positive rate will be 1 (all true predictors 
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selected) whereas the false positive rate is zero (no true zero predictors selected). The ROC 

curve can be summarized as a single number by computing the Area Under the Curve (AUC; 

Bradley, 1997). An AUC of .5 corresponds to chance variable selection performance, and an 

AUC of 1 corresponds to perfect variable selection performance. Methods can then be 

compared based on their AUC values, which is an indicator of performance across all 

possible cutoffs (Bradley, 1997).

Prediction performance—Prediction performance was assessed under the same data 

generating models used to assess variable selection performance. For each of the 100 

replications, a test set was generated from the model by drawing new errors from the same 

distribution. The sample size for this test set was n = 1000. The design matrix X was the 

same for the test set as the original sample. The multivariate mean squared error (Equation 

5) was computed for each method on the n new observations in the test set. The mean 

squared prediction error was computed directly for multivariate tree boosting, (bagged) 

multivariate CART, and the multivariate Lasso. For MANOVA, variables were first selected 

and then included in a multivariate multiple regression model, and the mean squared 

prediction error was computed from this model.

Results

The simulation results confirm theoretical expectations that if predictors have nonlinear 

effects multivariate tree boosting performs best relative to other methods. In these cases, the 

methods based on the linear model are incorrectly specified. When predictors have linear 

effects, multivariate tree boosting matches the performance of MANOVA and the Lasso 

(showing that little power is lost) and out performs multivariate CART.

Variable selection performance—The AUCs averaged over all 100 replications are 

shown in Figure 6. Higher AUC values indicate improved variable selection performance 

across all possible cutoffs. For data not well approximated by a linear model, multivariate 

tree boosting exceeded the performance of all methods (including bagged multivariate 

CART) for even very small effect sizes. When the true model was linear or could be easily 

approximated by a linear model, multivariate tree boosting performed as well as the linear 

model methods and better than multivariate CART or bagged multivariate CART. A similar 

pattern holds when selecting predictors with linear effects when p = 2,000 (Figure 8). We 

note that simple multivariate CART performed very poorly in this case.

Prediction performance—The mean-square prediction error is shown in Figure 7. When 

predictors had nonlinear effects, multivariate tree boosting had much lower prediction error 

than the Lasso or MANOVA. When the responses are truly linear functions of the predictors 

(or approximately linear), multivariate tree boosting performs just as well as both the Lasso 

and MANOVA, and better than (bagged) multivariate CART. A similar pattern holds with p 
= 2,000 predictors (Figure 8), though multivariate tree boosting has much lower prediction 

error than multivariate CART and even bagged multivariate CART.
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Discussion

Finding structure in large data collections with many predictors and outcomes is important 

because it can enhance content or external validity for experimental designs and provide a 

starting point for specifying complex parametric models in observational studies. Even with 

smaller data sets involving fewer variables, exploratory procedures can be helpful for 

detecting nonlinear effects and interactions, which help to correctly specify subsequent 

parametric models. Finding structure requires flexible statistical methods suitable for many 

observed variables and little theory. Although model selection using factor models, CCA, 

and multivariate multiple regression models can be useful, these models make strong 

structural assumptions and are unwieldy with a large number of predictors. It can also be 

difficult or impossible to estimate parameters in a large model if the number of parameters 

exceeds the sample size, or to specify all possible models in order to perform a systematic 

model search. It can also be difficult to specify all necessary transformations of predictors to 

capture potential nonlinear effects. Incomplete model searches likely result in ignoring 

predictors with important effects. Finding structure in any data set involves selecting 

important predictors, seeing how these predictors influence some or all outcome variables, 

and identifying predictors that possibly interact and have nonlinear effects. To accomplish 

all of these things simultaneously, a highly flexible and interpretable model building 

approach is necessary.

Multivariate tree boosting is one such approach. In this approach, the outcome variables are 

assumed to depend on an arbitrary function of the predictors, which is then approximated by 

an additive model of decision trees. Decision trees provide the necessary flexibility for 

approximating nonlinear effects and interactions without a priori specification, and handle 

missing data by surrogate splitting. Multivariate tree boosting complements existing 

multivariate decision tree procedures by providing methods to easily interpret the resulting 

ensemble. Predictors can be selected by ranking their importance in predicting each 

outcome, nonlinear or interaction effects between pairs of predictors can be detected by 

testing for departures from additivity, and plots can be used to visualize these effects. 

Finally, we showed how to identify predictors that explain covariance in the outcomes. All 

of these methods contribute to a better understanding of the structure between a set of 

outcome variables and a set of predictors. Our model can also be used as a “black box” for 

prediction, if prediction rather than an investigation of variable importance is the ultimate 

goal.

Our simulations verified that multivariate tree boosting has better predictor selection 

performance and lower prediction error than other model-based and exploratory procedures 

when predictors have nonlinear effects. The improved performance of multivariate tree 

boosting is dramatic even with relatively small effect sizes. Our simulations also show that 

when linear models are correctly specified, multivariate tree boosting performs nearly as 

well as methods that explicitly search for this type of effect.

Multivariate tree boosting can be used for exploratory analyses in lieu of model selection 

with linear models because it systematically and robustly explores existing structure in data. 

Both our simulations and the applied example of psychological well-being highlight the 

Miller et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



benefits of this structured exploration, which includes the discovery of predictors with 

nonlinear effects. Multivariate tree boosting is also unambiguously interpreted as 

exploratory – the final results are importance scores or plots, which are suggestive and not 

inferential.

Multivariate tree boosting complements SEM trees and other model-based recursive 

partitioning approaches by being maximally exploratory, highly predictive, easy to use, and 

still interpretable. SEM trees are best used for identifying ways to modify a known model: 

for example, by identifying groups with different trajectories, or groups that are not 

measurement invariant. SEM trees and forests also provide a ‘global’ measurement of 

variable importance in terms of the log-likelihood discrepancy between model implied 

covariance matrices due to splits on a predictor (Brandmaier et al., 2013). However, SEM 

trees still make strong assumptions – all of the assumptions of SEM (even fully saturated 

models) must still hold within each region. In contrast, multivariate tree boosting suggests 

ways to build parametric models by discovering important structural features in the data 

while making few assumptions.

Several important practical questions remain: How large of a sample is necessary, and how 

many predictors can be included in the model? A sample size recommendation is difficult to 

make because it depends on the true model, the pattern and size of effects, and the number 

of variables (outcomes and predictors) under consideration. Our initial simulation results at 

n = 1000, are a useful guideline. Specific sample size limits can be investigated further using 

Monte Carlo simulations. More generally, statistical learning-based analyses tend to need 

larger samples than parametric models because the data replace the information in the 

structural relations specified by the parametric model.

With respect to the number of predictors, our simulation results show that boosting performs 

well and is computationally feasible with a very large number of predictors (i.e., 2,000). 

Given a large enough sample and/or the presence of sufficiently large effects, investigating 

even larger numbers of predictors is possible given enough computation time. We note that 

though the number of false positives is expected to increase with a larger number of 

predictors, our results show that the rate of false positives can be well controlled. We caution 

that the variables included in the model should be selected based on their potential 

theoretical relevance. For questionnaire data, either items or factor scores can be included 

depending on the research question.

An important limitation of multivariate tree boosting that is common to all decision tree 

ensembles is that the estimation of individual trees and the ensemble is not optimal. An 

optimal approach would require an exhaustive computational search of all possible splitting 

variables and split points, without conditioning on a previous split or on splits in a previous 

tree. This limitation means that individual trees can fail to capture complex dependency 

structures. Further research is necessary to understand the limits of the approximation 

provided by decision tree ensembles and whether these limits are of practical importance.

There are several other limitations concerning the methods we developed for model 

interpretation. First, as discussed in the text, the relative influence score in this 
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implementation is biased in favor of predictors with large variances and many categories. 

However, this bias can be mitigated by using alternative importance measures based on 

permutations of the predictors. The performance of these alternatives in the context of 

boosting should still be explored. Second, the departure from additivity is a heuristic, not a 

statistic. Further research along the lines of Mentch and Hooker (2014) is necessary to 

understand how well it performs in detecting interactions from boosted tree ensembles. 

Third, the ‘covariance explained’ in pairs of outcomes by predictors is only an exact 

decomposition for uncorrelated predictors and for decision trees with a single split. On this 

positive side, even these approximations can be helpful in understanding the structure in 

observed data. Fourth, partial dependence plots can hide heterogeneous predictor effects. 

Plots of independent conditional expectation may be more informative (Goldstein, Kapelner, 

Bleich, & Pitkin, 2015).

In addition to methodological limitations, there are shortcomings concerning the scope of 

the present work. For instance, our framework does not account for missingness in the 

outcomes. As a result, imputation by singular value decomposition, k-nearest neighbors 

(Troyanskaya et al., 2001), the EM algorithm (Dempster, Laird, & Rubin, 1977) or by data 

augmentation (Tanner & Wong, 1987) is necessary. These approaches are all likely 

reasonable to the extent that their assumptions about the data distribution and the 

missingness mechanism hold. Further research could provide a method of missing value 

imputation using the boosting model itself. Another limitation in scope is that our approach 

does not directly accommodate longitudinal data. Fitting a boosting model to factor scores in 

a latent growth model is one way to link an exploratory boosting model to a parametric 

growth model. Additionally, pilot studies have indicated that using principal components of 

the outcomes as dependent variables can result in better prediction of the outcomes than 

boosting them directly. Our ongoing work focuses on quantifying this improvement under a 

wide range of conditions. Finally, though several representative methods of variable 

selection were compared in the simulation, little is known about how multivariate tree 

boosting influence scores compare to other variable selection methods from other models 

and methods not included here (for instance, variable importance in CCA and multiple 

regression: Grömping, 2015; Huo & Budescu, 2009; Lambert, Wildt, & Durand, 1988; 

Nathans, Oswald, & Nimon, 2012; Nimon, Henson, & Gates, 2010; Thompson, 2005). In 

general, however, we expect variable selection performance to depend on the assumptions 

and statistical power of the model from which the influence scores are computed.

In summary, multivariate tree boosting is a useful approach for finding structure in data for 

large data sets in psychology. Its flexibility makes it a compelling tool to discover and clarify 

important theoretical relationships that would be otherwise difficult or impossible to detect 

by model selection with parametric models. We hope that this work will open future 

developments and improvements in exploratory analyses for big data in psychology.
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Figure 1. 
Representation of a decision tree as a tree diagram (Panel A) and as a surface in three 

dimensions for two predictors (Panel B). In the decision tree (Panel A) the means (top) and 

sample sizes (n = …) within each node are shown, and the split is shown in each branch. 

Panel B illustrates that decision trees are piecewise-constant approximations of nonlinear 

and interaction effects: each split divides the predictor space into rectangular regions, and 

the prediction of the tree is the mean of the response variable in each region. Plots following 

Hastie et al. (2009), Elith (2008), and many others.
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Figure 2. 
Relative influences from multivariate tree boosting. The relative influences are the sum of 

squared reductions in error attributable to splits on that predictor. They are reported as a 

percent of the total reduction in sums of squares for each well-being subscale. Control of 

internal states is important across well-being subscales. Control of internal states also has 

the single biggest contribution of any predictor, with a large effect for autonomy. Loneliness, 

stress – problems, ego resilience, and social support from friends are also important to 

aspects well-being.
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Figure 3. 
The amount each predictor (columns) explained variance or covariance in any pair of 

subscales (rows). Predictors with very small or zero effects included chronic/somatic health, 

income, education, gender, and age have been removed. Control of internal states explains 

correlation across almost all dimensions and is the primary explanatory predictor for 

autonomy. Stress problems primarily affects purpose in life and environmental mastery. 

Loneliness mainly affects positive relationships and the correlation between positive 

relationships and other factors. Ego-resilience mainly affects personal growth, while social 

support from friends is associated with positive relationships.
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Figure 4. 
Model implied effects of control of internal states. Because the predictors and outcome were 

standardized, unit changes on the x, y and z axes correspond to standard deviation changes 

in the predictors and outcomes. Panel A shows the predicted values of personal growth as a 

function of control of internal states (with % relative influence). Control of internal states 

shows a strong nonlinear effect – above average control is associated with larger personal 

growth. Panel B shows the model predicted values for self acceptance as a function of stress 

problems and control of internal states, indicating a possible multiplicative effect rather than 

simply an additive one.
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Figure 5. 
Simulated nonlinear effects for a single predictor: x2, x3, ex for 1000 samples. Only ex is 

well approximated by a linear model.
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Figure 6. 
Variable selection performance of multivariate tree boosting compared to MANOVA, the 

Lasso, multivariate CART, and bagged multivariate CART. The performance (higher is 

better) is shown for a given nonlinear effect (ex, x2, x3, x is the linear model) for a range of 

effect sizes. Higher AUCs indicate better performance: an AUC of 1 is perfect and an AUC 

of .5 corresponds to variable selection no better than chance. For effects that are not linear 

(x2, x3), boosting dominates all other methods followed by bagged multivariate CART. For 

ex and x (linear effect), boosting does not perform significantly worse than MANOVA or the 

Lasso.
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Figure 7. 
Prediction performance of multivariate tree boosting, MANOVA, the Lasso, multivariate 

CART, and bagged multivariate CART. Lower prediction error is better. The performance is 

shown for a given nonlinear effect (ex, x2, x3, x is the linear model) for a range of effect 

sizes. Multivariate tree boosting has lower prediction error than bagged multivariate CART, 

MANOVA or the Lasso for conditions with nonlinear effects (x2, x3). It has comparable 

performance when effects are linear (x) or approximated well by a linear model (ex).
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Figure 8. 
Prediction performance of multivariate tree boosting, MANOVA, the Lasso, multivariate 

CART, and bagged multivariate CART when p > n. The performance is shown when 

predictors have linear effects only. Multivariate tree boosting does not perform worse than 

MANOVA or the Lasso, and performs much better than multivariate CART and bagged 

multivariate CART.

Miller et al. Page 38

Psychol Methods. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 39

Ta
b

le
 1

Sc
al

e 
sa

m
pl

e 
st

at
is

tic
s,

 m
is

si
ng

 r
at

es

V
ar

ia
bl

e
M

SD
R

an
ge

α
%

 M
is

si
ng

Sc
al

e

Ps
yc

ho
lo

gi
ca

l W
el

l-
B

ei
ng

Ps
yc

ho
lo

gi
ca

l W
el

l-
B

ei
ng

 (
R

yf
f 

&
 K

ey
es

, 1
99

5)

 
A

ut
on

om
y

2.
9

.3
4

1.
5–

4
.8

2

 
E

nv
ir

on
m

en
ta

l M
as

te
ry

2.
9

.4
1

1.
5–

4
.8

9

 
Pe

rs
on

al
 G

ro
w

th
3.

0
.3

6
1.

1–
4

.8
7

 
Po

si
tiv

e 
R

el
at

io
ns

hi
ps

2.
9

.4
3

1.
1–

4
.8

9

 
Pu

rp
os

e 
in

 L
if

e
2.

9
.4

2
1.

4–
4

.9
0

 
Se

lf
 A

cc
ep

ta
nc

e
2.

8
.4

7
1–

4
.9

2

H
ea

lth

M
ea

su
re

m
en

t o
f 

Ph
ys

ic
al

 H
ea

lth
 S

ca
le

 
*C

hr
on

ic
 H

ea
lth

1.
7

1.
4

0–
7

.8
4

22
%

 
*S

om
at

ic
 H

ea
lth

3.
0

2
1–

11
.8

4
38

%

 
Se

lf
 R

ep
or

t H
ea

lth
−

.0
2

4.
3

−
7.

9–
12

.8
4

.8
4%

D
ep

re
ss

io
n

C
E

S-
D

 (
D

ev
in

s 
&

 O
rm

e,
 1

98
5)

 
Po

si
tiv

e 
A

ff
ec

t
7.

4
3.

2
4–

16
.6

7
3.

0%

 
N

eg
at

iv
e 

A
ff

ec
t

31
10

20
–7

8
.8

6
1.

6%

Pe
rc

ei
ve

d 
So

ci
al

 C
on

tr
ol

36
4.

4
12

–4
8

.7
9

1.
2%

D
es

ir
ed

 C
on

tr
ol

 M
ea

su
re

 (
R

ei
d 

&
 Z

ie
gl

er
, 1

98
1)

C
on

tr
ol

 I
nt

er
na

l S
ta

te
s

51
6.

6
21

–7
1

.9
1

2.
5%

Pe
rc

ei
ve

d 
C

on
tr

ol
 o

f 
In

te
rn

al
 S

ta
te

s 
Sc

al
e 

(P
al

la
nt

, 2
00

0)

D
is

po
si

tio
na

l R
es

ili
en

ce

H
ar

di
ne

ss
 (

B
ar

to
ne

, U
rs

an
o,

 W
ri

gh
t, 

&
 I

ng
ra

ha
m

, 1
98

9)
 

C
om

m
itm

en
t

49
5.

8
17

–6
0

.7
7

2.
0%

 
C

on
tr

ol
48

4.
9

21
–5

9
.6

7
2.

4%

 
C

ha
lle

ng
e

40
4.

5
24

–5
4

.5
3

2.
5%

E
go

 R
es

ili
en

ce
42

6.
3

14
–5

6
.8

4
1.

4%
T

ra
it 

E
go

 R
es

lie
nc

e 
(B

lo
ck

 &
 K

re
m

en
, 1

99
6)

So
ci

al
 S

up
po

rt

Pe
rc

ei
ve

d 
So

ci
al

 S
up

po
rt

 f
ro

m
 F

ri
en

ds
 a

nd
 F

am
ily

 S
ca

le
 (

Pr
oc

id
an

o 
&

 H
el

le
r, 

19
83

)
 

Fr
ie

nd
s

53
7.

1
23

–7
6

.9
4

2.
9%

 
Fa

m
ily

58
12

20
–8

0
.9

6
1.

5%

St
re

ss

Pe
rc

ei
ve

d 
St

re
ss

 S
ca

le
 (

C
oh

en
, K

am
ar

ck
, &

 M
er

m
el

st
ei

n,
 1

98
3)

 
Pr

ob
le

m
s

17
3.

4
7–

28
.8

5
1.

7%

 
E

m
ot

io
ns

15
3.

4
8–

28
.8

5
1.

7%

L
on

el
in

es
s

39
11

20
–7

7
.9

1
4.

8%
U

C
L

A
 L

on
el

in
es

s 
Sc

al
e 

(R
us

se
l, 

Pe
pl

au
, &

 C
ut

ro
na

, 1
98

0)

N
ot

e:
 P

re
di

ct
or

s 
no

te
d 

by
 *

 w
er

e 
no

t m
ea

su
re

d 
in

 th
e 

yo
un

ge
st

 c
oh

or
t i

nc
lu

de
d 

in
 th

e 
an

al
ys

is
.

Psychol Methods. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 40

Ta
b

le
 2

C
or

re
la

tio
ns

 a
m

on
g 

ps
yc

ho
lo

gi
ca

l w
el

l-
be

in
g 

su
bs

ca
le

s.

A
ut

on
om

y
E

nv
ir

on
m

en
ta

l M
as

te
ry

P
er

so
na

l G
ro

w
th

P
os

it
iv

e 
R

el
at

io
ns

hi
ps

P
ur

po
se

 in
 L

if
e

Se
lf

 A
cc

ep
ta

nc
e

A
ut

on
om

y
1

E
nv

ir
on

m
en

ta
l M

as
te

ry
.5

2
1

Pe
rs

on
al

 G
ro

w
th

.4
6

.5
7

1

Po
si

tiv
e 

R
el

at
io

ns
hi

ps
.3

9
.6

5
.6

1
1

Pu
rp

os
e 

in
 L

if
e

.5
1

.8
1

.7
1

.6
9

1

Se
lf

 A
cc

ep
ta

nc
e

.5
4

.8
2

.6
1

.6
7

.8
6

1

Psychol Methods. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 41

Table 3

Confusion Matrix for variable selection.

Effect of Predictor

βj > 0 βj = 0

Selected by Method Îj > τ TP FP

Îj < τ FN TN

Note: Columns: Predictor j has a true effect in the population if βj is greater than zero, or does not have a true effect if βj is equal to zero. Rows: 

Predictor j is labeled as having an effect in the population if statistic Îj is greater than a cutoff τ, and no effect if Îj is less than τ. In the simulation, 

the statistic Îj is the influence measure from the decision tree methods (boosting, multivariate CART, and bagged multivariate CART), p-value from 

MANOVA, or the estimated regression coefficient from the Lasso. For MANOVA, the rows of this matrix are reversed because variables are 
selected when p < τ, where τ = α. TP = true positive, FP = false positive, FN = false negative, TN = true negative.
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