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Abstract

This work proposes a computationally efficient cell nuclei morphologic feature analysis technique 

to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-

fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the 

existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei 

morphologic features to include area, perimeter, eccentricity, and major axis length. This 

clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and 

nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer 

perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma 

multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and 

accuracy are obtained using 66 clinical patients’ images from The Cancer Genome Atlas (TCGA) 

[4] dataset. On an average ~94% accuracy from 10 fold cross-validation confirms the efficacy of 

the proposed method.
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Introduction

Tumor grading from microscopy tissue slide images is an invasive diagnosis process to 

assess tumor progression, proliferation, and invasion. Many automatic cyto-/histological 

image analysis methods have been reported in literature for classification of breast cancers, 

follicular lymphoma, bone marrow, and brain tumors. These cell nuclei segmentation 

methods can be primarily categorized into following types: seed detection-based, shape 

prior-based, blob detection-based and clustering-based method. The seed-based methods [5] 

need careful initialization of pixel-seed, while watershed methods [6] typically lead to over-

segmentation. As alternatives to seed detection methods, several shape prior-based methods 

are proposed [7] [8], where polygonal approximation are used for ellipse fitting. These prior 

shape model based segmentations are biased to elliptical cell nuclei. To alleviate these 

problems, several blob detection-based methods are proposed in [9] [10]. However, these 

methods need cautious tuning of the filter parameters to minimize the over and under 
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segmentation and hence show lack of generality. Using the Bayesian clustering Jung et al.
[11] propose an unsupervised nuclei segmentation method which is again biased to its 

elliptical shape-prior. This work proposes a hysteresis thresholding and contrast 

enhancement of the hematoxylin stain for optimal seed detection and a bias free concave 

point based iterative process for clustered nuclei separation.

Among the recent automatic tumor classification works, Kong et al. [3] use a 

computationally extensive nuclear score (NS) based quantification of oligodendroglioma 

component (OC) population to classify GBM subtypes. Barker et al. [1] use local texture-tile 

based method, which is also computationally extensive and need more sophisticated image 

matching algorithm. Apart from the aforementioned feature based method, Xu et al. [2] use 

the deep convolution activation features to classify GBM and LGG. However, the method 

need extremely large number of training dataset for effective feature extraction. This work 

proposes a simple classification method using sophisticated features for tumor grading. The 

proposed segmentation method is shown in Figure 1(a), while the classification method in 

presented Figure 1(b), simply uses the k-mean clusters centroids of the morphologic features 

to avoid NS calculation, and search of a suitable candidate tile.

Methods and Materials

Our method consists of two main steps. In the first step, we segment the nuclei from the 

whole tissue slide images. In second step feature extraction and classification are performed. 

The overall flow diagram of the proposed method is shown in Figure 1.

Brief descriptions for each steps in the above flow diagram is given below.

The dataset used in this work includes two types of brain tumors: 38 images of GBM and 28 

images from LGG. All the images are stained with hematoxylin and eosin. As the images are 

scanned with multi-resolution varies from 20X to 40X, we sample all images to 20X with bi-

cubic interpolation.

Color inhomogeneity correction

Automatic contrast enhancement is applied to bring all the images with uniform color 

contrast.

Finding the optical density image

As the image intensities are of 8 bit depth, the maximum intensity, Imax is 256. The light 

absorbance of each pixel can be found by Beer-Lambert’s law [12],

(1)

where, I is the image intensity.
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Color de-convolution

Since the optical density is proportionate to the stain’s concentration, we apply color de-

convolution process on the optical density image. In this implementation the de-convolution 

matrix, M is defined

(2)

where, each row in matrix M indicates a specific stain and the columns represent the optical 

densities for the red, green and blue channels respectively. The color de-convolution is then 

performed with the following equation.

(3)

where, Y denotes the optical density vector,  is the de-convoluted vector. The hematoxylin 

stain is the first channel of the de-convolved image.

Hysteresis thresholding

A contrast enhancement is done before the hysteresis thresholding. In this step, seeds are 

defined with upper threshold and connected component by the lower threshold. The 

threshold values are in between 0 to 1. Cell nuclei is the connected component at the seed 

regions.

Final nuclei segmentation

We remove the object pixels at the concave boundary to separate the clustered nuclei [13]. 

Finally the contour of the segmented nuclei is smoothed with linear interpolation of the 

boundary.

Morphologic feature extraction

Morphologic features like area, perimeter, eccentricity, circularity and major-axis length are 

extracted from the segmented nuclei.

k-mean clustering of the features

The above geometric features are clustered into 5 groups using k-mean clustering. Euclidean 

distance from the origin of the centroids are considered to determine the ascending order of 

the clusters. The centroids of the ordered clusters are used to characterize that individual 

image.

Classification using multi-layer perceptron

Using the WEKA toolbox [14], performance of different well-known classifiers’ for 

example SVM, Naïve Bayes, decision trees, MLP, linear regression etc. are observed. After 

intensive investigation we set MLP as the most effective classifier for this study.
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Results and Discussion

In order to show the effectiveness of the proposed method, we perform 10 fold cross-

validation. Out of 66 instances 62 (Table 1) are correctly classified with on an average 

93.94 % accuracy. Details of the evaluation metrics are shown in Table 2. Although there are 

a lot of works on tumor classification from breast cancers, follicular lymphoma, bone 

marrow, sub-typing of brain glioblastoma, we notice quite a few works on brain tumor 

classification of GBM and LGG. Comparison of our results with the state-of-art works are 

shown in Table 3.

Accuracy of our results are comparable to other study reported in literature [1, 2]. Note we 

have used only nuclei’s geometric features to show the efficacy of the representative features 

which is very simple and computationally inexpensive. Moreover, our dataset is more 

unbalanced and may have impact on the outcomes. To investigate the robustness of these 

representative features, we vary the number of neurons in the hidden layer from 3 to 8 with 

fixed 0.3 learning rate and 0.2 momentum. We noticed that the accuracy remain constant in 

the range 5-8 (number of neurons) and a slight drop (92% accuracy) for the range 3-4 

(number of neurons). This constant performance against the varying model parameters 

proves that the extracted feature are robust in classifying the tumor types. Overall on an 

average 94% accuracy suggests the efficacy of our algorithm.

Conclusion and Future Works

This work presents a computationally inexpensive method using morphological feature 

extraction of cell nuclei for brain tumor classification. Experimental results obtained from 

66 patients images show that the proposed method is competitive when compared to recent 

works on tumor grading. In future, we plan to consider other useful features such as entropy, 

multi-fractal texture features [15], and color of nuclei in our pipeline to build a more 

effective classification scheme. We also plan to consider our prior structural MRI based 

method for tumor grading [16] and correlate that technique with the proposed digital 

pathology-based method in this study for robust tumor grading in large scale clinical cases.
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Figure 1. 
(a): Flow diagram for nuclei segmentation

(b): Flow diagram for tumor classification
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Figure 2. 
Nuclei segmentation: (a) original image, (b) color normalized image, (c) Optical density 

image, (d) density of hematoxylin component, (e) hysteresis thresholding, (f) boundary 

smoothing of segmented nuclei (g) illustration of clustered nuclei separation; green (convex 

hull boundary), red (concave boundary), blue (cutting line found in a single iteration), (h) 

Final segmentation, clustered nuclei are separated (marked by red circle).
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Table 1

Confusion matrix; classification of 66 images.

Original label

GBM LGG

Pre-
dicted

GBM 36 2

LGG 2 26
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Table 2

Class wise and weighted average of the classifiers prediction.

Class TP rate FP rate Precision Recall AUC

GBM 0.947 0.071 0.947 0.947 0.955

LGG 0.929 0.053 0.929 0.929 0.955

Weighted
Average

0.939 0.063 0.939 0.939 0.955

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 February 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reza and Iftekharuddin Page 10

Table 3

State-of-art comparison of our results.

Methods Dataset / # of images Features Cross-validation
accuracy

Barker et. al [1] TCGA/total 45
(23 GBM, 22 LGG)

Texture, color and shape of nuclei 97.8 %

Xu et. al [2] TCGA /total 45
(23 GBM, 22 LGG)

Deep convolution activation features 97.8 %

Our method TCGA /total 66
(38 GBM, 28 LGG)

Centroids from k-mean clustering of
nuclei shape features

94 %
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