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Abstract
Hepatocellular carcinoma (HCC) is one of the most 
lethal cancers, and its rate of incidence is rising 
annually. Despite the progress in diagnosis and 

treatment, the overall prognoses of HCC patients 
remain dismal due to the difficulties in early diagnosis 
and the high level of tumor invasion, metastasis and 
recurrence. It is urgent to explore the underlying 
mechanism of HCC carcinogenesis and progression to 
find out the specific biomarkers for HCC early diagnosis 
and the promising target for HCC chemotherapy. 
Recently, the reprogramming of cancer metabolism 
has been identified as a hallmark of cancer. The 
shift from the oxidative phosphorylation metabolic 
pathway to the glycolysis pathway in HCC meets 
the demands of rapid cell proliferation and offers a 
favorable microenvironment for tumor progression. 
Such metabolic reprogramming could be considered as 
a critical link between the different HCC genotypes and 
phenotypes. The regulation of metabolic reprogramming 
in cancer is complex and may occur via genetic mutations 
and epigenetic modulations including oncogenes, tumor 
suppressor genes, signaling pathways, noncoding 
RNAs, and glycolytic enzymes etc . Understanding the 
regulatory mechanisms of glycolysis in HCC may enrich 
our knowledge of hepatocellular carcinogenesis and 
provide important foundations in the search for novel 
diagnostic biomarkers and promising therapeutic targets 
for HCC.
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Core tip: The reprogramming of glucose metabolism is 
one of the peculiar characteristics of cancer cells. This 
paper addresses the regulatory mechanism of glucose 
metabolism in hepatocellular carcinoma (HCC) and 
prospects its future application for HCC treatment.
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INTRODUCTION
Hepatocellular carcinoma is the second leading cause 
of cancer-related death in the world, responsible for 
approximately 700000 deaths annually[1]. Although 
many treatment options have been developed and 
used in the clinic, including hepatic resection, local 
ablation, liver transplantation and molecular tar-
geted therapies, patients’ prognoses remain poor[2]. 
Etiological studies of HCC revealed that hepatitis 
viruses, alcohol and aflatoxin might be the main risk 
factors for HCC[3]. In different areas of the world, 
HCC caused by these risk factors alone or together 
exhibits great diversity in genotype and phenotype, 
which impede the research of HCC. One remarkable 
feature of HCC is the alteration of glucose metabolism, 
which may be a critical link between the different 
HCC genotypes and phenotypes. Thus, a thorough 
understanding of cancer metabolism may offer pro-
mising therapeutic strategies for HCC in the future.

As early as the 1950s, Otto Heinrich Warburg first 
characterized cancer cell metabolism. Cancer cells 
principally use the glycolysis pathway to metabolize 
glucose and generate ATP whether there is sufficient 
oxygen present. This phenomenon now referred to 
as the “Warburg effect” was described and lead to 
a wave of investigation of cancer metabolism over 
several decades[4]. In the 1980s, the availability of 
18F-deoxyglucose positron emission tomography 
(FDG-PET) pushed the study of tumor metabolism to 
the climax[5]. Observations from FDG-PET scanning 
revealed that approximately 50%-70% ATP was 
generated by glycolysis in different tumor types[6-8]. 
The application of FDG-PET was also recently involved 
in the detection and monitoring of metastasis 
and the recurrence of HCC and for prediction of 
patient’s prognosis[9-12]. Moreover, recent studies of 
metabolomics offer new mechanistic insights into 
aerobic glycolysis and provide promising individualized 
therapeutic strategies by targeting the Warburg effect 
for treatment of HCC[13,14].

In this article, we will review the recent investiga-
tions of glucose metabolism in HCC and summarize 
the regulation methods of metabolic reprogramming. 
Moreover, we will describe the development of therapy 
by targeting cancer metabolism.

REPROGRAMMING OF GLUCOSE 
METABOLISM-RELATED ENZYMES AND 
TRANSPORTING PROTEINS IN HCC
As previously described, tumor cells rely on the 
aerobic glycolysis pathway to consume glucose and 

generate ATP, which is a rapid but low-efficiency 
metabolic process[15]. To meet the demands of energy, 
biosynthesis and redox for tumor progression, cancer 
cells reprogram their metabolic related enzymes and 
transporting proteins to facilitate increased glucose 
uptake, acceleration of glycolysis and metabolic end-
product excretion (Figure 1).

The initial step of glycolysis is the transportation 
of glucose across the plasma membrane into the 
cytoplasm, which depends on the family of glucose 
transporters (GLUTs)[16]. Much evidence has shown 
that GLUT1-4, particularly GLUT1, are often aberrantly 
expressed in different cancer types and significantly 
influence cancer glucose metabolism[17-21]. Amann et 
al[22] observed that both mRNA and protein expression 
levels of GLUT1 were significantly up-regulated in 
HCC, and this plays a critical role in glucose transport, 
glycolysis and tumor progression in HCC cells. 
Daskalow et al[23] analyzed GLUT2 expression in 60 
HCC samples and revealed the over-expression of 
GLUT2 in HCC. Another study demonstrated that 
positive GLUT2 predicts worse prognosis in HCC 
patients[24]. To the best of our knowledge, studies of 
GLUT3 and GLUT4 in HCC have not been conducted.

Several glycolysis-related key enzymes have 
been demonstrated to participate glycolysis and 
carcinogenesis in HCC. Hexokinase (HK) family 
members catalyze the first key step of glycolysis in 
which glucose is phosphorylated to become glucose 
6-phosphate (G-6-P). In the HK family, HK2 shows the 
highest affinity for glucose and is up-regulated in HCC 
and correlated with poor prognosis[25]. PET-CT scans 
showed that over-expression of HK2 promotes the 
uptake of 18FDG in HCC cells[26], which suggested that 
HK2 has a critical role in HCC glycolysis. The latest 
study showed that HKDC1, a newly discovered HK 
family member, was up-regulated in HCC with poorer 
prognosis and inhibited HCC cellular proliferating and 
migration in vitro, probably by repression of the Wnt/
beta-catenin pathway[27]. Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) may also play an important 
role in HCC glycolysis. GAPDH used to be regarded 
as a stably expressed gene and was commonly 
used as a reference gene in the past. Recent studies 
have reported the aberrant expression of GAPDH in 
malignancies and raised the concern that it may play 
a role in tumor glycolysis[28]. Gong et al[29] showed that 
increased expression of GAPDH promoted glycolysis 
and tumor progression in HCC. Moreover, GAPDH was 
able to affect glycolysis via regulating metabolism-
related pathways such as the mammalian target of 
rapamycin (mTOR)-complex1 (mTOR-C1) signaling 
pathway[30]. Pyruvate kinases (PKs) catalyze the 
last step of glycolysis to produce ATP and pyruvate, 
which regulates the influx of the glycolysis pathway 
together with HK and phosphofructokinase-1. PKs 
contain 4 isoforms (PKL, PKR, PKM1 and PKM2) that 
are encoded by the PKL and PKM genes. PKL and PKR 
are mainly expressed in liver cells and erythrocytes, 
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respectively, whereas PKM1 is constitutively expressed 
in normal cells. The over-expression of PKM2 was 
frequently observed in malignances and predicts 
worse prognosis[31,32]. A recent study demonstrated 
that the expression of PKM2 is up-regulated in HCC 
and is a predictor of survival and recurrence[33]. Dong 
et al[34] revealed the oncogenic role of PKM2 in HCC 
proliferation by its regulation of the expression of HIF-
1α and Bcl-xL. Another study further observed that 
PKM2 effects on cell growth depend on a glucose 
rather than glutaminolysis pathways by using 
PKM2 knockdown-sensitive HCC cells. Additionally, 
the switching from PKL to PKM2 was reported to 
promote the rate of glucose uptake and increase the 
oxidative stress in hepatocarcinogenesis[35]. Lactate 
dehydrogenase (LDH) catalyzes the conversion of 

pyruvate to lactate. Up-regulation of the LDHA subunit 
in cancers has been noticed due to its role in promoting 
glycolysis and reducing the oxygen dependency of 
cancer cells[36,37]. A recent study has indicated that 
LDHA is up-regulated in HCC cells and promotes tumor 
growth and metastasis[38]. A series of clinical studies 
assessed the serum levels of LDH in HCC patients who 
were treated with hepatic resection[39,40], transarterial 
chemoembolization[41,42] and sorafenib[43,44] and found a 
similar conclusion that LDH may be an easily obtained 
biomarker for prognosis prediction and treatment 
selection for HCC patients.

Activation of the glycolysis pathway in cancer cells 
not only provides sufficient ATP for tumor progression 
but also produces acid by-products such as lactate. 
To avoid apoptosis caused by the accumulation of 
acids in cells, the monocarboxylate transporters 
(MCTs) are up-regulated in cancer cells to speed up 
the export of lactate into the extracellular milieu. 
Aberrant expression of isoforms MCT1, MCT2 and 
MCT4 was frequently observed in many cancers 
including colorectal carcinoma[45], glioblastoma[46] and 
gallbladder cancer[47]. The role of over-expressed MCT4 
in HCC has been illustrated. It is associated with HCC 
progression and poor prognosis[48,49]. The latest study 
observed the reduced expression of MCT1 and MCT2 in 
HCC[50]. However, the data from another study showed 
that MCT1 was over-expressed in HCC cells which 
facilitates the lactate exporting and promotes HCC 
glycolysis[51]. Therefore, further studies are still needed 
to illuminate the specific role of MCT1 and MCT2 in 
HCC glycolysis and progression.

REGULATORY MECHANISM OF GLUCOSE 
METABOLIC REPROGRAMMING 
Oncogenes and tumor suppressor genes involved 
in glucose metabolic reprogramming during 
carcinogenesis
Oncogenes are a number of important genes which 
are over-expressed or mutated in cancer cells that 
triggered the tumor initiation and maintained the 
tumor progression. Based on the biological functions, 
oncogenes are usually classified as growth factors, 
receptor tyrosine kinases, cytoplasmic tyrosine 
kinase, regulatory GTPase and transcription factors. 
The activation of oncogenes is complex and may be 
attributed to the genetic mutations and the tumor 
microenvironment. Hypoxic microenvironment is a 
crucial factor in the activation of some oncogenes. 
The lack of sufficient blood supply in rapidly 
proliferating tumor cells leads to hypoxia. HIF-1 is a 
key transcription factor that is activated in response to 
oxygen deprivation. In cancer cells, HIF-1 promotes 
glycolysis by activating glycolytic enzymes[52]. Over-
expression of HIF-1 was observed in HCC samples[53] 
and was shown to promote cell proliferation and 
resistance to apoptosis by up-regulating FOXM1 
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Figure 1  Reprogramming of glucose metabolism in hepatocellular 
carcinoma. Reprogramming of glucose metabolism-related enzymes and 
transporting proteins in HCC. The expression of GLUT1, GLUT2, HK2, HKDC1, 
GAPDH, PKM2, LDHA and MCT4 are up-regulated in HCC glycolysis pathway. 
GLUT: Glucose transporter; HK: Hexokinase; G6P: Glucose-6-phosphate; 
GPI1: Glucose-6-phosphate isomerase 1; F6P: Fructose-6-phosphate; PFK: 
Phosphofructokinase; FBP: Fructose-1,6-bisphosphatase; ALDA: Aldolase 
A, DHAP: Dihydroxyacetone phosphate; TIM: Triosephosphate isomerase; 
G3P: Glyceraldehyde-3-phosphate; GAPDH: Glyceraldehyde-3-phosphate 
dehydrogenase; PG: Phosphoglycerate; PGAM: Phosphoglycerate mutase; 
ENO: Enolase; PEP: Phosphoenolpyruvate; PKM2: Pyruvate kinase isoform 
M2; PFK: Phosphate fructose kinase; LDHA: Lactate dehydrogenase A; MCT4: 
Monocarboxylate transporter 4.
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transporters[66]. Recently, we investigated the role of 
the tumor suppressor gene Ras-related associated 
with diabetes (RRAD) in HCC. We found RRAD could 
suppress the invasion, migration and aerobic glycolysis 
in HCC cells and identified GLUT1 and HK2 as potential 
targets for RRAD[67]. Our results were recently verified 
by Yan et al[68] (Table 1).

Signaling pathways involved in glucometabolic 
reprogramming
AMPK pathway: The AMP-activated protein kinase 
(AMPK) is ubiquitously expressed in eukaryotes and 
acts as an energy status sensor and regulator of 
energy homeostasis[69]. The activation of AMPK by 
energetic stress promotes the switching from glycolysis 
to oxidative phosphorylation. This switching inhibits the 
“Warburg effect” in rapidly proliferating cells, including 
tumor cells to spare glucose and restore energy 
homeostasis[70]. At the same time, the activation of 
AMPK shuts down the synthesis of RNA, DNA, protein 
and lipid to inhibit the cell proliferation and growth. 
The downstream effect of AMPK activation on cancer 
metabolism has been well established. mTOR is a 
crucial downstream modulator of AMPK signaling in 
cancer cells. AMPK inhibits the activity of mTOR either 
directly or by reducing the activity of the mTOR-
activating GTP-binding protein, Rheb, via activation 
of the Tuberous sclerosis complex 2[71-73]. Inactivation 
of mTOR suppresses the expression of HIF-1α, a key 
regulator of glycolysis, as mentioned previously[52,74]. 
Recently, several reviews highlighted the regulatory 
role of AMPK on GLUT4 membrane translocation and 
GLUT1 activation in skeletal muscle cells and other 
normal cells[69,75]. In HCC, AMPK signaling pathway was 
reported to participate in the ciliary neurotrophic factor 
induced GLUT4 translocation and glucose uptake[76]. 
Considering the effect of AMPK on the inhibition 
of glucose uptake in transformed cells, further 
investigations are greatly needed to clarify the role of 
AMPK on glucose transporters and glycolytic enzymes 
in cancer cells.

PI3K/Akt/mTOR pathway: The PI3K/Akt pathway 
is one of the most frequently activated signaling 
pathways in human cancers including HCC. The 
PI3K/Akt pathway can be activated by mutated tumor 
suppressor genes, signaling from receptor tyrosine 
kinases, or by the PI3K components[77]. The activation 
of the PI3K/Akt pathway is involved in cell proliferation, 
cell survival, cell cycle progression and cancer 
metabolism[78]. Regulation of glucose metabolism by 
PI3K/Akt signaling is mediated by glycolytic enzymes. 
Firstly, PI3K/Akt promotes glucose uptake in cells by 
increasing the membrane translocation and expression 
of GLUT4[79,80]. In addition, PI3K/Akt promotes 
glycolysis by activating HK and by the binding of 
HK2 to the voltage-dependent anion channel in 
mitochondria[81,82]. Moreover, PI3K/Akt could regulate 

expression[54]. Hamaguchi et al[55] analyzed 22 
glycolysis-related genes in HCC samples and identified 
10 potential transcriptional targets of HIF-1α including 
HK1, HK2, GAPDH and PKM. Interestingly, several 
studies showed that HIF-1 could be activated by Ras[56] 
and membrane type-1 matrix metalloproteinase[57] 
under normoxic conditions, which may provide new 
insights into cancer glycolysis regulation beyond the 
hypoxic microenvironment. Myc is another crucial 
oncogene involved in the Warburg effect. As a vital 
transcription factor, Myc was first linked with glucose 
metabolism through its transactivation of LDHA 
expression[58]. A series of glycolytic enzymes were 
subsequently identified as direct targets of Myc, 
including GLUT1 and HK2[59,60]. Moreover, the interplay 
between Myc and HIF-1 has also been observed, which 
indicates that Myc may play a complementary role in 
cancer metabolism under non-hypoxic conditions[61,62]. 
CD147 (Basigin) is a transmembrane protein that is 
highly expressed in tumors. A number of studies have 
shown that CD147 is a “Warburg oncogene” due to 
its pivotal role in promoting glycolysis and inhibiting 
oxidative phosphorylation in cancer cells[63,64]. In HCC, 
CD147 was reported to reprogram glucose metabolism 
by facilitating lactate export, mediated by MCT1, and 
promoting glucose uptake by up-regulating GLUT1 
expression[51]. Recently, some newly discovered 
oncogenes were also reported to play important roles 
in HCC glycolysis. For instance, PIM1 is involved in 
both aerobic and anaerobic glycolysis by targeting 
GLUT1 and PKM2[65].

Likewise, tumor suppressor genes also have a great 
influence on cancer glycolysis. The role of the p53 
tumor suppressor gene in cancer metabolism could be 
summarized as promoting oxidative phosphorylation 
and reducing glycolysis. The effect of p53 on glycolysis 
mainly depends on the reduced expression of glucose 

Table 1  Oncogenes and tumor suppressor genes involved in 
glucose metabolic reprogramming during carcinogenesis

Genes Targets Ref.

Oncogenes HIF-1 HK1 [55]
HK2 [55]

GAPDH [55]
PKM [55]

Myc LDHA [58]
GLUT1 [59]

HK2 [60]
CD147 MCT1 [62]

GLUT1 [62]
PIM1 GLUT1 [65]

PKM2 [65]
Tumor suppressor P53 GLUTs [66]
genes RRAD GLUT1 [67,68]

HK2 [67]

GLUT: Glucose transporter; HK: Hexokinase; PKM: Pyruvate kinase 
isoform M; LDHA: Lactate dehydrogenase A; MCT1: Monocarboxylate 
transporter 1; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; 
RRAD: Ras-related associated with diabetes.
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glycolytic enzymes indirectly by regulating the ex-
pression of AMPK and HIF-1[83,84]. 

Noncoding RNAs involved in glucose metabolism
Noncoding RNAs are functional RNAs that are not 
transcribed into proteins. In the past, noncoding RNAs 
have been regarded as the “noise” in transcription 
processes. However, accumulating evidence has 
suggested the indispensable role of noncoding 
RNAs in various biological processes including gene 
transcription and translation. Noncoding RNAs, 
especially microRNAs (miRNAs) and long noncoding 
RNAs (lncRNAs) are also reported to be involved in 
the Warburg effect. The regulatory mechanism of 
noncoding RNAs in aerobic glycolysis consists of the 
following two aspects: the regulation of glycolytic 
enzyme expression and the activation of glycolysis-
related oncogenic pathways (Table 2).

Noncoding RNAs were reported to regulate glucose 
uptake in cancer cells by targeting expression of 
GLUTs. MicroRNA-340, which increases the glucose 
uptake and lactate secretion by increasing the 
expression of GLUT1, was decreased in oral squamous 
cell carcinoma[85]. Yamasaki et al[86] evaluated the 
role of microRNA-1291 in renal cell carcinoma and 
found that reduced expression of miR-1291 promotes 
cancer cell proliferation and invasion and migration 
by direct targeting of SLCA1/GLUT1. Chen et al[87] 
demonstrated that miR-22 regulates GLUT1 expression 
and inhibits the proliferation and invasion of breast 
cancer. MicroRNA-144 was also reported to mediate 

the metabolic shift by regulating GLUT1 expression 
in lung and ovarian cancers[88,89]. Moreover, miR-195-
5p inhibits the glucose uptake by down-regulating 
GLUT3 expression and thus reduces proliferation in 
bladder cancer cells[90]. The expression of GLUT4 is 
also regulated by microRNAs, including miR-113[91] and 
miR-223[92]. MicroRNA-143 is a key regulator of HK2 in 
cancer. Studies have shown that miR-143 negatively 
regulates the expression of HK2 and thus modulates 
glycolysis in colon cancer[93], lung cancer[94] and head 
and neck squamous cell carcinoma[95]. In breast cancer 
cells, HK2 was regulated by the miR-155/miR-143 
cascade at the post-transcriptional level[96]. Burchard 
et al[97] showed the up-regulation of miR-122 reduced 
lactate production and increased oxygen consumption 
in HCC. A subsequent study further demonstrated that 
miR-122 reduced the expression of PKM2 and thus 
repressed glycolytic activities[98]. Other microRNAs, 
including miR-133a/b and miR-326, were reported 
to regulate PKM2 expression in cancers[99,100]. PFK 
catalyzes the conversion from fructose-6-phosphate to 
fructose-1, 6-bisphosphate and is over-expressed in 
cancers. A recent study showed that the miR-52 family 
mediated the regulation of Tat-activating regulatory 
DNA-binding protein on PFK in HCC[101]. Some 
microRNAs were able to regulate multiple glycolytic 
enzymes. For instance, miR-34a was reported to 
regulate key enzymes including HK1, HK2, GPI, LDHA 
and PDK1[102,103]. Additionally, miR-199a-3p serves an 
important role in the aerobic glycolysis of testicular 
germ cell tumors by targeting MCT1 and PGK1[104].

Noncoding RNAs were able to regulate cancer 
metabolism by interactions with oncogenes (tu-
mor suppressor genes) and oncogenic pathways. 
LncRNA-p21 was first discovered as a p53-inducible 
lncRNA that mediates p53-related apoptosis in 
mouse cells[105]. In cancer cells, the hypoxia-induced 
LncRNA-p21 was shown to be a direct transcriptional 
target of HIF-1α and in turn promoted the stability of 
HIF-1α by interfering with the VHL-HIF-1α association. 
The hypoxic microenvironment and the reciprocal 
regulation of p21 and HIF-1α constructs a positive-
feedback loop leading to continual activation of GLUT1 
and LDHA expression thus accelerating glycolysis 
in cancer cells[106]. In another study published in 
2011, Bruning et al[107] evaluated the interaction 
between HIF-1α and miR-155 and proposed that 
miR-155 contributes to a negative-feedback loop for 
the degradation of HIF-1α-dependent transcription, 
under continuous hypoxic conditions. The tumor 
suppressor gene p53 is one the most frequent 
targets of microRNAs and LncRNAs. MicroRNAs 
including miR-125b, miR-504 and miR-1228 can 
regulate p53 expression by directly binding to sites 
in p53 3’-UTR[108,109]. It is worth noting that the over-
expression of miR-1228 can negatively regulate p53 
expression, and the down-regulation of p53, in turn, 
increases miR-1228 expression. This positive-feedback 

Table 2  Noncoding RNAs regulate glucose metabolism by 
directly targeting enzymes and indirectly targeting glycolysis-
related pathways

Targets noncoding RNAs Ref.

Enzymes GLUT1 miR-340 [85]
miR-1291 [86]
miR-22 [87]
miR-144 [88,89]

GLUT3 miR-195-5p [90]
GLUT4 miR-133 [91]

miR-223 [92]
HK2 miR-143 [93-95]

miR-155/ miR-143 [96]
miR-34a [102,103]

PKM2 miR-122 [98]
miR-133-a/b [99]

miR-326 [100]
PFK miR-52s [101]

LDHA miR-34a [102,103]
MCT1 miR-199a-3p [104]

Pathways AMPK miR-451 [111-113]
miR-195 [112]

PI3K/Akt/mTOR miR-125a [114]
miR-7 [115]

GLUT: Glucose transporter; HK2: Hexokinase 2; PKM2: Pyruvate kinase 
isoform M2; PFK: Phosphate fructose kinase; LDHA: Lactate dehydrogenase 
A; MCT1: Monocarboxylate transporter 1; AMPK: AMP-activated protein 
kinase.
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loop contributes to the progression of HCC[110]. Studies 
also showed that oncogenic pathways are regulated 
by noncoding-RNAs. Down-regulation of miR-451 
was originally linked with cancer glycolysis through its 
contributions to the adaptation to glucose deprivation 
and its effect on the LKB1/AMPK pathway in glioma 
cells[111]. A further study confirmed that the regulation 
of the LKB1/AMPK pathway by miR-451 is mediated 
by MO25 (an upstream modulator of AMPK)[112]. 
Another study discovered a novel reciprocal negative-
feedback loop that consists of OCT1, AMPK and 
miR-451 in glioblastoma multiforme. Briefly, under 
the conditions of glucose deprivation, the activation of 
AMPK inactivated OCT1, which subsequently reduced 
the level of miR-451, and conversely, sufficient 
glucose supply significantly increased miR-451 
expression, which in turn impaired the activity of the 
AMPK pathway[113]. Moreover, microRNAs can regulate 
the PI3K/Akt/mTOR pathway in HCC. Tang et al[114] 
reported that miR-125a suppress HCC progression 
by inhibiting the PI3K/Akt pathway. Fang et al[115] 
investigated the molecular mechanism of miR-7 
in HCC growth and metastasis and revealed the 
regulatory role of miR-1 in the PI3K/Akt pathway via 
targeting PIK3CD, mTOR and p70S6K.

Advances in HCC therapy by targeting glucose 
metabolism 
The metabolic shift from oxidative phosphorylation to 
aerobic glycolysis in HCC not only provides abundant 
ATP for sustaining tumor survival but also offers a 
favorable microenvironment for tumor progression. 
As one of the “hallmarks” of cancer, metabolic 
reprogramming relies on metabolic enzymes, thus 
providing many potential targets that could be 
exploited in HCC therapy.

Flavonoids (phloretin, silybin and quercetin) targeting 
GLUT
Flavonoids are safe and reliable agents that are 
extracted from natural products, which show a broad 
spectrum of biological activities with fewer side 
effects[116]. Phloretin is a natural phenol which could 
be extracted from manchurian apricot and apple 
tree leaves. Studies showed the ability of phloretin 
to suppress cell proliferation and induce apoptosis by 
inhibiting glucose uptake in cancers[117,118]. Wu et al[117] 
showed that the inhibition of GLUT2 by phloretin leads 
to apoptosis in HCC cells. Another study demonstrated 
that phloretin strengthens the anticancer effects of 
paclitaxel in HCC[119]. Another natural compound, 
silybin, was identified as a GLUT inhibitor and showed 
a significant inhibitory effect on HCC growth in 
vivo[120,121]. Moreover, a phase I clinical study of silybin-
phosphatidylcholine has been conducted in advanced 
HCC[122]. Quercetin is another bioactive flavonoid 
which has been proposed as a promising anticancer 
agent[123]. The latest study showed that quercetin 

might be a potential agent in HCC therapy that induced 
apoptosis and metabolic inhibition by competitively 
inhibiting GLUT1[124].

2-Deoxy-D-glucose and 3-bromopyruvate targeting of 
HK
2-deoxy-D-glucose (2-DG) is a glucose analog 
that is frequently used in inhibiting glycolysis. The 
phosphorylation of 2-DG catalyzed by HK2 in turn 
noncompetitively inhibits the activity of HK2 and 
leads to the reduction of the glycolytic rate. Several 
studies showed increased apoptosis induced by 2-DG 
in cancer, including HCC[125,126]. However, normal 
cells are only arrested in G1 phase of mitosis when 
treated with 2-DG[127]. 3-bromopyruvate (3-BP) is a 
halogenated analog that suppresses the glycolytic 
pathway by directly inhibiting HK2 activity. A study 
performed on a rabbit VX2 tumor model of liver cancer 
showed that 3-BP induced more efficient damage to 
hepatoma cells compared with 2-DG. Apart from the 
inhibition of HK, this study also revealed that 3-BP 
inhibits HCC glycolysis by suppressing mitochondrial 
ATP synthesis[128]. Based on these promising research 
achievements in vitro and in vivo, the orphan drug, 
3-BP, has been designated for HCC by the FDA[13] and 
was reported to prolong the lifetime and improved the 
quality of life of a patient with HCC[14].

Metformin targeting AMPK pathway
Metformin, a first-line anti-diabetic drug, was linked 
to cancer prevalence and therapy because diabetes 
mellitus is a risk factor for cancer death in some 
cancer types. The association between diabetes 
and HCC was evaluated in large populations in the 
1990s[129,130]. Recent studies demonstrated that 
diabetes mellitus is an independent risk factor for 
HCC[131,132]. The preventive effect of metformin in HCC 
has been established. Studies showed a decreased 
incidence of HCC in the type 2 diabetic patients who 
received metformin therapy[133-135]. The results of a 
systematic review showed a direct anti-HCC effect 
of metformin in animal models[136]. The mechanism 
of metformin in HCC prevention and therapy in type 
2 diabetic patients is closely linked with the AMPK 
pathway. Metformin activates the expression of LKB1 
and AMPK by increasing the energy stress levels inside 
cells. The activated AMPK pathway reduced IRS-1 and 
caused the inhibition of insulin/IGF-1 signaling, which 
is involved in carcinogenesis and cancer glycolysis 
regulation[137]. Additionally, AMPK inactivated the 
downstream modulator, mTOR, which indirectly re-
gulates glycolysis by targeting HIF-1α, as previously 
described.

CONCLUSION
The reprogramming of glucose metabolism in cancer 
is a multi-factor and multi-step process, which can be 
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regulated by oncogenes, oncogenic signaling pathways, 
and even noncoding RNAs. The developments in 
the study of cancer metabolism greatly enriched 
the understanding of carcinogenesis and afforded 
numerous potential targets to hit the Achilles’ heel of 
cancer[138]. The agents that target glycolytic enzymes 
directly and glycolysis-related pathways indirectly 
showed some promising effects in HCC prevention 
and therapy in the laboratory. However, the limitation 
of glycolysis targeted anti-cancer therapy should be 
noted. As multiple enzymes catalyze multiple steps 
in the process, there is a complex compensatory 
mechanism in cancer metabolism. Therefore, the 
inhibitors that specifically target a single modulator 
of glycolysis may not have a prominent or persistent 
effect on cancer metabolism in the human body. In the 
future, the effects of combination drug therapy should 
be evaluated. Moreover, noncoding-RNAs, which target 
multiple glycolysis-related enzymes and pathways, 
are also needed to be carefully considered in future 
studies.
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