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Many natural and social systems display global organization and
coordination without centralized control. The origin of this global
coordination is a topic of great current interest. Here we investi-
gate a density-classification task as a model system for coordina-
tion and information processing in decentralized systems. We
show that sophisticated strategies, selected under idealized con-
ditions, are not robust to environmental changes. We also dem-
onstrate that a simple heuristic is able to successfully complete the
classification task under a broad range of environmental condi-
tions. Our findings hint at the possibility that complex networks
and ecologically efficient rules coevolve over time.

Many systems in nature and society display globally orga-
nized collective behavior without the need for centralized

control. Examples include conventions and norms (1, 2) and
social learning in animals and humans (2, 3) as well as fads,
rumors, and revolts (4). Examples are also abundant in biology
and medicine: the saltation model of human growth (5) speaks
of decentralized cellular coordination, as does the transition of
Dictyostelium to a multicellular developmental program (6, 7). In
each of these examples, a unit changes its state by observing the
states of other units relayed by communication pathways. The
emergence of a globally ordered condition in these self-
organizing systems depends on the units developing strategies
based on local information. These strategies are not necessarily,
or even typically, ‘‘rational’’ or ‘‘error-free.’’ Rather, units may
make mistakes, may be prone to processing errors, and may need
to rely on incomplete, possibly corrupted information. Surpris-
ingly, simple strategies perform remarkably well in many exper-
imental environments (8).

A source of complexity in real-world systems is the structure
of the communication pathways. The typical idealized picture
consisting of agents that are located on a regular matrix and
interact with their neighbors is clearly inadequate. Recent
studies have demonstrated the intricate structure of the network
of interactions of the units comprising complex biological, social,
and technological systems (9–11). This complex topology is
known to affect the process dynamics and can cast a strong
influence on global organization (12).

In this article we demonstrate how complex topology and
noise can alter the efficiency with which a system of decentral-
ized units performs a global task. We show that a strategy that
is optimal under idealized conditions is susceptible to failure
when a complex topology and noise are present. Surprisingly, our
analysis reveals that a remarkable degree of coordination can be
achieved for more realistic environments through simple heu-
ristic methods. Specifically, we find that a majority rule, for
which each unit typically adopts the state of the majority of its
neighbors, can efficiently lead to global coordination. We inves-
tigate this rule because experimental work in social learning has
demonstrated that humans and other animals use this rule in
various environments. For example, in food-choice experiments,
an individual rat will continue to eat a given food item if most
other rats also consume the item, even if the rat experiences
induced nausea when eating the food item (3).

Methods
We model system-wide coordination as a computational task.
Specifically, we use density classification as a measure of coor-
dination and global information processing (13). For a system
comprised of units with a state that is a binary variable, the
density-classification task is completed successfully if all units
converge to the same state and the coordinated state is identical
to the majority state in the initial configuration. Additionally, it
is usually required that the time to reach the correct classification
scales at most linearly with the number of units in the system. For
example, for a system comprising 99 units, initially in a config-
uration in which 50 units are in state ‘‘1’’ and 49 are in state
‘‘�1,’’ the density-classification task is completed successfully if
all units converge to state ‘‘1’’ within 2 � 99 � 198 time steps.
Density classification is a trivial task for systems with centralized
control; one span of the system immediately yields the correct
result. In contrast, a decentralized system performing density
classification has to overcome two challenges: (i) information
aggregation (the ability to extract global information from local
interactions, because each unit accesses only a small fraction of
the units in the system) and (ii) system coordination (all units
have to converge to the same state).

The Units. Cellular automata (CA) (14) are a widely used class of
models of interacting agents evolving according to local rules.
The prototypical CA comprises discrete units placed at the nodes
of a one-dimensional lattice. The state of each unit is a binary
variable: it can assume only one of two values, for example ‘‘1’’
and ‘‘�1.’’ The system evolves in discrete time steps, with the
state of all the units being updated simultaneously in accordance
with a defined rule. The rule according to which a unit updates
its state takes as inputs the state of the unit itself and the states
of a finite number k of other units: the neighbors. Each unit
knows only its state at each step and can only access information
about the units to which it is connected, having no memory about
the previous steps. Hence, there is no mechanism for central
coordination in CA models. This fact and the versatility in the
selection of the updating rule make CA suitable model systems
for investigating coordination and global information processing.

Noisy Environments. Noise is an unavoidable component of real-
world systems. The noise acting on a system may originate from
external factors such as fluctuations in the environmental con-
ditions and from intrinsic properties of the units comprising the
system or the way in which they communicate. Naively, one
might surmise that the presence of noise must increase the
difficulty in completing the classification task. However, it now
is clear that, under certain conditions, noise may in fact drive a
system toward coordination (15).
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We generalize the CA dynamics to incorporate noise in the
communication between the units. To update its state, each unit
takes into consideration the states of its neighbors. We surmise
here that the presence of noise may corrupt the information
obtained from the neighbors. Formally,

�̃ j
i � � �j with probability 1 � ��2

�� j with probability ��2 , [1]

where �̃ j
i is the value unit i reads for the state of unit j, �j is the

true state of j, and �, which parametrizes the intensity of the
noise, ranges from � � 0 (noiseless dynamics) to � � 1 (random
dynamics). Note that the noise does not change �j, just the value
read by unit i.

System Topology. Recent work has demonstrated that the struc-
ture of the network of interactions in real-world systems is quite
complex. Among the properties of these networks is the small-
world phenomenon (12), which implies that pairs of units in the
network are typically separated by just a few intermediaries. A
small-world topology permits the fast spread of information and
can change the efficiency of a system dramatically when per-
forming global tasks.

To build a system with complex topology, we use here the
small-world network model of ref. 12, but the results we obtain
are robust to changes in topology as long as the small-word
property is present. In the model of ref. 12, the network is built
in two steps. First, an ordered network is created by placing the
units on the nodes of a one-dimensional lattice with periodic
boundary conditions. Each unit is then linked to its k nearest
neighbors in the lattice. Next, one rewires, with probability p,
each of the links in the network.§ The rewired links are redi-
rected to a randomly selected unit in the lattice.

By varying the value of p, the system spans topologies from the
ordered one-dimensional lattice (p � 0) to a random graph (p �
1). Despite its simplicity, this model has been shown to capture
two important properties of real-world networks: local cliquish-
ness and the small-world property (12). Another property ob-
served in many real-world networks is a scale-free topology (11).
To test the generality of our results, we also address the effect
this property has on systems performing the density-
classification task.

Classification Efficiency. The efficiency E�(p, �, N) of an updating
rule � is a function of noise intensity �, rewiring probability p,
and system size N. As stated above, the density-classification task
is completed successfully if all units converge to the same state
and the coordinated state is identical to the majority state in the
initial configuration. We perform 1,000 realizations of the
system for each set of parameter values and estimate E�(p, �, N)
as the fraction of times the system reaches the correct classifi-
cation within 2N time steps.¶ For each realization of the param-
eter values, we choose the initial configuration at random with
each of the units having equal probability of being in each of the
two states. Additionally, when p � 0, we generate a different
rewiring pattern for each realization.

Density Classification with the Gacs–Kurdyumov–Levin
(GKL) Rule
Noiseless One-Dimensional Environments. Crutchfield and cowork-
ers (13, 16) studied the case � � 0 and p � 0. They considered
a system in which each unit receives inputs from three neighbors
on each side, i.e., k � 6. This value of k implies that there are in
excess of 1038 distinct rules, making it virtually impossible to
search for the one that performs the task with optimal efficiency.
To solve this difficulty, Crutchfield and coworkers used genetic
algorithms. They found that the population of rules evolved
toward a small number of efficient rules. Interestingly, none of
them showed higher efficiency than the GKL rule (17),

§Note that the rewiring is done only once, when setting up the system, and that only
connections to the neighbors can be rewired. Hence, after the rewiring is done, connec-
tions between units may no longer be bidirectional.

¶The introduction of noise in the dynamics results in a degree of randomness in the
evolution of the interacting units. Thus, even if the dynamics drive the system to consen-
sus, at which all units converge to the same state, a fraction of the units still may switch
states because of fluctuations induced by the noise. To extend the density-classification
task to a noisy environment, we assume that the task is completed successfully when, at
the end of the evolution, any deviation from the correct classification is caused by these
fluctuations, meaning that if the noise were ‘‘turned off’’ at that moment, all the units
would converge to the correct state in the next time step.

Fig. 1. Effect of noise intensity � and rewiring probability p on the time
evolution of a system of CA operating according to the GKL rule (17). We
consider systems starting from random configurations that are allowed to
evolve for 2N time steps, where N � 99 is the number of units in the system.
(A) p � 0 and � � 0. In this case, which corresponds to the classic GKL rule, the
system shows the sophisticated dynamics studied in ref. 13 with the bound-
aries of the domains traveling in opposite directions. The domains quickly
merge, and the units find a consensus state. (B) p � 0 and � � 0.05. In this case,
the noise destabilizes the dynamics of the domains, and the system does not
converge to a consensus within 2N time steps. (C) p � 0.05 and � � 0. Without
the regularity of the one-dimensional lattice, the GKL rule is unable to process
local information properly. As a result, the system typically reaches a stable
configuration but does not converge to a consensus. (D) p � 0.05 and � � 0.05.
It is surprising that when both noise and rewiring are present, the system is
able again to converge to consensus. (E) With asynchronous updating, the GKL
rule is not capable of coordinating the domain dynamics, and the system does
not reach the consensus when p � 0 and � � 0. (F) p � 0.05 and � � 0.05. For
asynchronous update, a system with both noise and rewiring still converges to
a consensus. As we will see later, in the presence of noise and rewiring, the GKL
rule operates analogously to the majority rule.
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�i�t � 1� � �G��̃i
i�t� � �̃i�1

i �t� � �̃i�3
i �t�� if �̃ i

i� t� � �1
G��̃ i

i� t� � �̃ i	1
i � t� � �̃ i	3

i � t�� if �̃ i
i� t� � 1 ,

[2]

where G(x) is a step function

G�x� � ��1 if x � 0
1 if x � 0 . [3]

The mechanism by which the GKL rule leads to a consensus can
be understood by noticing that a unit i assumes the state of the
majority of a set of units comprising itself and its first and third
neighbors, making the decision based only on its left or right
neighbors depending on its state. The GKL rule thus gives rise
to dynamics in which the units evolve toward a configuration of
domains with boundaries that move through the system in
opposite directions. Quite rapidly, the domains merge and all
units attain a consensus state (Fig. 1A).

Noisy Environments with Complex Topology. To investigate the
efficiency of the GKL rule in more realistic environments, we
studied the rule for different values of noise intensity � and
rewiring probability p (Fig. 1). Fig. 2 displays the efficiency
EGKL(p, �, N) of the GKL rule in the phase-space (�, p). The high
efficiency observed by Crutchfield and coworkers for � � 0 and
p � 0 is lost if only noise or only rewiring is introduced. If both
noise and rewiring are present, however, the system still reaches
an efficient regime.

Asynchronous Updating. In traditional CA models, units update
their states simultaneously at every time step. This synchronous
evolution is computationally efficient but artificial. Fig. 2 dem-
onstrates that the efficiency of the updating rules changes when
the system evolves asynchronously.� Surprisingly, we find that a
noiseless one-dimensional system with units that conform to the

GKL rule cannot reach a consensus with an asynchronous
update (Fig. 1E). Thus, the success of the GKL rule in the
condition p � 0 and � � 0 truly depends on it being implemented
in a very restrictive and unrealistic environment.

Density Classification Through Heuristic Methods
In the density-classification problem, each unit has to evolve
toward the correct final state with only local information about
the current configuration of the whole system. As discussed
above, the sophisticated strategies devised to solve this problem
rely on an organized structure of interactions, in which the units

�In this case, we consider that the task is completed if the system reaches the corrected
classification within 2N2 individual updates.

Fig. 2. Efficiency of the GKL rule in performing the density-classification task
for different updating schemes. We systematically investigate the efficiency of
systems under different intensities of noise and rewiring probability. When all
units update their states synchronously, we find the highest efficiency when
p � 0 and � � 0. If � � 0 and p � 0 or � � 0 and p � 0, then the efficiency of
the GKL rule decreases dramatically. An efficiency of 
0.75 is achieved for a
large range of parameter values when both noise and rewiring are present. In
this regime, the GKL rule performs as a sort of majority rule. It is significant that
when using asynchronous update the system is not in the efficient regime
when p � 0 and � � 0. These results confirm that the GKL is not a robust rule,
i.e., is a rule optimized for very restrictive conditions.

Fig. 3. Effect of noise intensity � and rewiring probability p on the time
evolution of a system of CA operating according to the majority rule. We
consider three systems comprising N � 99 and starting from the same initial
configuration. As for the GKL rule, k � 6. (A) p � 0.05 and � � 0. The
small-world topology alone has little effect on the evolution of the system,
which rapidly converges to a configuration of stable domains of alternating
states, similar to what is expected for a one-dimensional lattice. (B) p � 0.05
and � � 0.1. In this case, the noise destabilizes the boundaries of the domains.
However, with only a few long-range connections, the system evolves slowly
and some of the domains persist until the end of the simulation. (C) p � 0.1 and
� � 0.1. In this case, the larger value of p enables local information to spread
quickly, and all units rapidly evolve to a consensus.

Fig. 4. Efficiency of the majority rule in noiseless environments. (A) Emaj for
k � 6, � � 0, and different system sizes as a function of p. When noise is not
present, a system evolving according to the majority rule can perform the
density classification only for large values of p. Note that the critical value pc

at which the system reaches the efficient regime increases with increasing
system size. (B) A block of four locally connected units. Each unit has three
connections to the other units in the block. Without noise, whenever all the
units in the block attain the same state, they will not switch states even if all
the rest of the system converges to the opposite state. (C) Onset of the
transition to the efficient regime. The efficient regime is achieved when p is
large enough so that there can be no blocks of locally connected units. From
Eq. 5, one has pc 
 1 � N � [4/(k2 � 2k)]. As the figure shows, when one subtracts
the expected value of pc, the onset of the transition of all curves collapse to a
value close to zero.
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need to have a precise notion of the state of their neighbors, as
well as the position of the neighbors in the network. Although
these strategies perform well in idealized environments (17–19),
in real-world decentralized systems the environment is rather
more complex. It thus is reasonable to hypothesize that in
real-world systems the units make their decisions by using simple
heuristics that are robust against errors and do not depend on the
precise structure of interactions.

A plausible heuristic to reaching a consensus is to adopt the
majority state of one’s neighbors (2, 3). In the CA class of
models, this strategy is described by the rule

�i�t � 1� � G��
j

�̃i
j�t��, [4]

where G is the step function defined in Eq. 3. We display in Fig.
3 the time evolution of a system of units obeying the majority
rule. Unlike the GKL rule, the majority rule is inefficient in
the limits � 3 0 and p 3 0. Under these conditions, a system
of units obeying the majority rule evolves toward a stationary
configuration of alternating domains, never reaching a con-
sensus. This result is not changed when p �� 1 (Fig. 3A) (20),
but a different picture emerges when both noise and rewiring
are present (Fig. 3B).

Noiseless Environments. Watts (20) studied the efficiency of the
majority rule in performing the density-classification task in
noiseless environments. Watts surmised that in noiseless envi-
ronments, the system reaches an efficient regime only for a
rewiring probability for which each unit typically has one rewired
connection, which implies that the critical rewiring probability pc
for which a transition to the efficient regime occurs is indepen-
dent of system size, depending only on the average connectivity
as pc 
 1�k (20). We tested this hypothesis and found that the
conditions to reach the efficient regime in a noiseless environ-
ment are considerably more strict: pc increases with the system
size, approaching 1 as N 
 � (Fig 4A).

As Watts (20) notes, the amount of rewiring needed to reach
the efficient regime is larger than that needed to reach the
small-world regime. We hypothesize that the reason a system
may not reach consensus, even when in the small-world regime,
is the presence of blocks of consecutive units that do not rewire
the connections internal to the block (Fig. 4B). For a noiseless
system, the probability that a sequence of (k�2) 	 1 neigh-

boring units will be connected in such a way that they can
maintain a minority state even if all the other units in the
system are in the opposite state is simply (1 � p)k/2[(k/2)	1]. One
thus expects a system of N units to reach the efficient regime
when the probability with which such sequences occur becomes
very small:

N�1 � p�
k
2	k

2	1

��1. [5]

Fig. 4C gives support to this hypothesis as it shows that Eq. 5
provides a good approximation to the onset of the transition to
the efficient regime.

These blocks of units are remnants of the local structure of the
network. Thus, the necessary condition to reach the efficient
regime in a noiseless environment is that p is large enough that
no local structures remain. In this regime, the network is no
longer a small world; instead, it is a random graph. It should be
noted that in a random graph the neighborhood of every unit is
a random sample of the whole network. Thus, more units switch
to the state of the majority in the first step, which continues in
the following steps in a bootstrap process. After a few time steps,
all units converge to the same state. In this regime, the density
classification is a rather trivial task; because all units have access
to global information.

Noisy Environments. Fig. 5 displays the values of Emaj(p, �, N) in
the phase-space (�, p) for different values of k. The efficiency of
the majority rule increases with the number of connections. For
k � 6, the case for which the GKL rule was optimized, the
efficiency of the majority rule reaches a value of 0.85, which is
greater than what is obtained with the GKL rule under the
idealized conditions � � 0 and p � 0. Strikingly, unlike the GKL
rule, the majority rule yields efficient coordination even for
asynchronous updating.

Thus, one can understand the role of each of the components
in this condition. The noise enables the system to escape
conformations with multiple domains. When p � 0, the bound-
aries move as random walks. For small values of �, a unit with
all its neighbors inside a domain is very unlikely to be affected
by the noise. In contrast, a single corrupted signal is enough to
change the state of a unit at the boundary of two domains.
Eventually some domains collapse, and the system converges to

Fig. 5. Phase-space (�, p) for systems evolving in accordance with the majority rule. We systematically investigate systems of size N � 399 with number of
connections k � 2, 4, and 6. As could be expected from the results shown in Fig. 3B, the majority rule performs poorly when p � 0. However, when long-range
connections are included, the system displays a very high value of efficiency for a wide range of noise intensities. The efficiency increases with the number
of connections, reaching a maximum value of 
0.85 for k � 6. With asynchronous updating, the majority rule still displays efficient behavior in a large region
of the (�, p) phase space. Thus, the majority rule is a highly robust and efficient strategy for performing a global computation from local information.
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consensus in a time of order N2 (21–24, ��). Thus, the role of
noise is to allow the boundaries of the domains to move and
assure that the system will not get trapped in a metastable
configuration with multiple domains.

The rewiring of the connections allows fast access to infor-
mation from across the system, i.e., the long-range connections
make the system a small world. When p � 0, the units in the
boundary of the domains may get an input signal from a rewired
connection. Given the current distribution of states, a rewired
connection is more likely to send a signal consistent with the
majority. Importantly, the small-world phenomena is not enough
to ensure the convergence to the correct classification. Even
after rewiring there is always a large probability that the system
will evolve toward conformation with multiple stable domains.
Only with the combined effect of the noise (enabling the system
to escape the metastable states) and the small-world topology
(giving a bias to the movements of the domain boundaries) can
the system reach a consensus within the permitted evolution
time.

Systems with Scale-Free Topology. Many real-world networks dis-
play a scale-free distribution of number of connections (11). To
test the effect that degree heterogeneity casts on the ability of a
system to perform the density-classification task, we perform
simulations in which the degree associated with the number kr of
rewired connections follows a power-law distribution (Fig. 6).
We obtain a power-law distribution by selecting the long-range
connections not at random but by using a preferential attach-
ment rule (11). We find that if the nodes with more outgoing
connections (which have a global influence on the system) are
also the ones with more incoming connections (which access
information from the entire system), then there is a global spread
of information, allowing the system to reach the efficient regime.

In contrast, if only the distribution of outgoing connections is
scale-free, the efficiency is reduced. The inefficiency in this case
is not caused by a difficulty in reaching a consensus but by the
fact that, with this topology, the consensus is determined not by
the majority but by only the most connected units. This may
explain why in some communication systems, such as the net-
work of social acquaintances and the neuronal network of
Caenorhabditis elegans (in which the evolution of network to-
pologies depends on the efficiency of information aggregation),
one does not find scale-free topologies (25).

Transition to the Efficient Regime
The majority rule undergoes a transition from an inefficient to
an efficient regime as p increases. To characterize this transition
quantitatively, we plot in Fig. 7 the efficiency as a function of the
rewiring probability for k � 6 and different system sizes. It is
known that the small-world regime emerges for probabilities that
scale with system size as 1�N (26, 27). Our data demonstrate that
the transition becomes more abrupt as N increases, which
suggests that the only condition to perform the density classifi-
cation in a large system is the presence of noise and the
small-world regime.

To test this hypothesis, we determine the limiting value of pc
as N 3 �. Specifically, we study the efficiency of the majority
rule as a function of the rewiring probability when varying the
evolution time te, i.e., the number of time steps the system is
allowed to evolve to reach the classification. Fig. 8A shows that
the onset of the transition moves toward smaller values of p as
te grows. Note that the efficiency of the systems with larger p does
not increase when one lets the system evolve for longer times. In

**This behavior is similar to that observed in the voter model (21), in which each unit
randomly selects one of its neighbors and adopts that neighbor’s current state. In the
one-dimensional voter model, the system evolves to a consensus in a time t 
 N2 (22). In
contrast, a unit evolving in accordance with the majority rule will not switch its state to
match one particular neighbor. In this sense, the majority rule is more coarsened (23) and
may converge to consensus in a complex network, unlike what is found for the voter
model (24).

Fig. 6. Density classification for a scale-free network topology. (A) If only the
distribution of outgoing links decays as a power law, some of the units, the
ones with more outgoing connections, cast a global influence on the system
while accessing only local information. These units act as ‘‘blind’’ leaders,
determining the evolution of the system without querying the state of the
majority of the units. In this case, the scale-free topology decreases the
efficiency of the majority rule. (B) A different picture emerges if the long-
range connections are bidirectional. Then, the units that influence a large
number of other units also access a large amount of information. In this case,
the system is able to reach consensus and attains an efficiency of 0.8.

Fig. 7. Transition to the efficient regime in noisy environments. We plot the
efficiency of the majority rule for systems with k � 6 and � � 0.01 (A) and � �
0.20 (B). Note that, when noise is present, the transition becomes sharper, and
pc3 0 as N3 �.

Fig. 8. The time needed to reach a consensus. (A) Efficiency as a function of
the rewiring probability for systems with � � 0.2, N � 1599, and different
values of total evolution time te. When the system is allowed to evolve for
longer times, the transition moves toward smaller values of p. The shape of the
curve after the transition is independent of the evolution time, indicating that
the system always reaches a stationary configuration with all the units in
consensus. The efficiency in this region depends on the number of times the
system evolves to the correct classification. (B) Mean time 
tc� to reach con-
sensus as a function of the system size, for systems with p � 0.1 and � � 0.25.
The dotted line corresponds to the linear behavior. It is visually apparent that

tc� displays a sublinear growth with system size.
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this regime, all realizations converge to a stationary configura-
tion with all units in the same state, the consensus. The
asymptotic value of E in this efficient regime indicates the
probability that the system will reach a consensus with the
correct classification. In the inefficient region of the phase-space
(�, p), the system does not reach a consensus within the allotted
evolution time.

The dependence of pc on N can be determined indirectly by
studying how the time tc to reach a consensus increases with
system size. An increase of tc faster than linear means that there
cannot be an efficient regime in the N 3 � limit, whereas an
increase of tc slower than linear means that the efficient regime
is reached for p � 1�N. The data in Fig. 8B demonstrate that 
tc�
grows slower than the system size, implying that 
tc��N3 0 in the
limit of large systems. As a consequence, the onset of the
transition to the efficient regime will move to smaller values of
p as N increases, i.e., pc 3 0 when N 3 �.

Discussion
Our results demonstrate that noise and topology critically affect
the performance of strategies for achieving global coordination

and information aggregation. Rules such as GKL, which perform
well in noiseless, regular environments, are inefficient if complex
topologies and noisy information transmission are present. In
contrast, simple heuristics such as the majority rule investigated
here are efficient in exactly such environments. Because real
social and natural networks are characterized by noisy transmis-
sion and complex, small-world topologies, our findings provide
an explanation for the observed use of such social-learning
heuristics by animals and humans (2, 3).

Furthermore, our results suggest that decision rules cannot be
evaluated in isolation from the environment of their system. That
is, their success in coordinating behavior and aggregating infor-
mation depends on both the rule and the typical environment in
which it is used. In this sense, the majority rule is ‘‘ecologically
efficient’’; it is well suited to interaction systems that resemble
the real world. Put together, our findings hint at the possibility
that networks and ecologically efficient rules coevolve over time.

We thank Alex Arenas, Albert Diaz-Guilera, Roger Guimerà, Marta
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