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de Liège, B4000 Liège, Belgium; and ‡Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

Contributed by R. D. Levine, June 3, 2004

The chemical kinetic description of time evolution where the phase
is random but the states are discrete is discussed as a basis for a
computational approach. This proposed scheme uses numbers in
the entire range of 0 to 1 to represent Boolean propositions. In the
implementation by chemical kinetics these numbers are the mole
fractions of different species. Vibrational relaxation in a mixture of
HCl and DCI is the physical system that is used to illustrate the
approach. Energy exchange in such a mixture corresponds to two
strongly coupled two-level systems. A search problem, previously
discussed in the quantum computing literature, is solved as an
example. The solution requires the same number of function
evaluations as in the quantal case. The action of the oracle is
described in detail.

The basic element of current logic devices is a switch. It is
either on or off. This corresponds to the two possible values,

say 0 and 1 or true and false, of a Boolean variable. The values
of physical observables are not usually either 0 or 1. A molecule
is not easily made to act as a switch. On the other hand,
molecules exhibit a rich dynamical behavior that we would like
to take advantage of so as to perform logic operations.

In this article we focus on what is, to us, a rather common
characteristic of molecules. It is that molecules can be classified
into discrete alternatives. The simplest such distinction is the
very idea of a chemical species. The operational definition of a
molecule is made possible by the (relative) stability of the entities
we know as atoms and by the atoms combining into molecules
in simple and definite proportions. Thereby a molecule can be
identified to be, say, HCl and not HBr or any other diatomic one.
A finer but still operationally fully viable resolution is that
molecules of a given chemical species can be identified to occupy
definite quantum states (or groups of states). Except for special
circumstances it is typical of molecules that the quantum me-
chanical phase of its states is random. So the different states of
molecules act as discrete and mutually exclusive classical alter-
natives. This state of affairs is what we mean by quasiclassical.
We want to perform logic operations by taking advantage of the
probabilities of occupancy of the different quantum states that
are resolvable in an experiment. By the end of this article we
intend to show, by an explicit example, that this is possible.

To implement our program we need input from several
directions. In this introduction we review the different ideas that
we intend to invoke. Then we describe a solution of a particular
problem with special reference to what is the logic problem that
we claim to solve, what is the physical system that is used, and
how we set up the interface between them.

We do not use the phase of the quantum mechanical state
because we propose to operate under conditions where this
phase is random. Starting with the work of Deutsch (1, 2), there
is an extensive current literature emphasizing the critical com-
putational advantages that can accrue when the elementary logic
operation is a unitary transformation on a quantum mechanical
state vector (3–8). As discussed in many papers there are two
very essential new features brought in by quantum mechanics.
One is the linearity of quantum mechanics that allows the
creation of superposition of states and hence parallels the
computation. The other is the entanglement-enhanced process-
ing (9, 10). Both of these important advantages make essential
use of both the phase and the amplitude of the state, and so any

application is sensitive to dephasing processes. There is much
progress in quantum error correcting algorithms (4, 6). On the
other hand, starting with the work of Ehrenfest in the old
quantum theory, we know that action variables are much more
robust to perturbations than angle variables (11). It is the
quantum numbers, which correspond to action variables, that we
use. We take it that both intermolecular and intramolecular
perturbations have had sufficient time to act to randomize the
phase.

Chemists have traditionally taken it for granted that the phase
is random. For the chemists it is the possibility of a coherent
superposition that is in need of demonstration. The systematics
of chemistry is based on our ability to categorically say that a
molecule is HCl and not, say, DCl, (D is the heavier isotope of
H). The Gibbs paradox is a paradox when we phrase it so as to
imply that molecules are either identical or completely different.
Chemists on empirical grounds and Einstein and von Neumann
on thermodynamic grounds went further to argue that we can say
that the HCl molecule is either in the ground vibrational state,
� � 0 or in the first excited vibrational state, � � 1. It is the case
that one could, although not so easily for a molecule with a high
vibrational frequency as HCl, prepare a coherent superposition
of the � � 0 and � � 1 states of a molecule. One certainly can
prepare a coherent superposition of different rotational states
and such rovibrational coherent superpositions have been pro-
posed for molecule-based quantum computing (12, 13). But on
a longer time scale molecular states decohere quite rapidly.
Quite often the initial fast dephasing is not necessarily caused by
external perturbations but is intramolecular in origin, being
caused by the anharmonicity of the motion that means that the
period is energy dependent (14). Perturbations then prevent the
dephased system from ever recurring. Our approach in this
article is that at the time of probing the system we take the phase
to be random.

Our long-term interest is in computing on the molecular
scale (15–17). In this article we want to stress that we do not
in any way use phase information in our computational
scheme. The science that describes the evolution of macro-
scopic chemical systems in time is chemical kinetics. Chemical
kinetics (implicitly) makes the random phase approximation
and this is what we mean by quasiclassical. We take from
quantum mechanics the notion of discrete quantum states, and
we describe a molecule in a definite quantum state (or disjoint
group of states) as a particular species. Notwithstanding the
possibility of interference, in this article we take the observed
occupancies of such species to be mutually exclusive. A
molecule can be found to be either this species or another
species but not both. There have been suggestions on how to
use chemical kinetic networks as combinational logic circuits
(18). These schemes require that the concentrations of species
be switched essentially completely on or off. It is an aspect of
our proposal that variable concentrations of the different
species are allowed. It is the fractional concentrations, what
chemists call mole fractions, that provide the probabilities that
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we use in our scheme. In chemical kinetics it is the collisions
between molecules that lead to changes in these probabilities.

To demonstrate our approach we will discuss a particular
problem. Since we want to compare with quantum computa-
tion we discuss what is arguably the canonical problem, due to
Deutsch, whose solution is usually known as the Deutsch–Josza
algorithm. We will use a variant of the Deutsch problem that
can also be viewed as a search problem. We want to pick one
among four alternatives, and we want to do it in two (linear)
operations.

There are three ingredients in our approach. First is the use
of not necessarily 0 or 1 valued numbers to represent Boolean
propositions. Cox (19, 20) has shown that the probability of a
proposition is such a function. The work of Cox is discussed by
Tribus (21) and Jaynes (22). The final result is that starting with
a Boolean algebra of propositions we have a consistent and
unique scheme for relating numerical values of probabilities. By
choosing the value of the probability of a proposition to be in the
range zero to unity the resulting rules for compounding the
values of probabilities are the very same ones given in every
textbook on probability and all the needed rules can be derived
from

P�AB�E� � P�A�BE�P�B�E�

P�A�E� � P�A� �E� � 1.

The bar denotes the negation of a proposition and the notation
AB means the logical AND.

What the work of Cox provides for us is the calculus of
probabilities for propositions that can be either true or false.
These propositions are to be compounded as in a Boolean
algebra. The use of Boolean algebra is not possible when one
seeks to generalize to quantum mechanical propositions because
of the possibility of interference. In the quasiclassical limit we
deal with propositions that can be compounded by using the
distributive law.¶

The second ingredient is the definition of the problem we aim
to solve. A function of one Boolean variable can be evaluated at
the two different values for its argument, x � 0 or 1. There are
therefore four Boolean functions of one variable. They fall into
two classes depending on their values at the two points. If the two
values of the function are the same then we call the function a
constant and there are two such functions [f(x) � 1 and f(x) �
0]. A balanced function is when one value equals zero and the
other equals unity. There are two such functions [f(x) � x and
f(x) � x� where the bar denotes the negation]. The original
Deutsch problem is to determine whether a Boolean function of
one variable is constant or balanced by using just one function
evaluation (2). An extension is to identify an unknown Boolean
function of n variables that is given to be either constant or
balanced. The problem is to determine which, using n function
evaluations (23). Another generalization (24–26) is to distin-
guish between Boolean functions of n variables that are of the
type f(x) � a � x � a1x1 Q a2x2 . . . Qanxn, where a is an n
dimensional Boolean variable and Q is addition modulo two. For
the 2D case the Boolean variable a can assume four different
values and the four functions of the form a � x are listed in Table
1. The problem we solve in this article is to identify which one
of the four functions, using just two function evaluations. The
extension to higher values of n is to use just n function evalua-

tions to distinguish between the 2n possible functions of the form
a � x.

The other notion we need from the discussions of quantum
algorithms is that of an oracle. The oracle is a device that is able
to recognize the solution to the problem (3). It is sometimes also
called a black box. In this article we describe the inner workings
of our oracle.

The third ingredient is the physical system whose time
evolution specifies which one of the four different Boolean
functions of the type a � x (and listed explicitly in Table 1) is
the answer. It is two two-level systems coupled to one another.
One system is a gaseous mixture of HCl in the ground and the
first excited vibrational states. Left on its own this system will
relax exponentially back to thermal equilibrium (14). The
other system is a mixture of DCl in its ground and first excited
vibrational states. It, too, will relax on its own. But following
Chen and Moore (27, 28) we use a mixture of HCl and DCl.
The two systems are then strongly coupled by the one quantum
exchange process

HCl�� � 1� � DCl�� � 0� w HCl�� � 0� � DCl�� � 1� .

All other relaxation processes in an HCl/DCl mixture do not
conserve the number of vibrational quanta and are less efficient.
The four propositions that we use for computing are the
chemical identity of the molecule (HCl or DCl) and the vibra-
tional state (� � 0 or 1). The probabilities are the concentrations
of these different four species normalized to a given total.

The kinetics of the HCl/DCl mixture were thoroughly
studied (27, 28) by using an HCl laser to pump the HCl
molecules in the gaseous mixture to the � � 1 state. In the
numerical example shown in Fig. 1 we use the rate constants
that were measured. One can also use a DCl laser to pump the
DCl component. It is also possible by pumping to distinguish
between HCl molecules with the lighter or heavier isotope of
chlorine (29, 30).

The Oracle
The oracle we use specifies an initial state for the dynamics.
Explicitly, it specifies whether to laser excite HCl or DCl or
neither or both.

The Boolean functions that we want to distinguish are the four
functions of the form a � x of the 2D Boolean variable x, x � {x1,
x2}. The scalar product is defined as a � x � a1x1 Q a2x2 and a
can assume one of the four values 0,0; 0,1; 1,0; and 1,1. Table 1
lists the values of the four functions at the four possible values
of their argument x. The possible values of each function are
given as a column identified by the value of a.

The two function evaluations that we use are the values of
f(0,1) and f(1,0). The oracle performs them. For the four
possible values of a the two evaluations yield four distinct pairs
0,0; 1,0; 0,1; and 1,1. In the kinetic scheme 1,0 is the condition
HCl excited to � � 1 whereas 0,1 is the condition DCl excited to
� � 1. Inspection of the rows corresponding to x � 0,1 or 1,0
shows that the two function evaluations specify different outputs
for the four possible values of a. The four different outputs are
then used as initial conditions for the kinetic scheme. Fig. 1

¶The distributive law A � (B � C) � (A � B) � (A � C) and A � (B � C) � (A � B)
� (A � C) is a necessary condition on the algebra being Boolean. The logical OR
operation is here denoted by � and the logical AND operation is denoted by �. The
distributive law is not satisfied when one seeks to generalize to quantum mechanical
propositions because of the possibility of interference.

Table 1. Values of the four functions a � x for the four possible
values of a, at the four possible arguments x

x�a 0,0 0,1 1,0 1,1

0,0 0 0 0 0
0,1 0 1 0 1
1,0 0 0 1 1
1,1 0 1 1 0
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shows that, using realistic values for the rates of energy transfer
processes, one can easily discern between them.

There are other oracles that could be constructed for identi-
fying one among four possibilities. For example, we may want to
distinguish four possibilities defined as follows: A function of two
Boolean variables can be evaluated at four different values for
its arguments. We label these four points as 0,1,2,3. There are 16
Boolean functions of two variables. They fall into four classes
depending on their values at the four points. If all four values of
the function are the same then we call the function a constant.

A balanced function is when two values equal zero and two equal
unity. Or the function can be true at just one point or the
function can be true at three points. The oracle is to recognize
which of the four classes the function belongs to, using just two
function evaluations.

The first evaluation computes the parity of the function:

� � f�0� � f�1� � f�2� � f�3�.

The parity is 0 if the function values at the four points have an
even number of unities and the parity equals 1 otherwise. The
parity will distinguish between the constant and balanced func-
tions (eight functions all together) on the one hand and the other
eight possibilities.

The second evaluation computes �, the sum (modulo two) of
all possible binary products

� � f�0�f�1� � f�0�f�2� � f�0�f�3� � f�1�f�2� � f�1�f�3� � f�2�f�3�.

This sum is a parity check on the binary products meaning that
the value of � distinguishes between those classes of functions
where the number of nonzero binary products is even or odd. For
the functions for which � � 1, � resolves the constant (� � 0)
and the balanced (� � 1) functions and for the two classes with
an odd number of 1s, it will distinguish between those that have
one value that equals 1 (� � 0) and those that have three values
of 1 (� � 1). It should be noted, however, that the evaluation of
� is not linear in the unknown function.

With two evaluations giving the values of � and of � the oracle
knows the class that the unknown function belongs to. Specifi-
cally, the four classes are encoded by the four values �� �� , �� �, ���
and ��. Any one of the possible 16 functions will produce only
one output that is not zero. The output that is unity identifies the
class. A yet alternative oracle with the same purpose works to
base 4. Then just one function evaluation of the parity to base 4,
which is equivalent to two evaluations to base 2, will suffice to
recognize the class.

Kinetics
The aim of the kinetic scheme is to demonstrate four distinct
temporal outputs that can be used to distinguish the four
functions listed in Table 1.

The probabilities that we operate with are the mole fractions
of the different species.

We consider a mixture of HCl and DCl plus possibly some inert
buffer gas such as Ar at a low total pressure (say in the range 1 to
50 torr). Our description follows Moore (28) and Chen and Moore
(27). At thermal equilibrium at ordinary temperatures both the HCl
and DCl molecules are very predominately in their ground, � � 0,
vibrational state but we take it as given that the system can be
pumped away from equilibrium by rapidly raising the concentration
in the � � 1 state of HCl or of DCl molecules or of both.

When the mixture is displaced from equilibrium very fast near
resonant vibration–vibration transfer collisions

HCl�� � 1� � HCl�� � 1� ^ HCl�� � 2� � HCl�� � 0�

DCl�� � 1� � DCl�� � 1� ^ DCl�� � 2� � DCl�� � 1�

[1]

are possible. These are so efficient that on the �s time scale of
interest to us here they can be taken to have equilibrated the � �
1 states. The fastest process that we probe is the not quite
resonant transfer

Fig. 1. Fractional concentration of HCl in � � 1 and of DCl in � � 1 vs. time for
three different initial states as determined by integration of the kinetic scheme.
The initial state is given as pT (0). For the do nothing initial state (data not shown),
thesystemremains inthermalequilibrium.Therateconstantsaregiveninthetext
and satisfy detailed balance. Time is scaled by the pressure in Torr.
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HCl�� � 1� � DCl�� � 0�L|;
k� e

k� e

HCl�� � 0� � DCl�� � 1� .

[2]

This takes many thousands of collisions to reach equilibrium (cf.
tables 1 and 2 of ref. 27). The vibration to translation and
rotation cross relaxation processes

HCl�� � 1� � DCl�� � 0�L|;
k� H

k� H

HCl�� � 0� � DCl�� � 0�

HCl�� � 1� � DCl�� � 1�L|;
k� H

k� H

HCl�� � 0� � DCl�� � 1�

[3]

are less efficient by an order of magnitude or so because of the
high value of the HCl vibrational frequency (2,886 cm�1). The
other cross relaxation processes are

DCl�� � 1� � HCl�� � 0�L|;
k� D

k� D

DCl�� � 0� � HCl�� � 0�

DCl�� � 1� � HCl�� � 1�L|;
k� D

k� D

DCl�� � 0� � HCl�� � 1� .

[4]

The three processes (2–4) give rise to three distinct eigenvalues
and eigenvectors of the relaxation kinetics. Process 2 drains
excited HCl molecules via excited DCl molecules as intermedi-
ates. Process 3 drains excited HCl molecules directly to the
ground state, whereas process 4 drains excited DCl molecules
without significantly exciting HCl along the way because process
2 favors the left to right direction as written. Actual simulations
are shown in Fig. 1. There are other processes that are possible
but we do not include in the kinetic scheme. One is the vibration
to translation/rotation relaxation of HCl (� � 1) by collision with
HCl (� � 0). Others include vibration to translation/rotation
relaxation by collisions with Ar, processes that are far too
inefficient to effectively compete.

There are four events, and we denote their probabilities as
[�HCl, �DCl], where the �s are vibrational quantum numbers and
the meaning is that of AND. So, for example, the concentration
of DCl in � � 1 is ([1,1] � [0,1]) PDCl, where PDCl is the partial
pressure of DCl. To keep it simple we take the partial pressures
of HCl and of DCl to be the same. The kinetic scheme is then

d
d��

�0,0�
�1,0�
�0,1�
�1,1�

�
� �

��k� H � k� D� k� H k� D 0
k� H �k� H 	 k� e 	 k� D k� e k� D

k� D k� e �k� D 	 k� e 	 k� H k� H

0 k� D k� H ��k� H � k� D�
�

��0,0�
�1,0�
�0,1�
�1,1�

� .

Here � is time measured in the units torr � sec, where torr is the
unit for the value of the partial pressure P.

The relaxation matrix, A, can be diagonalized by a similarity
transformation, A � U�1 �U, where � is a diagonal matrix so
every initial probability vector p(0) propagates as p(�) � U�1

exp(
�)Up(0). The eigenvalues of A are negative except for one
zero eigenvalue that corresponds to the distribution at thermal
equilibrium. That the relaxation reaches equilibrium is insured
by defining the rate constants for the reversed reactions in terms
of the rate constants for the forward reactions and detailed
balance, for example

k�e�1,0�e � k�e�0,1�e .

By multiplying both sides by PHClPDCl and using the conventional
chemical notation for concentrations and that, at equilibrium,
the concentrations of different species are independent, this
relation reads

k�e��HCl�� � 1��e���DCl�� � 0��e�

� k� e��HCl�� � 0��e���DCl�� � 1��e� .

At room temperature (1°K � 0.695 cm�1) and using the vibra-
tional frequencies of HCl (2,886 cm�1) and of DCl, (2,091 cm�1),
k�e�k�e � 50. Similarly

k�H��HCl�� � 1��e� � k� H��HCl�� � 0��e� k� H 			 k� H

k�D��DCl�� � 1��e� � k� D��DCl�� � 0��e� k� D 		 k� D

and k�e�k�e � (k�H�k�H)�(k�D�k�D). The values used in the simu-
lations are k�e � 3,250 sec�1�torr�1 � 6.75 k�H � 25 k�D and the
partial pressures are taken to be equal. The results are shown
in Fig. 1, where the concentrations [HCl(� � 1)] and [DCl(� �
1)] are plotted vs. Pt, where P is the pressure in torr and time
is in sec. As discussed by Chen and Moore (27), the concen-
tration of HCl and of DCl in the � � 1 state is monitored
through their slow emission in the IR, an emission that is too
slow to significantly deplete the concentration but is sufficient
for detection.

Discussion
Consider a search for one among N mutually exclusive possibil-
ities. Quasiclassical information theory (meaning discrete prop-
ositions that satisfy the distributive law) shows that by using
binary questions it should in principle be possible to reach an
answer by using log2 N queries (31). The information theoretic
proof does not provide a construction on how to actually do so.
What our kinetic scheme provides is a coding that allows the
answer to be determined. In fact, the first theorem of informa-
tion theory provides a stronger result. If the N alternatives are
equally likely, then log2 N is indeed the best that one can aim for.
But if the alternatives differ in their likelihood then it is possible
to do better.

The particular search problem that we solve was chosen such
that the operation of the oracle is linear in the unknown function.
If this condition is relaxed then the repertoire of problems that
can be solved is far wider.

Another generalization that is possible is to write the
quasiclassical time evolution in a manner that more closely
mimics the unitary evolution of quantum computing. This is
made possible by the underlying geometry of the quasiclassical
description (32). Instead of unitary matrices quasiclassical
transformations are described by orthogonal matrices, but if
one can allow improper rotations then such quantum gates (3,
33) as the Hadamard or the quantum XOR, also known as
controlled-NOT,
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Hadamard:
1
�2

� 1 1
1 �1	 , c-NOT:�

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

�
are possible also for the quasiclassical transformations.

The quasiclassical time evolution that we used as a concrete
example describes a macroscopic system. We chose it intention-
ally so as to emphasize that we do not use phase information. But

apart from a short induction period the random phase approx-
imation is equally useful to describe intermolecular dynamics
(14). It should therefore be possible to devise gates down to
single-molecule spectroscopies (34).
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