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Abstract

Electronic health records (EHRs) have become a vital source of patient outcome data but the 

widespread prevalence of missing data presents a major challenge. Different causes of missing 

data in the EHR data may introduce unintentional bias. Here, we compare the effectiveness of 

popular multiple imputation strategies with a deeply learned autoencoder using the Pooled 

Resource Open-Access ALS Clinical Trials Database (PRO-ACT). To evaluate performance, we 

examined imputation accuracy for known values simulated to be either missing completely at 

random or missing not at random. We also compared ALS disease progression prediction across 

different imputation models. Autoencoders showed strong performance for imputation accuracy 

and contributed to the strongest disease progression predictor. Finally, we show that despite 

clinical heterogeneity, ALS disease progression appears homogenous with time from onset being 

the most important predictor.

1. Introduction

1.1. Background

Electronic health records (EHRs) are a core resource in genetic, epidemiological and clinical 

research providing phenotypic, patient progression and outcome data to researchers. Missing 

data presents major challenges to research by reducing viable sample size and introducing 

potential biases through patient selection or imputation1,2.
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Missing data is widely prevalent in the EHR for several reasons. EHRs are designed and 

optimized for clinical and billing purposes meaning data useful to research may not be 

recorded2. Outside of the design of EHRs, the reality of the clinic results in missing data. 

For example, clinicians must consider financial burden in ordering lab tests for patients and 

issue the minimum amount of testing and diagnostics to effectively treat their patients3.

The various reasons data may be missing create different types of missing data: missing 

completely at random, missing at random and missing not at random1,4,5. This work focuses 

on data missing completely at random and data missing not at random. Data missing 

completely at random indicates that there is no systematic determination of whether a value 

is missing or present. The likelihood of response is independent of the data and any latent 

factors. Data missing not at random occurs when data is missing due to either observed 

values in the data or unobserved latent values. An example within the EHR would occur if a 

lab test is only issued based on a clinicians observation of the patient. Whether or not the test 

is issued provides insight into the patient’s status.

Non-imputation approaches often exclude data from the analysis to allow for downstream 

analysis. One approach, complete-case analysis, throws out records with missing data. 

Within the EHR this would severely limit sample size, in addition if incomplete records have 

a systematic difference from complete records unintentional bias can be introduced6. As 

computational resources have increased, computationally complex imputation techniques 

have become feasible and are growing in popularity1. Computationally intensive techniques 

such as Singular Value Decomposition (SVD) based methods and weighted K-nearest 

neighbors (KNN) methods have joined less complex methods like mean and median 

imputation. Both SVD and KNN-based methods have been shown to perform effectively in 

microarray imputation7. Popular multiple imputation methods show particular challenges 

with data that are not missing at random1.

Autoencoders are a variation of artificial neural networks that learn a distributed 

representation of their input8. They learn parameters to transform the data to a hidden layer 

and then reconstruct the original input. By using a hidden layer smaller than the number of 

input features, or “bottleneck” layer the autoencoder is forced to learn the most important 

patterns in the data9. To prevent overreliance on specific features two techniques are 

commonly used. In a denoising autoencoder, noise is added to corrupt a portion of the 

inputs9,10. Alternatively, a technique called dropout in which random units and connections 

are removed from the network forcing it to learn generalizations11. Autoencoders were 

shown to generate useful higher representations in both simulated and real EHR data. 

Because autoencoders learn by reconstructing the original input from a corrupted version, 

imputation is a natural extension12,13.

1.2. ALS and the Pooled Resource Open-access Clinical Trials

We evaluate each of the imputation methods on the ALS Pooled Resource Open-access 

Clinical Trials (PRO-ACT). Pooled clinical trial datasets present an ideal option for 

evaluating EHR imputation strategies because they include patients from differing 

environments with potential systematic biases. In addition, clinical trials represent the gold 
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standard for data collection making it possible to spike-in missing data while maintaining 

enough signal to evaluate imputation techniques.

Prize4Life and the Neurological Clinical Research Institute (NCRI) at Massachusetts 

General Hospital created the Pooled Resource Open-Access ALS Clincial Trials (PRO-

ACT) platform with funding from the ALS Therapy Alliance in and in partnership with the 

Northeast ALS Consortium. The PRO-ACT project was designed to empower translational 

ALS research and includes data from 23 clinical trials and 10,723 patients. In this work, we 

use the subset of 1,824 patients included in the Prize4Life challenges14.

ALS is a progressive neurodegenerative disorder affecting both the upper and lower motor 

neurons causing muscle weakness, paralysis and leading to death14. ALS patients typically 

survive only 3 to 5 years from disease onset and show large degrees of clinical 

heterogeneity15–18.

A common measure used to monitor an ALS patient’s condition is the ALS functional rating 

scale (ALSFRS)19,20. The ALSFRS consists of 10 tests scored from 0–4 assessing patients’ 

self-sufficiency in categories including: feeding, grooming, ambulation and communication. 

The change over time, or slope, is commonly used as a statistic to represent ALS 

progression.

2. Methods

We compare and evaluate a variety of methods to impute missing data in the EHR. We 

spiked-in missing data to the PRO-ACT dataset, and evaluated each approach’s performance 

imputing known data. We also evaluated prediction accuracy using each of the imputation 

methods on the ALSFRS. Each of these is described in detail below and all analysis was run 

using freely available open source library packages, DAPS12, FancyImpute21, Keras22 and 

Scikit-learn23.

2.1. Data preparation and standardization

The PRO-ACT dataset includes patient demographic data, family history, concomitant 

medications, vital sign measurements, laboratory results, and patient history (disease onset 

etc.). PRO-ACT performed an initial data cleaning and quality assurance process. This 

process included extracting quantitative variables, merging laboratory tests with different 

names across trials, removable of indecipherable records and converting units. After 

processing the PRO-ACT dataset includes only quantitative values (continuous, binary, 

ordinal and categorical).

Our analysis encoded categorical variables using Sci-kit learn’s OneHotEncoder23. 

Temporal or repeated measurements were encoded as the mean, minimum, maximum, count, 

standard deviation and slope across all measurements, creating 572 features for each 

samples. Additional measurements were standardized across scales (i.e. inches to cm). Non-

numeric values in numeric measurements were coerced to numeric values. Where coercion 

failed they were replaced by NaN. Input features were normalized and scaled to be between 

0 and 1, with missing features remaining as NaN.
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2.2. Imputation Strategies

2.2.1. Imputing missing data with Autoencoders—We constructed an autoencoder 

with a modified binary cross entropy cost between the reconstructed layer z and the input 

data x to better handle missing data as in Beaulieu-Jones and Greene (2016) (Formula 1)12. 

The modified function takes into account missing data, with m representing a “missingness” 

vector; m has a value of 1 where the data is present and 0 when the data is missing. By 

multiplying by m and dividing by the count of present features (sum of m) the result 

represents the average cost per present feature. The weights and biases of the autoencoder 

are trained only on present features and imputation does not need to be performed prior to 

training the autoencoder.

(Formula 1)

With the exception of the modified cost function autoencoders were trained as described by 

Vincent et al. with a 100 training epoch patience10. If a new minimum cost was not reached 

in 100 epochs, training was stopped. The autoencoder with dropout was implemented using 

the FancyImpute21 and Keras22 libraries with a Theano24,25 backend.

We performed a parameter sweep to determine the hyperparameters for the autoencoder. In 

the sweep we included autoencoders of one to three hidden layers and each combination of 

2, 4, 10, 100, 200, 500 and 1000 (over-complete representation) hidden nodes per layer. 

Autoencoders with two hidden layers made up of 500 nodes each are shown for all 

comparisons (Figure 1). Dropout levels of 5, 10, 20, 30, 40 and 50% were evaluated with 

20% being shown for all comparisons.

Binary cross entropy was used for training because it tends to be a better evaluator of quality 

when training neural networks9,10,26,27. We use a root mean squared error for comparison to 

other methods to prevent a bias in favor of autoencoders, as most other methods are not 

trained with cross entropy.

2.2.2. Comparative imputation strategies—We used the FancyImpute21 libraries 

implementations for each of the other imputation strategies: 1) IterativeSVD, matrix 

completion by low rank singular value decomposition based on SVDImpute7, 2) K-nearest 

neighbors imputation (KNNimpute), matrix completion by choosing the mean values of the 

K closest samples for features where both samples are present 3) SoftImpute28, matrix 

completion by iterative replacement of missing values with values from a soft-thresholded 

singular value decomposition, 4) column mean filling and 5) column median filling. The 

standard implementations of the remaining algorithms in the FancyImpute library, MICE, 

Matrix Factorization and Nuclear Norm Minimization are known to be slow on large 

matrices and were impractically slow on this dataset29–33.

We performed a parameter sweep for SVDimpute analyzing ranks of 5, 10, 20, 40 and 80. 

Ranks of 40 showed the strongest performance with this dataset and are shown for all 

comparisons. The parameter sweep for KNNimpute included 1, 3, 5, 7, 15 and 30 neighbors, 
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k of 7 showed the strongest performance of the parameter sweep and is used for all 

comparisons.

2.3. Missing Completely at Random Imputation Evaluation

To evaluate imputation accuracy in a missing completely at random environment we 

performed trials replacing 10, 20, 30, 40 and 50% of known features at random with NaN. 

We performed each imputation strategy on the data with spiked-in missingness and 

evaluated the root mean squared error between the imputed estimates and the original data. 

We performed five trials for each amount of spiked-in data (Figure 2A). Performance was 

evaluated using the root mean squared error between the known value before spiking in 

missingness and the imputed value.

2.4. Missing Not at Random Imputation Evaluation

To perform a basic imputation simulation where data was missing not at random, varying 

percentages (10, 20, 30, 40, and 50%) of features were chosen at random. Half of the highest 

or lowest (randomly selected) quartile of values was replaced by NaN at random. Each 

imputation strategy was evaluated on five independent spike-in trails. Performance was 

evaluated using the root mean squared error between the imputed values and original values. 

This type of imputation could occur when the highest or lowest values represent the normal 

range and the clinician is able to determine a patient is normal through other factors. 

Alternatively the extreme values could represent a clear result where an additional is not 

needed to determine the result. Performance was evaluated using the root mean squared 

error between the known value before spiking in missingness and the predicted value.

2.5. Progression Prediction Evaluation

To predict disease progression as represented by the ALSFRS score slope, we first imputed 

the missing data using column mean averaging, column median averaging, SVDImpute, 

SoftImpute, KNNimpute, and an autoencoder with dropout. For prediction purposes we 

excluded all ALSFRS score and Forced Vital Capacity-related features.

We then used the scikit-learn implementation of a random forest regressor23 to predict the 

ALSFRS score slope. The random forest regressor was chosen because four of the top six 

teams in the DREAM-Phil Bowen ALS Prediction Prize4Life challenge used variants of 

random forest regressors14. We also compare a random forest regressor modified to predict 

progression from the raw data without imputation34. Ten-fold cross validation was 

performed and the root mean squared error between the predicted slope and actual slope was 

calculated. We then extracted the top 10 most important features used in the trained model 

for analysis (Figure 2B).

3. Results

Most patients were missing approximately half of the features we extracted from the EHR 

(3A). The pooled aspect of the PRO-ACT data is particularly evident in the distribution of 

missing features as different clinical trials collected different amounts of data. Features 

tended to be observed in either less than 25% or in greater than 75% of patients (Figure 3B). 
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Lab tests in particular demonstrated high variability of missingness among patients, with 

many present in small numbers of patients. It is impossible to determine the level of each 

type of missing data that exists, but it is clear that at least some of data missing is due to 

clinical factors (trial group etc.). The most complete features are demographics and family 

history information, information likely collected before entry into any of the clinical trials.

3.1. Missing completely at random spike-in results

Mean, Median and Singular Value Decomposition imputation perform poorly when data is 

missing completely at random. However, they do not appear to degrade as the spike-in ratio 

increase (Figure 4). This is not surprising for mean and median imputation because missing 

data is chosen completely at random and is unlikely to have a large effect on statistical 

averages. The autoencoder had the highest imputation performance despite increasing as the 

spike-in ratio increased.

3.2. Not missing at random spike-in results

The trends seen in the missing completely at random experiment largely repeat when the 

data is missing not at random. The autoencoder approach shows strong performance but is 

closely followed by the KNN, Softimpute and SVD approaches (Figure 5). KNN works by 

finding the k-nearest neighbors for shared values and taking the mean for the missing 

feature. Autoencoders work by learning the optimal network for reconstruction. Similar 

input values will have similar hidden node values. This similarity could explain the relatively 

even performance between the two methods. In addition to recognizing similar samples, 

autoencoders have been shown to perform well when there is dependency or correlation 

between variables35; this is the scenario when data is missing not at random. When spike-in 

ratios increase to high levels the methods begin to converge to the performance of mean and 

median imputation. This is likely because too much of the signal is lost as missing data to 

learn the correlation structure.

3.3. ALS disease progression

Imputation strategy has a modest but statistically significant impact on the root mean 

squared error of ALS disease progression prediction, but the autoencoder approach is the 

strongest performing (Figure 6). Despite showing poor performance in the imputation 

accuracy exercises Singular Value Decomposition does approximately as well as k-nearest 

neighbors and SoftImpute in this experiment. A random forest regressor applied to the raw 

data is the worst performing, but is not significantly worse than any of the methods other 

than the Autoencoder. In terms of ALS disease progression, imputation does not appear to 

have a large effect on prediction, but can be vital to allow the use of other algorithms 

(prediction, clustering etc.) without modification.

3.4. ALS progression predictive indicat

Nine out of the top ten most important features in the autoencoder-imputed random forest 

regressor were among the top fifteen identified in the DREAM Prediction challenge (Figure 

7A). The amount of time using Riluzole was not among the top fifteen previously identified. 

Riluzole is the only FDA approved medication for ALS treatment but it is believed to have a 
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limited effect on survival36–38. The finding that Riluzole is protective of ALS slope indicates 

some level of efficacy.

Of the top ten most important features, five are missing in more than 50% of patients in the 

data set. This is a possible explanation for the improvement shown by Autoencoders, 

SVDimpute and KNNimpute over mean imputation.

By far the most important feature for prediction is the time from onset and several of the 

most important features are highly correlated with time from onset. ALSFRS slopes 

resemble a normal distribution (Figure 7B). When including the entire PRO-ACT dataset, 

the Kolmogorov-Smirnov test score is 0.05 for patients with negative slopes. This indicates 

the progression of the disease is similar to a truncated normal distribution. We exclude 

positive slopes because ALS patients do not typically get better, and signs of doing so are 

likely the result of measurement error. Despite presenting in clinically heterogeneous 

manners, ALS progression as defined by the ALSFRS appears to be largely homogenous. 

Patients fall within a relatively normal distribution and have increasingly negative slopes the 

longer they ALS.

4. Discussion and Conclusions

In this study, we compared the performance of an autoencoder approach with popular 

imputation techniques in ALS EHR data. A multi-layer autoencoder with dropout showed 

robust imputation performance across a variety of spiked-in missing data experiments 

designed to be both completely at random and not at random. Furthermore, we found that 

imputation accuracy may not strictly correlate with predictive performance but the most 

accurate imputer provided the most accurate predictor. The importance of imputation is 

demonstrated by five of the top ten most important features for prediction being missing in 

more than 50% of patients.

Increased deterioration of imputation performance for KNNimpute and SVDimpute with 

increased missing data is at odds with previous research of imputation in microarrays7. 

Possible explanations include either reaching a threshold of missing data where the burden is 

too high for these methods to accurately impute or that a confounding systematic bias is 

introduced from the different clinical trials.

This work is a promising first step in utilizing deep learning techniques for missing data 

imputation in the EHR but challenges remain. Autoencoders are computationally intensive, 

but less so than imputation techniques like MICE, Matrix Factorization and Nuclear Norm 

Minimization. With GPU resources, autoencoders train in similar amounts of time to both 

KNN and SVD methods for these clinical trials. As data increases, autoencoder training time 

increases linearly in line with the number of samples. Methods like KNN require computing 

a distance matrix, which increases in exponential time. In addition, further examination is 

necessary to determine whether the strong performance shown by autoencoders is a result of 

the structure of this pooled clinical trial dataset. The subset of 1,800 patients is relatively 

small and methods may differ in performance increases with more patients.
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This work offers promising results but has several limitations especially because it 

specifically analyzes pre-processed pooled clinical trial data. Clinical trials have more 

complete and cleaner data than raw EHR. Follow up work should be performed with other 

diseases and in the general patient population. These methods have also only been evaluated 

for quantitative values; in raw EHR data there will be an additional extraction step for raw 

text and qualitative observations that was not necessary due to PRO-ACT’s preprocessing.

Additional future work will be concentrated on developing tools to better understand and 

interpret the structure of the trained autoencoder networks. We anticipate being able to 

recognize patterns in the trained weights to see correlation between input features. 

Understanding correlation will empower new clustering and visualization opportunities. 

Spike-in evaluations can provide a supervised context to otherwise unsupervised learning 

problems; further analysis should be performed on the higher-level learned features in the 

hidden layers of the autoencoders. We suspect these features may be useful in patient 

outcome classification and regression problems.
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Figure 1. 
Schematic structure of the autoencoder used for evaluations, with two hidden layers and 

20% dropout between each layer.
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Figure 2. 
Evaluation outline (a) Imputation Evaluation. PRO-ACT patient data of 10,723 subjects has 

known data masked with spiked in missing data. Imputation strategies are performed in 

parallel and the RMSE is calculated between the masked input data and each strategies 

imputations. (b) Progression Prediction. PRO-ACT patients are imputed using each strategy. 

Ten-fold cross validation of a random forest regressor is performed on imputed patients.
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Figure 3. 
Histogram distribution and rug plot showing the number of patients each feature is present 

in. (a) The number of features each patient has. Ticks at the bottom indicate one patient with 

the count of features, bins indicate the number of patients in a range. (b) The number of 

patients having a recorded value for each feature. Ticks at the bottom indicate the number of 

patients a feature is present in, bins indicate the number of features in a range.
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Figure 4. 
Effect of the amount of spiked-in missing data on imputation. Error bars indicate 5-fold 

cross validation score ranges.
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Figure 5. 
Effect of non-random spiked-in missing data on imputation (measured in root mean squared 

error). Autoencoder w/Dropout (2 layer 500 nodes each), SVD – SVDImpute with rank of 

40, KNN - KNNimpute with 7 neighbors, Mean – Column Mean Averaging, Median – 

column median averaging, SI – SoftImpute.
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Figure 6. 
ALS Functional Rating Scale prediction accuracy shown for an autoencoder, k-nearest 

neighbors, mean averaging, median averaging, the raw input including missing values, soft 

impute and singular value decomposition. The box indicates inner quartiles with the line 

representing the median; the whiskers indicate outer quartiles excluding outliers.
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Figure 7. 
Prediction feature importance. (a) Importance levels of the top 10 features to the random 

forest regressor with autoencoder imputed data. (b) Histogram distribution of patient 

ALSFRS slope levels.
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