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We present a highly accurate method for identifying genes with
conserved RNA secondary structure by searching multiple se-
quence alignments of a large set of candidate orthologs for
correlated arrangements of reverse-complementary regions. This
approach is growing increasingly feasible as the genomes of ever
more organisms are sequenced. A program called MSARI implements
this method and is significantly more accurate than existing meth-
ods in the context of automatically generated alignments, making
it particularly applicable to high-throughput scans. In our tests, it
discerned CLUSTALW-generated multiple sequence alignments of
signal recognition particle or RNaseP orthologs from controls with
89.1% sensitivity at 97.5% specificity and with 74.4% sensitivity
with no false positives in 494 controls. We used MSARI to conduct a
comprehensive scan for secondary structure in mRNAs of coding
genes, and we found many genes with known mRNA secondary
structure and compelling evidence for secondary structure in other
genes. MSARI uses a method for coping with sequence redundancy
that is likely to have applications in a large set of other comparison-
based search methods. The program is available for download
from http:��theory.csail.mit.edu�MSARi.

The structure of RNA is to a large extent determined by cis
base pairing (AU, GC, and GU). This base-pairing is re-

ferred to as secondary structure. A noncoding RNA (ncRNA)
(1) gene expresses RNA that is never translated into protein but
is nonetheless biologically significant. Examples of such genes
are tRNAs and XIST, which in mammalian males suppresses
expression of genes on the X chromosome (2–4). RNA second-
ary structure in mRNAs can also be biologically significant,
controlling timing and localization of protein expression (5).
Identifying such secondary structure will be crucial to a com-
plete understanding of cellular biology (6).

Most work on identifying RNA secondary structure has been
in the context of searching for ncRNA genes. Some approaches
to automated identification of ncRNA genes have focused on
searching for a recognizable secondary structure associated with
RNA transcripts serving a specific biological function. One
example of this type of program is Eddy and coworkers’
TRNASCAN-SE (7, 8), which searches for tRNAs. Others are
Regalia et al.’s search for signal recognition particles (9) and
Rhoades et al.’s search for microRNAs (10).

Automatically identifying novel biologically significant RNA
secondary structure has proven to be difficult. By itself, RNA
secondary structure in stand-alone genes is not particularly
amenable to computer-based recognition methods, as many
RNA sequences seem to have thermodynamically plausible
secondary structures of no biological relevance (11). Moreover,
ncRNA genes cannot be discerned by using standard computa-
tional gene detection algorithms, which are targeted at genes
that express proteins and rely heavily on locating stop codons
and other protein-specific guides (12–17).

Comparative methods provide a way to cut through the
abundance of plausible, but irrelevant, structures: only second-
ary structure that is conserved across species is likely to be
biologically significant. We are aware of two programs that
search for secondary structure by comparing potentially ortholo-
gous sequences. The first is QRNA (1, 18), which scans pairwise

alignments of homologous DNA sequences from related ge-
nomes. It uses a statistical model that flags alignments exhibiting
mutation patterns preserving base-pairing in a thermodynami-
cally plausible RNA secondary structure. Since first submitting
this article for publication, we have also learned of a program
called DDBRNA (19), which tests for complementary mutations in
three-sequence multiple sequence alignments (MSAs).

A serious problem with both QRNA and DDBRNA is that they
can only detect complementary mutations of orthologous base
pairs that have been accurately aligned to each other (1, 19). This
makes them imperfect for large-scale genome scans, as standard
alignment algorithms do not reliably align such base pairs. For
a sufficiently large hand-curated MSA of known ncRNA or-
thologs at the right evolutionary distance from each other, in
which many orthologous base pairs are aligned, covariation
between the corresponding columns of the MSA can be used to
discern it from controls such as those described in Results with
nearly perfect accuracy. However, hand curation of MSAs
cannot be part of any high-throughput genomic scan.

A related problem to RNA secondary structure detection is
fine-grained secondary-structure prediction. This is the problem
of determining all of the base pairs in sequences known to have
secondary structure. Hofacker et al.’s program ALIFOLD (20) and
Fariza et al.’s DCFOLD (21) use MSAs of known ncRNA orthologs
for secondary-structure prediction, but not detection. In the
context of pairs of sequences, Mathews and Turner’s DYNALIGN
(22) and Sankhoff’s sequence�structure alignment algorithm
(23) can be used for structure prediction.

Secondary-structure prediction requires sufficient sensitivity
to predict almost all base pairs and can have relatively low
specificity without degrading its usefulness. Detection of sec-
ondary structure in a full-genome scan requires much greater
specificity, but can be useful with much-lower-per-base pair
sensitivity. Large MSAs have long been used for manual pre-
diction of ncRNA secondary structure and have also recently
been used in automated structure prediction (20, 24–26), but we
are not aware of any earlier attempt to use them in searches for
novel RNA secondary structure.

Here, we propose an ab initio RNA secondary-structure
detection scheme using large MSAs that does not rely on
knowledge from or training on particular RNA secondary
structures. The statistical evidence for conservation of RNA
secondary structure across many sequences is often so strong
that simple, robust statistical models can be used to detect it. In
particular, as well as being a far more accurate detection scheme
than its predecessors, to our knowledge ours is currently the only
one that copes with the inaccuracies typical to automatically
generated alignments. Our approach is based on computing the
statistical significance of short, contiguous potential secondary-
structure base-paired regions that are conserved between can-
didate orthologs and allows for small variations between align-
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ments of orthologous base pairs. To cope with the wide range of
evolutionary distances that can exist between sequences in a
large MSA, it uses a distribution-mixture method that should
have application to other comparative search problems.

The MSARI program, which implements the MSA method
presented here, is more accurate than QRNA or DDBRNA. With a
cutoff giving 97.5% specificity, it has 89.1% sensitivity, and with
a cutoff giving 74.4% sensitivity, there were no false positives in
our test data of 494 controls. We tested on 10- and 15-sequence
MSAs of signal recognition particle or RNaseP orthologs and
generated controls by shuffling the columns of these, in analogy
to the tests described by Rivas and Eddy (1). On similar data (but
necessarily with smaller MSAs containing far less information),
DDBRNA had 49.0% sensitivity with 97.7% specificity, and QRNA
had 28.6% sensitivity with 99.1% specificity.

We used MSARI to scan the The Institute for Genomic
Research Eukaryotic Gene Orthologs (TIGR EGO) database

(www.tigr.org�tdb�tgi�ego) (35) for orthologs with conserved
RNA secondary structure (see Results). This search yielded
many genes with known secondary structure, and made many
predictions of conserved secondary structure (see Table 1).

Algorithm
Overview. The algorithm used by MSARI is based on two key
innovations. First, it allows for slight misalignments of ortholo-
gous base pairs by looking for imperfectly aligned, yet statis-
tically significant, reverse complementarity. MSARI can toler-
ate misalignments of orthologous base pairs up to a distance
of two characters. Whereas automated alignments rarely align
every set of orthologous helices that accurately, MSARI only
needs to find a few significant base-paired regions to confi-
dently identify conserved secondary structure. There are
usually a few helices in sufficiently well conserved regions of
the orthologs, so this is all of the f lexibility needed. Second, it

Table 1. EGO ortholog classes in which MSARI found significant conservation of
secondary structure

EGO
accession no.

MSARI

significance Sequence names and roles
Known

secondary structure

TOG126766 �56.99 rRNA intron-encoded homing endonuclease Yes
TOG126402 �55.03
TOG127160 �54.68
TOG127627 �46.86 Malate dehydrogenase mitochondrial precursor Yes
TOG126375 �46.68 Monooxygenase Yes
TOG126497 �46.25 Serine�threonine phosphatase
TOG127343 �44.78 Adenosylhomocysteinase
TOG129802 �43.47
TOG126712 �42.32 RNA helicase
TOG126428 �41.70 Heat shock Yes
TOG128897 �40.41 Chloroplast precursor
TOG128956 �37.42 Cyclophilin
TOG127614 �36.40 Ras-related GTP binding
TOG127244 �36.35 Nonmuscle myosin heavy chain Yes
TOG126639 �34.25 Aldehyde dehydrogenase Yes
TOG127024 �33.94 Proteasome subunit
TOG126979 �33.45 Glucose-related Ig Yes
TOG126982 �32.82 Seryl-tRNA synthetase Yes
TOG128055 �32.73 CDH1-D
TOG127088 �32.67 14-3-3
TOG126299 �32.26 � tubulin Yes
TOG126989 �32.24 Cardiac L-type calcium channel
TOG126537 �32.18 Peroxiredoxin
TOG128383 �31.64 Chaperonin
TOG126893 �31.50 Glyceraldehyde-3-phosphate dehydrogenase
TOG126944 �31.45 Methionine aminopeptidase
TOG126736 �31.45 � tubulin Yes
TOG127919 �31.39 Succinate dehydrogenase, flavoprotein subunit
TOG128571 �31.28 Actin Yes
TOG128538 �30.90 Phosphoenolpyruvate carboxylase
TOG127997 �30.66 Pyruvate dehydrogenase E1 � subunit
TOG127466 �30.43 Sodium channel � subunit Yes
TOG126748 �30.33 Lipoamide dehydrogenase
TOG127127 �30.14 Casein kinase 2 � subunit
TOG126615 �30.07 Enolase (2-phosphoglycerate dehydratase) Yes
TOG126472 �29.94 Methionine adenosyltransferase
TOG127409 �29.85 GTP binding
TOG127282 �29.63
TOG127052 �29.48 Myo-inositol-1-phosphate synthase

When EGO gave apparently contradictory descriptions for the genes in a class, we chose the description
pertaining to the most genes. Some descriptions are associated with more than one significant ortholog class. In
those cases, we show only the class in which MSARI found the highest score. We searched the literature in an
attempt to determine whether these or very similar genes are already known to contain mRNA secondary
structure. We found positive indications in refs. 36–47.
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estimates the significance of variations in highly redundant
sequences, based on determining which portions of sequences
within the MSAs should be treated as mutations of other
sequences and which portions are so different that they should
be treated as independently selected.

Estimating the Significance of Reverse Complementarity. When
MSARI processes an MSA, it first uses RNAFOLD (27) (a
program that predicts the secondary structure of individual
sequences) as a preprocessor to locate probable base pairs in
each of the constituent sequences. For each pair of positions
in the MSA where RNAFOLD predicted that a sequence had a
probability of �5% of base pairing, MSARI examines windows
of length 7 around the pair for complementary mutations.‡ By
examining only such window pairs, rather than all pairs, MSARI
greatly increases its sensitivity, because it reduces the Bon-
ferroni multiple-sampling factors in the null-hypothesis prob-
ability estimates described below.

Suppose a pair of positions v1 and v2 are chosen in this way.
Assume v1 � v2. For each sequence in the MSA, the window of
seven nucleotide characters centered on v1 is considered. To
compensate for possible misalignments, multiple windows in the
vicinity of v2 are considered, namely the five windows of seven
nucleotide characters centered on v2 � {0, 1, 2}. The number of
reverse-complementary positions in each pair of windows is
counted, and the window near v2 with the largest number of
positions reverse-complementary to the v1 window is chosen.
For instance, suppose the window centered on v1 contains
GUGAGUU, while the nucleotides to be considered around v2
are CAGACUCACGG. Then the window that will be chosen
near v2 is GACUCAC, because all seven positions are reverse-
complementary (G-C, U-A, G-C, A-U, G-C, U-A, and U-G)
while the other windows near v2 have two or three reverse-
complementary positions.

The nucleotides in these windows are assumed to be indepen-
dently drawn from null-hypothesis distributions that will be
described shortly. Given these distributions, we compute the
probability p of seeing at least as many complementary positions
as observed in the chosen pair of windows. To compensate for
the fact that five window pairs were considered, the null-
hypothesis probability of this sequence at this pair of positions
is estimated by 1 � (1 � p)5. To get an estimate for the entire
MSA at this pair of positions, estimates for all its sequences are
computed and multiplied together.

We used a Bonferroni-style test for rejection of the null
hypothesis. In 15-sequence MSAs, if this procedure yields a
probability of �1�(200 * no. of region-pairs considered) for a
given pair, we consider the pair to be significant. Thus, we are
only considering pairs exhibiting a degree of complementary
mutation that would occur in �0.05% of MSAs drawn from the
null-hypothesis distribution. For 10-sequence MSAs, only pairs
with probabilities �1�(5 * no. of region-pairs considered) are
considered. (These cutoffs were chosen empirically.) The sig-
nificant pairs are sorted by significance, and MSARI selects a
subset in which there are no pseudoknots: it chooses the most
significant pair, then the next most significant that does not form
a pseudoknot in conjunction with the first, and so on. Finally, it
multiplies the probabilities for the selected pairs together, and
this product is used as the estimate for the significance of the
sequence.

Distribution Mixtures. To estimate the significance of observed
base pairs, a null-hypothesis model for random mutations in an
MSA of related sequences is needed. For ease of computation,

we want to treat the events in separate sequences as independent.
To this end, our null-hypothesis model varies from sequence to
sequence within the MSA and incorporates the possibilities that
a sequence is either brand-new or is closely related to earlier
sequences in the MSA. The model weights these possibilities
according to the degree of local similarity between sequences.

The resulting distributions are essentially mixtures, similar to
the distribution mixtures that arise in Bayesian statistics (28).
The component distributions are derived from the following
possible events, for which examples are given in the next section:

(i) The current sequence window is closely related to a prior
sequence, and the current nucleotide is the same as the nucle-
otide at the same position in that sequence. In this case, a
constant distribution that always returns that nucleotide is used.

(ii) The current sequence window is closely related to a prior
sequence, and the current nucleotide is a mutation from the
nucleotide at the same position in the sequence. In this case, the
distribution is computed from the local preponderance of nu-
cleotides, with the nucleotide in the prior sequence removed.
The nucleotides in all sequences in the MSA within the window
of length 7 centered on the current position are used to compute
this distribution.

(iii) The current sequence window is too far from the se-
quences seen so far, and the current nucleotide is drawn from a
separate distribution computed from the local preponderance of
nucleotides. Only the nucleotides in the current sequence and
current window are used to compute this distribution.

A weighted sum of these distributions is used as the null-
hypothesis distribution for the current position in the current
sequence. This mixture contains a distribution for each sequence
in the MSA above the current sequence, either distribution type
i or ii, depending on whether the nucleotide at the current
position in those sequences is the same or different from the
current nucleotide. The weighting assigned to these distributions
is determined by the degree of similarity between the associated
prior sequence and the current sequence. If within the current
window the proportion of positions in which the sequences have
identical nucleotides is q, then the unnormalized weight assigned
to its distribution is q2. If the maximum over the prior sequences
of these proportions is Q, then the unnormalized weight assigned
to distribution type iii is (1 � Q)2.

Examples of Distribution Mixtures. Thus, suppose MSARI is esti-
mating the significance of the following regions in an MSA. The
base-pair windows are indicated with overlines as shown in Fig.
1. There are no sequences before the first one, so the nucleotide
distributions are comprised entirely of distribution type iii. The
best pair of windows in the first row is UUGGGUC with
GACCUGG. Thus the distribution that the first U in the first
window is drawn from is taken from the preponderance of
nucleotides in the window of length 7 around it, ACAUUGG.
Because this window contains seven nucleotides altogether, and
two As, P(A) � 2�7, and similarly, P(C) � 1�7, P(G) � 2�7, and
P(U) � 2�7.

For the second sequence, the best pair of windows is again
UUGGGUC with GGUCCAG, so in this case, each of the
nucleotide distributions has a term of type i, coming from the
first sequence. Because the sequences are entirely identical in
this window, the values q associated with these distributions are
unity. It is the only term in the distribution mixture of types i or
ii, as there is only one prior sequence. Thus Q is always 1, and
all of the nucleotide distributions in this row are constant: the
one for the first U in the first row is P(N) � �(N, U) for any
nucleotide N, where �(x,y) � 0 if x � y, 1 if x � y. Thus the
probabilities for drawing complementary base pairs at the
respective positions in this pair of windows are all unity, and this
sequence contributes nothing to the significance estimate for this
pair.

‡We experimented with windows of lengths 5, 6, 7, 9 and 10 and found MSARI to be most
accurate for windows of length 7.
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For the third sequence, the best window pair is UUGGGCU
with GGCUUGG. The sequence in the second window has
changed, so the values of q for both of the previous sequences
will be less than unity, and (1 � Q)2 will be nonzero. Thus the
distribution associated with the first G in the window will be a
mixture of a type i distribution, with weight 2q2 (for the two
identical, prior sequences), and a type iii distribution, with
weight (1 � q)2. On the other hand, the distribution associated
with the first C will be a mixture of a type ii distribution and a
type iii distribution. Because it is a mutation from G, the type ii
distribution has P(G) � 0 and is given by the preponderances of
A, C, and U in the window of length 7 around that position. The
complementarity-preserving differences in this sequence mean
that it contributes substantially to the significance estimate.

Implementation and Efficiency. We mention the asymptotic effi-
ciency of MSARI only pro forma, as any algorithm that runs in a
reasonable time on sequences with 300 characters could be used
to detect most RNA secondary structure, which tends to have a
lot of important short-range interactions. Thus one can examine
overlapping windows as we have done in Results. The algorithm
that RNAFOLD implements takes O(n3) steps, where n is the
length of the sequence it is processing, and this is the dominant
factor in the asymptotic run time. The number of steps required
by MSARI after this preprocessing is linear in the number of
possible base-pairings returned by RNAFOLD, which is O(n2) or
less. Thus with respect to sequence length the overall asymptotic
runtime of the algorithm is comparable to the O(n3) perfor-
mance of QRNA. The run time of MSARI also grows quadratically
in the number of sequences in the MSA it processes.

The run time of MSARI on a 15-sequence MSA of 300 bp ranges
between 15 sec and 1 min, depending on the number of probable
base pairs returned by RNAFOLD. We used a single 2.4-GHz
Pentium processor (Intel, Santa Clara, CA) for all tests described
in this article.

Apart from the use of RNAFOLD, at the moment MSARI is
implemented entirely in the computer language Python. We
believe we could accelerate it by an order of magnitude by
rewriting parts of it in the C programming language if necessary,
but its current speed has been adequate for our tests so far.

Results
Dataset Generation. Construction of MSAs. All alignments were
constructed by using CLUSTALW, which is commonly used in
RNA structure detection and prediction. We considered using
programs such as MAVID (29), MULTIPIPMAKER (30), or LAGAN
(31) instead, or improving the alignment with a program such as
REALIGNER (32), but only a program specifically designed for
RNA alignments is likely to align orthologous base pairs with
substantially more accuracy. The difficulty is that there is
frequently a great deal of variation among the bases in ortholo-
gous RNA helices, giving standard alignments relatively few
clues about the most accurate alignment. Only an algorithm that
specifically includes evidence of base-pair conservation is likely
to help with this problem. LAGAN, MULTIPIPMAKER, and MAVID
all are designed to deal with alignments of extremely long
sequences, whereas REALIGNER is intended for collation of
shotgun reads and uses a heuristic optimized for sequences with
very high similarity. Thus, none of these programs are more

appropriate than CLUSTALW in a search for RNA secondary
structure.
Benchmark datasets. The sequences used in the benchmark dataset
tests were eukaryotic signal recognition particle and eukaryotic
RNaseP RNA orthologs taken from the signal recognition
particle database (33) and the ribonuclease P Database (34),
respectively. The artificially generated control MSAs were gen-
erated in the same fashion as those of Rivas and Eddy (1) by
randomly shuffling the columns of the genuine ncRNA MSAs.
To get fair controls by shuffling the columns, it was necessary to
then strip the gaps from the shuffled sequences and realign them
with CLUSTALW. Otherwise, MSARI found it easy to detect the
controls from randomly interspersed gaps that shuffling by itself
produces.

MSAs were constructed by an iterative procedure, successively
choosing a sequence, aligning it to the sequences already chosen
with CLUSTALW, and only accepting the new sequence if its
maximal similarity to the other sequences was between 50% and
95%. This procedure was repeated until 10 or 15 sequences had
been chosen, or it was determined that no appropriate sequences
remained, in which case the MSA was thrown out and a new
initial sequence was chosen. It was necessary to choose MSAs in
which the sequences had reasonable similarity and variation. If
the MSA broke into sufficiently dissimilar cliques, MSARI was
essentially reduced to estimating the significance of two smaller
MSAs, whereas if the sequences in the MSA were too similar,
there were not enough mutations for convincing significance
estimates. Comparative methods intrinsically require sequences
that are similar enough to align with some confidence but
different enough to exhibit interesting variation (17). However,
the range of variation allowed in these tests is very broad. The
performance statistics we cite for QRNA and DDBRNA are for
alignments with sequence identities between 60–80% and 60–
100%, respectively.
EGO dataset. For each ortholog class in the EGO database
(www.tigr.org�tdb�tgi�ego and ref. 35), we aligned its sequences
by using CLUSTALW. To perform the search in a statistically
similar context to that of the benchmark datasets, we restricted
the search to alignments containing 300 characters or less. In
alignments with sequences �300 characters, we separately con-
sidered the 300-bp subalignments starting at positions 0, 150,
300, 450, and so on. Then using a breadth-first search from each
sequence in the alignments, we looked for subsets of 15 se-
quences in which each sequence had 65–90% similarity to at least
one other sequence in the subset. We produced 4,972 such
alignments from 2,853 ortholog classes.

Benchmark Dataset Results. MSARI’s performance. The MSARI program
separates the MSAs of genuine ncRNA orthologs from the
control set extremely accurately (see above). With 15-sequence
MSAs and a cutoff log-probability threshold of �15.7, MSARI
distinguished genuine MSAs from controls with 89.1% sensitiv-
ity and 97.5% specificity, whereas with a threshold of �29.4, it
had 74.4% sensitivity and found no false positives of 494 controls
(�99.8% specificity.) With 10-sequence MSAs and a threshold
of �31.9, it had 74.9% sensitivity and 97.5% specificity, whereas
with a threshold of �48.3, it had 56% sensitivity, and no false
positives in 866 controls (�99.9% specificity.) This is a marked
improvement over the performances of QRNA and DDBRNA.

UGGAACAUUGGGUCAGCCCA AGUGGAUCGGGUCCAGUGUUAG
UGGGACUUUGGGUCAACCUA AGUGGAUCGGGUCCAGUGUUAG
UGGAAUAUUGGGCUGUCCCA AGAUGGCUGGGCUUGGUGGGCU

Fig. 1. Portions of MSA used in demonstration of MSARI’s algorithm. We describe how MSARI would calculate the statistical significance of the mutations
preserving complementarity between the left and right overbar regions of the sequences.
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To confirm that MSARI’s accommodation of misalignments
substantially improves its accuracy, we also tested a version of it
with this feature turned off. We ran it on 625 of the 10-sequence
MSAs described above and found this version of the program
had 48% sensitivity at 97.5% specificity and 16.3% sensitivity
with no false positives. Although with further tuning we might
have marginally improved this performance, this is a significant
degradation from the accuracy of the full-featured version.
Tests of other programs. One of our reviewers suggested that the
improvement in our performance might stem in part from large
MSAs improving CLUSTALW’s accuracy: when aligning 15 se-
quences, CLUSTALW can get more clues about the true alignment
than it can when aligning two or three sequences. To test this, we
took subalignments of two or three sequences from the 15-
sequence MSAs we passed to MSARI and ran QRNA and DDBRNA
on these. For both programs, we selected groups of subalign-
ments having the same distributions of sequence similarities as
described by Rivas and Eddy (1) and di Bernardo et al. (19). The
sequence similarities for the alignments we used to test QRNA
ranged from 60% to 80%, whereas for the DDBRNA test set they
ranged from 60% to 100%.

This process did not lead to a significant improvement in
either program’s accuracy. At 99.1% specificity, QRNA’s sensi-
tivity was 28.6%. This is higher than reported in ref. 1, but almost
all of this gain is caused by subsequent improvements in later
versions of QRNA’s algorithm. The performance of DDBRNA was
slightly worse than the 49.0%�97.5% sensitivity�specificity re-
ported in ref. 19.

We believe that the statistical advantage underlying MSARI’s
greater accuracy comes from the much larger MSAs, which it is
capable of considering, and its ability to cope with slight
misalignments. It is much easier to build up strong evidence for
conserved secondary structure when comparing so many se-
quences. It is not immediately clear how to incorporate these
capabilities into the algorithms of QRNA or DDBRNA.

Searching for Orthologs with Conserved mRNA Secondary Structure.
We have used MSARI to perform a large-scale comparative search
for biologically significant RNA secondary structure. We scanned
the TIGR EGO database (www.tigr.org�tdb�tgi�ego and ref. 35)
for genes with conserved RNA secondary structure, running on
4,972 alignments constructed from 2,853 ortholog classes (see
Benchmark datasets). We found that 39 of the ortholog classes
produced alignments for which MSARI reported log probabilities less
than the most stringent threshold we chose above for 15-sequence
MSAs. See Table 1 for information on the ortholog classes MSARI
flagged. Of such ortholog classes, four have no protein names or
functions assigned by EGO’s annotations (EGO accession nos.
TOG126402, TOG127160, TOG129802, and TOG127282.) We
attempted to search the literature for these proteins and found
indications that 13 of those listed in Table 1 are already believed to
have secondary structure (36–47).

It is very likely that the majority of these ortholog classes have

conserved RNA secondary structure. Although the existence of
a thermodynamically stable secondary structure for an mRNA
does not by itself constitute strong evidence that the secondary
structure is biologically significant (11), MSARI estimates the
likelihood that chance alone could account for the compensatory
mutations that it observes. This evidence can be extremely
compelling. For instance, at MSARI’s most stringent cut-off
threshold (�29.4) we would have expected to find only 10
significant alignments by chance alone; instead, we found 60
alignments spread among the flagged ortholog classes, many
with much higher significances. Thus the majority of the ortholog
classes with scores below this threshold are extremely likely to
have important mRNA secondary structure.

Discussion
With genome sequencing capacity skyrocketing, comparative
methods based on the genomes of many organisms are now
feasible, as our scan of the EGO dataabase shows. Moreover,
even full-genome scans are already quite feasible: for instance,
there are now �100 bacterial genomes available, and yeast could
be scanned by using the seven yeast genomes (17) plus six
recently sequenced fungus genomes (www.broad.mit.edu�
annotation). Given the current efforts to sequence mammalian
genomes, even a full-genome scan for secondary structure in the
human genome will be possible very soon.

Solitary ncRNA genes do not seem to exhibit statistical traits
as distinctive as codon usage frequencies in coding genes (11),
but we have demonstrated that multiple candidate orthologs can
provide an ensemble with more than enough information to
reliably distinguish conservation of secondary structure.

We plan to extend this approach to predict potentially novel
ncRNA genes in yeast and higher eukaryotes through MSAs of
whole genomes as they become available. With a BLAST-like (48)
approach to searching for reverse-complementary regions, it
may also be possible to search for secondary-structure interac-
tions between different genes in this fashion.

We intend to adapt the MSARI program to automation of
comparative secondary-structure prediction. Because MSARI’s
score allows for some misalignments, a structure-prediction
method based on it may be more accurate than ALIFOLD or
DCFOLD when run on automatically generated MSAs. Indeed, it
may be sensible to correct MSAs so they respect the misaligned
orthologous base pairs found by MSARI which uses comparative
structure for postprocessing. MSARI’s estimate for the statistical
significance of candidate compensatory mutations also copes
more flexibly with varying rates of mutation between sequences
than ALIFOLD or DCFOLD. It may also be possible to incorporate
this estimate in an improved structure-prediction algorithm.

Finally, we believe that the distribution-mixture approach
used to construct MSARI’s null-hypotheses could be applied to a
broad set of comparative search problems.
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