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Background. The uremic milieu exposes chronic kidney disease (CKD) patients to premature ageing processes. The impact of
renal replacement therapy (dialysis and renal transplantation [RTx]) or immunosuppressive treatment regimens on ageing bio-
markers has scarcely been studied. Methods. In this study telomere length in whole blood cells was measured in 49 dialysis
patients and 47 RTx patients close to therapy initiation and again after 12 months. Forty-three non-CKD patients were included
as controls. Results. Non-CKD patients had significantly (P < 0.01) longer telomeres than CKD patients. Telomere attrition after
12 months was significantly greater in RTx patients compared to dialysis patients (P = 0.008). RTx patients receiving mycopheno-
late mofetil (MMF) had a greater (P = 0.007) degree of telomere attrition compared to those treated with azathioprine. After
12 months, folate was significantly higher in RTx patients than in dialysis patients (P < 0.0001), whereas the opposite was true
for homocysteine (P < 0.0001). The azathioprine group had lower levels of folate after 12 months than the MMF group
(P =0.008). conclusions. The associations between immunosuppressive therapy, telomere attrition, and changes in folate in-
dicate a link between methyl donor potential, immunosuppressive drugs, and biological ageing. The hypothesis that the increased
telomere attrition, observed in the MMF group after RTX, is driven by the immunosuppressive treatment, deserves further attention.

(Transplantation Direct 2016;2: e116; doi: 10.1097/TXD.0000000000000629. Published online 16 November, 2016.)

atients with chronic kidney disease (CKD) demonstrate
premature vascular ageing and a marked discrepancy
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between chronological and biological age.'* The uremic mi-
lieu affects the ageing of the immunological system, with T
cells from end-stage renal disease (ESRD) patients reported
to display shorter telomeres.? Because CKD patients are sus-
ceptible to premature ageing, great care should be taken not
to aggravate the ageing process further. Senescence and apo-
ptosis both influence biological age and are associated with en-
dothelial dysfunction and premature atherosclerosis,*® which
can be induced by numerous factors. Oxidative stress and in-
flammation, both present in the uremic milieu, exacerbate cel-
lular ageing.” Because cells are exposed to pro-ageing factors,
and as the number of cellular divisions increase, telomeres
gradually shorten®” until the Hayflick limit is reached,'” trig-
gering cellular senescence. Telomere length is thus frequently
used for measuring biological age, and truncated telomeres
have been associated with several chronic diseases, such as
rheumatoid arthritis'! and cardiovascular disease (CVD).'?
We have previously demonstrated that shorter telomeres are
associated with inflammation, DNA damage, and premature
mortality,"® and a study of patients with moderate CKD has
shown that shorter telomeres associate with CVD.'

The methyl donor folate is important for maintaining DNA
integrity, DNA methylation, and nucleotide biosynthesis.'*-'¢
Folate deficiency leads to uracil misincorporation during
DNA replication,'” resulting in DNA instability and increased
risk of double strand breaks and erroneous DNA fusions.!”
Low folate results in elevated homocysteine, which is associ-
ated with CVD."® The effects of folate on telomere length have

www.transplantationdirect.com 1


mailto:peter.stenvinkel@ki.se
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Transplantation DIRECT = 2016

not been fully explored, but several scenarios are possible:
(a) high folate promotes accelerated telomere attrition through
increased cell division, (b) low folate results in unstable
telomeres due to increased uracil content, (c) less folate re-
sults in genome hypomethylation. Although the canonical
telomeric repeats do not contain any methylation sites, the
methylation status of the subtelomeric region may regulate
telomere length.'” Hypomethylation has been associated
with increased telomere length,'® whereas DNA hyperme-
thylation has been associated with inflammation and in-
creased mortality in CKD.?° However, others have found
that hyperhomocysteinemia, resulting in DNA hypomethyla-
tion, is associated with decreased telomere length.*!** Thus,
the links between folate and telomere attrition appear com-
plex and context dependent.

The antimetabolites azathioprine (AZA) and mycopheno-
late mofetil (MMF) both act by inhibiting purine synthesis
and cell proliferation.”>*” Purine synthesis involves the folate
derivative tetrahydrofolate.”® Hence, it can be speculated
that MMF and AZA treatment will result in high folate,
which could impact DNA stability and telomere length.
In addition, it has been proposed that immunosuppressive
treatment could affect overall telomere length through the ac-
cumulation of senescent cells.”” However, data regarding
possible associations between immunosuppressive therapy,
folate, and telomere length are scarce. Nonetheless, it is of
great clinical importance, as treatments that accelerate bio-
logical ageing are undesirable in this vulnerable patient pop-
ulation. Because inflammation,*® hyperhomocysteinemia,
and oxidative stress®! promote accelerated telomere attrition,
we hypothesized that normalization of these features after re-
nal transplantation (RTx) may mitigate accelerated telomere
attrition. Moreover, as MMF treatment is associated with
lower homocysteine levels compared with AZA treatment,**
we hypothesized that different antimetabolites may contrib-
ute differently to telomere attrition after RTx.

MATERIALS AND METHODS

The clinical and research activities being reported are con-
sistent with the Principles of the Declaration of Istanbul as
outlined in the ‘Declaration of Istanbul on Organ Trafficking
and Transplant Tourism’. The study adheres to the Declara-
tion of Helsinki, and the regional committee of ethics in
Stockholm, Sweden provided ethical approval (approval
numbers 008/98 and 2008/1748). Written informed consent
was obtained from all participants.

Dialysis Patients

Patients were included at the Karolinska University Hospi-
tal, Sweden. The cohort has been described previously.*?
Blood samples were collected between March 2004 and
September 2009 in 49 patients close to dialysis initiation
(baseline) and again after 12 months of dialysis therapy.
Patients were treated by hemodialysis (n = 19) or perito-
neal dialysis (n = 30). Basic patient characteristics are
outlined in Table 1. None of the patients had been
transplanted previously. Renal diagnoses included diabetic ne-
phropathy (22.5%), chronic glomerulonephritis (20.5%), un-
known cause (18.4%), adult polycystic kidney disease
(12.2%), nephrosclerosis (10.2%), or other causes (16.2%).
The most common forms of medication were vitamin D
(88%), diuretics (87%), and phosphate binders (83%).
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RTx Patients

Patients were included at the Karolinska University Hospi-
tal, Sweden. Blood samples were collected between March
2004 and February 2013 from 47 patients who underwent
living donor (LD) RTx. Patient characteristics are outlined
in Table 1. Thirty-three patients had undergone dialysis
(17 hemodialysis and 16 peritoneal dialyses) before RTx (me-
dian duration 6 months). Ten patients underwent preemptive
RTx, and 4 individuals had been transplanted previously
(none of them received antithymoglobulin [ATG]). Seven
patients (15%) experienced acute rejection post-RTx. Ten
patients (21%) received rejection therapy. Two days before
surgery, all patients displaying blood group compatibility
received tacrolimus, prednisolone, and MMF. None of
the patients received treatment with mammalian target of
rapamycin inhibitors. None of the transplanted patients in
the AZA group did receive MMF before the study. Patients
displaying blood group incompatibility received rituximab
4 weeks before RTx, and MMF and prednisolone treatments
were started 10 days before RTx. Solu-Medrol was adminis-
tered on the day of RTx. Tacrolimus, prednisolone, and
MMF were given similarly to the routine in blood group
compatible patients from 1 day postsurgery. Renal diagnoses
included chronic glomerulonephritis (40 %), unknown cause
(15%), adult polycystic kidney disease (11%), diabetic ne-
phropathy (9%), nephrosclerosis (2%), or other causes
(23%). The most common forms of medication after RTx
were prednisolone (100%), tacrolimus (96 %), and active vi-
tamin D (89%). Forty-three patients (91.4%) received either
AZA (n=11) or MMF (n = 32) treatment. Immunosuppres-
sive induction therapy, such as ATG or anti-CD25a mono-
clonal antibodies, was not part of the protocol for LD-RTx.
Antipneumocystis pneumonia prophylaxis was only pro-
vided in RTx patients when S-Creatinine is greater than
200 umol/L. Patients receiving antipneumocystis pneumonia
prophylaxis did not receive folate supplementation.

Controls

Controls comprised 63 Glaswegian individuals without
overt renal disease. The estimated glomerular filtration rate
was greater than 60 mL/min for all individuals (when infor-
mation was available). The median age was 58 years, median
telomere length (T/S) was 1.13 and 71.4% of the group was
male. Part of the cohort has been described previously.**

Telomere Length Measurement

DNA was isolated from whole blood samples using
QIAamp DNA blood maxi kit (Qiagen, Hilden, Germany).
DNA concentration and integrity were assessed by NanoDrop
ND-1000 (NanoDrop, Wilmington, DE). All procedures were
performed in accordance with manufacturers' protocols. Telo-
mere length was measured during 2014 by quantitative PCR,
following the method described by Cawthon.** Each sample
was analyzed in triplicate using primer sets specific for telo-
mere length and a single-copy gene amplicon 36B4 (acidic ri-
bosomal phosphoprotein). The average interassay coefficient
of variation was 0.32% for telomere and 0.12% for 36B4, re-
spectively. The relative T/S ratio (repeat copy number to single
copy gene number) for each experimental sample was deter-
mined in relation to the control DNA sample. Telomere
length was measured at baseline and after 12 months, and
telomere attrition (AT/S) was calculated as: telomere length
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Basal demography and biochemical parameters of patients at baseline and after 12 months (mo) of renal replacement therapy

Dialysis patients (n = 49)

RTx patients baseline (n = 47)

Baseline 12 mo P? Baseline 12 mo Pt P° P!
55 (43-63) Age, y 45 (30-53) 0.004

35 (71) Males, n (%) 26 (55) 0.10

0.88 (0.74-1.03) 0.85 (0.75-0.97) 0.03 Telomere length, T/S 1.02 (0.80-1.14) 0.84 (0.73-0.93) <0.0001 0.07 0.59
24.2 (22.4-28.8) 25.0 (22.8-28.5) 0.98° BMI, kg/m? 235 (21-26.4) 25.0 (22.2-27.4) 0.0003 0.9 078
13 (27) Cardiovascular disease n (%) 9 (19 0.39

13 (27) Diabetes mellitus n (%) 6 (17) 0.09

17 (39)/14 (33)/12 (28)/ Smoking, n (%) (never/former/current) 20 (57)/15 (43)/0 (0)¢ 0.003

11 (23)/30 (64)/5 (1)1 (2)" Physical activity, n (%) (category 1/2/3/4) 14 (41)/17 (50)/3 (9)/0 (0f 0.73

106 (99-116) 117 (106-128)  0.002 Hemoglobin, g/L 117 (105-131) 127 (120-138)  0.0006  0.0004 0.0004
34 (30-37) 36(34-39  0.02 Albumin, g/L 36 (33-39) 37 (35-40) 0003 004 0.9
777 (613-904) 761 (581-924) 0.86 Creatinine, pmol/L 752 (560-934) 120 (93-147)  <0.0001 068  <0.0001
31 (23-42) 33(22-42)  0.84 Homocysteine, pM 35 (25-48) 8(14-23)  <0.0001 029 <0.0001
11 (9-14) 10 8-12¢  0.007' Folate, nmol/L 0 (8-14) 5(12-21)F  <0.0001” 0.14  <0.0001
4.1 (1.8-10.1) 514700 071 hsCRP, mg/L 8(0.3-2.8 2(0629 085  <0.0001 0.0007
7.7 (6.2:9.2) 9(6.4-94 03" Leukocytes, 10%/L 9(5.8-10.7) 0(64-86) 022 081 016
48 (3.7-6.1) 004269 045 Neutrophils, 10%/L 5(3.7-85) 53261 0007 020 010
17 (1.2-23) 71222 094° Lymphocytes, 10%/L 2(0.9-1.5 70112 0.0006 0002 0.93
0.5 (0.4-0.6) 0 6(0.4-08)  0.007° Monocytes, 10%/L 6(0.4-0.7) 6(04-08 046 044 086

All continuous variables are given as median (interquartile range).

@ Pvalug is derived from statistical comparison between dialysis patients at baseline and after 12 months.

b Pvalue is derived from statistical comparison between RTx patients at baseline and after 12 months.

© Pvalue is derived from statistical comparison between dialysis patients at baseline and RTx patients at baseline.
9 Palue is derived from statistical comparison between dialysis patients at 12 months and RTx patients at baseline.

fn=48.
"n=43
In =45,
=47

"1 = Regular exercise; 2 = Normal activity; 3 = Disabled; 4 = Confined to bed/wheelchair. Fisher exact test comparing category 1 + 2 versus 3 + 4.

'n=34

K patients on folate treatment excluded.
'n=42.

™ =37.

"n =46

on =44,

hsCRP, high-sensitivity C-reactive protein.

at 12 months - telomere length at baseline. Thus, the more
negative the value, the larger the degree of attrition.

Statistical Analysis

Statistical analysis was performed using JMP 11.0.0
software (SAS Institute Inc., Cary, NC). Nonparametric tests
were used for all analyses (Wilcoxon rank sum test or x> test/
Fisher exact test for categorical data; Spearman rank correla-
tion for continuous data). Wilcoxon matched-pairs signed
rank test was used for paired analysis of baseline and
12-month data. When analysing folate data, patients with fo-
late supplementation were excluded (folate >40 nmol/L; 3
dialysis patients and 8 RTx patients).

RESULTS

Patients and Controls

Although non-CKD patients (median 58 years) were sig-
nificantly (P < 0.0001) older than dialysis (median 55 years)
and RTx (median 45 years) patients, telomeres were longer in
this group (1.13 T/S vs 0.88 T/S; P = 0.0007 and 1.13 T/S vs
1.02 T/S; P = 0.03, respectively). There was no significant

difference in gender distribution between controls and dialy-
sis patients (P = 1.00), or between controls and RTx patients
(P =0.08). Age was not significantly associated with telomere
length in non-CKD patients (P = 0.84), dialysis patients at
baseline (P = 0.25) or dialysis patients after 12 months
(P =0.12). In RTx patients, baseline telomere length showed
a near-significant association with age (P = 0.06), which was
significant after 12 months (p = -0.36; P = 0.01).

Comparison of Renal Replacement Therapy Modalities

RTx patients were significantly younger than dialysis
patients (45 vs. 55 yrs; P = 0.004) (Table 1). At baseline,
RTx patients had higher median haemoglobin (117 vs
106 g/L; P = 0.0004) and plasma albumin (36 vs 34 g/L;
P = 0.04), and lower median high-sensitivity CRP (hsCRP)
(0.8 vs 4.1 mg/L; P < 0.0001) and lymphocyte count (1.2
vs. 1.7 10°/L; P = 0.002) (Table 1). The dialysis patient group
included more former/current smokers at baseline than the
RTx patient group (61% vs 43%; P = 0.003). After
12 months, RTx patients had higher median hemoglobin
(127 vs 117 g/L; P = 0.0004) and folate (15 vs 10 nmol/L;
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P < 0.0001), and lower creatinine (120 vs. 761 umol/L;
P < 0.0001), homocysteine (18 vs 33 uM; (P < 0.0001) and
hsCRP (1.2 vs 3.5 mg/L; P = 0.0007) compared to dialysis
patients (Table 1).

Over 12 months, dialysis patients showed a small, but
significant, decrease in telomere length (0.88 to 0.85 T/S;
P =0.03) and folate (11 to 10 nmol/L; P = 0.007), and a sig-
nificant increase in median plasma albumin (34 to 36 g/L;
P = 0.02), haemoglobin (106 to 117 g/L; P = 0.002) and
monocyte count (0.5 to 0.6 10°/L; P = 0.007). In the RTx pa-
tients, median creatinine (752 to 120 umol/L; P < 0.0001),
neutrophil count (5.5 to 4.5 10°/L; P = 0.007) and homocys-
teine (35 to 18 uM; P < 0.0001) levels decreased over
12 months, while plasma albumin (36 to 37 g/L;
P = 0.003), body mass index (BMI) (23.5 to 25.0 kg/m?;
P =0.0003), haemoglobin (117 to 127 g/L; P = 0.0006), lym-
phocyte count (1.2 to 1.7 10°/L; P = 0.0006) and folate (10 to
15 nmol/L; P < 0.0001) increased. Telomere attrition in RTx
patients (1.02 to 0.84 T/S; P < 0.0001) was significantly
greater (-0.16 vs. =0.05; P = 0.008) than in dialysis patients
(0.88 to 0.85 T/S; P = 0.03) (Figures 1A and B).

In RTx patients at baseline, telomere length was signifi-
cantly associated with folate (P = 0.04, p = -0.33), homocys-
teine (P = 0.04; p = 0.29) (Figures 2A and B) and folate/
homocysteine ratio (P = 0.04, p = -0.32). None of these asso-
ciations were significant at 12 months or in dialysis patients
at any time point. The folate/homocysteine ratio was signifi-
cantly higher in dialysis patients than in RTx patients at base-
line (0.35 vs 0.26; P = 0.02). However, after 12 months, the
ratio was significantly higher in RTx patients (0.37 vs 1.00;
P < 0.0001). Accordingly, the folate/homocysteine ratio in-
creased in RTx patients over 12 months (P < 0.0001). Neither
telomere attrition, nor telomere length at any time point,
were associated with smoking status or physical activity in ei-
ther patient group.

Comparison Between AZA- and MMF-Treated
RTx Patients

Forty-three RTx patients were divided into those receiving
AZA (n = 11) and those receiving MMF (n = 32) (Table 2).
The number of patients experiencing acute rejection was sim-
ilar between the treatment groups (1 vs 5 patients, respec-
tively; Fisher exact test P = 1.00). There were no significant
differences between the groups, neither in age, gender, dialysis
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FIGURE 1. Change in telomere length during 12 months in patients
receiving dialysis treatment (A), and in patients undergoing renal
transplantation (B).
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FIGURE 2. Association between baseline telomere length in renal
transplant patients and folate at baseline (A); and between baseline
telomere length and homocysteine at baseline (B). Two of the patients
had homocystein levels >150 pM, which indicate an enzymatic ab-
normality of the folate pathway. Although these 2 outliers were not
genotyped it is likely that they carry the methylenetetrahydrofolate
reductase mutation.

vintage before RTx, CVD prevalence, diabetes, and baseline
folate levels, nor for BMI, telomere length and homocysteine
levels at baseline and after 12 months. However, in patients
treated with MME, a significantly higher degree of telomere at-
trition was observed 12 months after RTx (-0.10 vs -0.19;
P =0.007) (Figure 3).

Telomere attrition in RTx patients treated with AZA was
similar to that of dialysis patients (P = 0.55). Although folate
levels were similar between the groups at baseline, levels were
significantly higher in patients receiving MMF compared
to those receiving AZA after 12 months (P = 0.008)
(Figure 4). Whereas MMF treatment was associated with a
significant increase in median folate levels over 12 months
(10 to 18 nmol/L; P = 0.0005), no changes in folate were ob-
served in patients treated by AZA (9 to 12 nmol/L; P = 0.16).
Neither telomere attrition, nor telomere length at any time
point, were associated with smoking status or physical activ-
ity in either antimetabolite treatment group.

DISCUSSION

Judging by the differences in telomere length, our data sug-
gest that CKD patients are biologically older than the chrono-
logically older non-CKD patients, supporting the hypothesis
that CKD is a progeric state.”* Unexpectedly, telomere
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Properties of RTx patients receiving azathioprine versus those receiving mycophenolic acid

Azathioprine (n = 11)

Mycophenolic acid (n = 32)

Baseline 12 mo P? Baseline 12 mo Pt PP P

47 (33-52) Age,y 43 (29-50) 0.61

55 (6) Males, n (%) 53 (17) 0.94

0.88 (0.65-1.21) 0.87 (0.76-1.02)  0.71 Telomere length, T/S 1.04 (0.91-1.14) 0.83(0.72-0.9 <0.0001 017 0.24

22 2(21.3-25.9) 249 (21.8-26.3) 0.24 BMI, kg/m? 23 4(20.2-27.0) 25.0 (22.5-285  0.0002 061 034
27 (3 Cardiovascular disease n (%) 34 0.35

0.30 Dialysis vintage, y 0.36 0.76

00 Diabetes Mellitus n (%) 15.6 (5) 0.31

5 (71)/2 (29)/0 (0)° Smoking, n (%) (never/former/current)” 13 (52)/12 (48)/0 (0)¢ 0.43

3 (43)/3 (43)/1 (14)/0 (0)° Physical activity, n (%) (category 1/2/3/4)" 9 (38)/13 (542 (8)/0 (0 0.55

1.2(0.2-2.6) 1.0(0.5-2 0.56 hsCRP, mg/L 7(0.2-2.7) 1.3(0.5-3.4) 0.67 0.78 057

789 (518-913) 121 (113-143)  0.001 Creatinine, pmol/L 726 (565-1005) 112 (86-141) <0.0001 0.88 046

9 (8-11) 2 (9-14) 0.16/ ¥ Folate, nmol/L 0(9-15) 18 (13-24) 0.0005" 0.25 0.008

42 (28-52) 19 (14-27) 0.005 Homocysteine, M 35 (24-46) 18 (14-20) <0.0001 0.55 059

@ Pvalue is derived from statistical comparison between baseling and 12 month data from RTx patients receiving azathioprine.

b Pvalue is derived from statistical comparison between baseline and 12 month data from RTx patients receiving mycophenolic acid.

° Pvalue is derived from statistical comparison between baseline data from RTx patients receiving azathioprine and baseline data from RTx patients receiving mycophenolic acid.

@ Pvalue is derived from statistical comparison between 12 month data from RTx patients receiving azathioprine and 12 month data from RTX patients receiving mycophenolic acid.

n=7.
" Fisher exact test comparing never smokers versus former/current smokers.
9n—

n=25

"1 = Regular exercise; 2 = Normal activity; 3 = Disabled; 4 = Confined to bed/wheelchair. Fisher exact test comparing category 1 + 2 versus 3 + 4.

'n=24.

/ Patients on folate treatment excluded.

kn=8.

'n=27.

All continuous variables are given as median (interquartile range).

attrition was more pronounced 12 months after RTx than af-
ter 12 months of dialysis. Whereas immunosuppressive treat-
ment with AZA was not associated with any significant
change in telomere length after 12 months, MMF treatment
was associated with increased telomere attrition.

We hypothesized that normalization of the prooxidative,
proinflammatory, and hyperhomocysteinemic uremic milieu
after RTx would be associated with less telomere attrition,
as RTx i improves long-term survival compared with dialysis
treatment.”® Therefore, our flndmg of accelerated telomere
attrition indicating accelerated aging processes after RTx
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FIGURE 3. Comparison of change in telomere length (AT/S) during 12 months between renal transplant patients receiving azathioprine

(n'=11) or mycophenoalic acid (n = 32) and dialysis patients (n = 49).
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FIGURE 4. Levels of folate at baseline and after 12 months in renal transplant patients receiving azathioprine or mycophenolic acid.

appears surprising. However, the previous observations that
both vascular calcification®” and immunological aging*® do
not regress but rather continue to progress after normalization
of the uremic milieu with RTx, indirectly support our observa-
tion of accelerated telomere attrition after RTx. In addition,
Marechal et al’” found that a lower proportion of AZA-
treated RTx patients experienced rapid vascular calcification
progression compared to patients treated with MMEF, thereby
lending credibility to the potentially pro-ageing effects of
MMF compared to AZA. Although the reasons for continuous
biological aging despite normalization of the uremic milieu are
unknown, a number of possibilities are worth considering. Be-
cause telomere attrition may vary with age,>” a decreased
rate of attrition in the older dialysis patients could be a po-
tential explanation. The significant increase in BMI after
RTx could also promote telomere attrition, as increased
BMI has been reported to associate with shorter telo-
meres.** Although smoking, inflammation, and physical
inactivitg have been associated with shorter telomere
length,*’ we could not see any significant associations with
telomere length or degree of telomere attrition in our data
set. The physical trauma associated with surgery is a short-
term biological stressor and might also impact aging bio-
markers. Indeed, kidney grafts are exposed to oxidative,
as well as replicative stress, both of which are associated
with decreased telomere length.*>*> Additionally, in inves-
tigating longitudinal telomere length a regression toward
the mean phenomenon cannot be excluded—hence, a rep-
lication study is desirable. Our data, however, suggest that
immunosuppressive antimetabolite drugs may influence
telomere attrition (and/or telomerase activity) after RTx.
Whereas telomere attrition in AZA-treated patients did
not differ from that in dialysis patients, markedly acceler-
ated telomere attrition was observed in MMF-treated pa-
tients (Figure 3). Our finding accords with those of

Meijers et al*® who report telomere attrition of naive T

cells in ESRD patients undergoing RTx with triple immu-
nosuppression including MMF. As compared to AZA,
MMEF is regarded as a more potent immunosuppressant,
which decreases the incidence of acute rejections.*>** Be-
cause patients treated with MMF had significantly higher
folate at 12 months than those treated with AZA, changes
in folate may contribute to the difference in telomere attri-
tion. Indeed, folate is known to be important for genomic
stability.** The link between higher folate and greater telo-
mere attrition may appear counterintuitive because a de-
crease in folate has been associated with genomic
instability.'”'*21-%3 However, it has also been reported
that elevated folate stimulates cell division,*® which could
increase telomere attrition through its involvement in nu-
cleotide synthesis. Indeed, Paul et al*® have reported de-
creasing telomere length with increasing folate, and a
recent study has shown that folate deficiency results in
telomere elongation.*” Because telomere length is inversely
associated with plasma homocysteine, this suggests that it
may be an intermediary in the relationship between homo-
cysteine and CVD.?> However, although treatment with
the two antimetabolite drugs was associated with mark-
edly different folate levels, homocysteine levels did not
change. Although the reason or reasons(s) for elevated
levels of folic acid are not evident a previous in vitro study
by Ignatescu et al** showed a homocysteine lowering effect
of MME, indirectly supporting our observation. We report
a positive correlation between telomere length and homo-
cysteine at baseline in RTx patients. Since homocysteine
levels are influenced by factors common in uraemia, such
as inflammation and protein-energy wasting*® and low,
not high, homocysteine predicts CVD, further studies are
needed to reveal if, and how, DNA methylation impacts
on telomere attrition in the uremic milieu. Although
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reports in the literature appear contradictory, homocysteine,
folate and telomere attrition are consistently associated with
each other.?12**” Thus, the relationship between them
should be investigated more thoroughly, preferably in co-
horts undergoing premature aging, such as CKD patients.

Strengths and limitations of the current study deserve men-
tioning. One strength is that the method used for telomere
length analysis in the present study is documented to be re-
producible and has a superior inter assay coefficient of varia-
tion (CV) to the flow cytometry measurements used in
previous studies.*”>* The limitations include the lack of lon-
gitudinal data in non-CKD patients, which makes it impossi-
ble to compare the degree of telomere attrition to CKD
patients. Nonetheless, the control data illustrated a signifi-
cant difference in telomere length between ESRD patients
and chronologically older patients supporting the concept
of a major discrepancy between chronological and biological
age in the uremic milieu. Another shortcoming is that dialysis
patients and RTx patients were not matched for age and co-
morbidity. By selection criteria, patients undergoing RTx are
younger and have a lower CVD prevalence than patients re-
ceiving dialysis. It should be acknowledged that the RTx
group was rather inhomogeneous and included a mix of clin-
ical characteristics, such as preemptive RTx, a second RTx, a
previous history of dialysis treatment and ABO blood group
incompatibility. At baseline, 70% of the RTx patients had
received short-term dialysis treatment (median period 6 months).
While it could then be hypothesized that the baseline telo-
mere lengths of RTx patients would be similar to those of di-
alysis patients after 12 months, we observed a significant
difference between dialysis patients and MMF-treated RTx
patients after 12 months. Although multivariate analysis
would have been of interest to identify confounders, the sam-
ple size was too small to generate any reliable results. Hence,
the study should be replicated in a larger cohort. Since ATG
has been reported to accelerate immunological senescence,”>
immunosuppressive induction therapy could also have con-
tributed to the degree of telomere attrition. However, immu-
nosuppressive induction therapy was not given before
LD-RTx and the prevalence of acute rejection did not differ
between the MMF and AZA groups. The lack of a significant
correlation between age and telomere length in controls and
dialysis patients is worth noting. However, telomere length
may be more appropriate as a marker of biological, rather
than chronological, age.’* The nonrandomized approach
for treatment with AZA and MMF also limits the interpreta-
tion of the study. However, no significant baseline differ-
ences in demography, comorbidities, inflammation, telomere
length or folate and homocysteine levels were observed be-
tween the two treatment groups. As the groups were small,
replication studies are required, and mechanistic studies are
needed to confirm any possible effects of immunosuppressive
therapy on telomere length and folate. Finally, the lack of
data on telomerase activity also limits the interpretation of
the study.

In summary, this study confirms increased biological age in
CKD patients when assessed by telomere length. We also
confirm that RTx patients display a higher degree of telomere
attrition over 12 months in comparison to dialysis patients.
For the first time, we report that RTx patients on the anti-
metabolite MMF have a greater degree of telomere attrition
than those immunosuppressed with AZA. Our observations
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highlight the potential impact of immunosuppressive therapy
on the process of biological ageing. Since long-term survival
after RTx has improved,’” and a long life after RTx can be
anticipated, the effects of immunosuppressive drugs on bio-
logical ageing need more attention.
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