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Abstract

Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological 

inflammation that affects normal central nervous system signaling. Critically, many neuroimmune 

diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a 

potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation 

of a variety of anti-inflammatory processes. This review will focus on the signaling pathways and 

function of IL-10, the current evidence for insufficiencies in IL-10 signaling/bioavailability in 

neuroimmune diseases, as well as the implications for IL-10-based therapies to treating such 

problems. We will review in detail four pathologies as examples of the common etiologies of such 

disease states, namely neuropathic pain (nerve trauma), osteoarthritis (peripheral inflammation), 

Parkinson’s disease (neurodegeneration), and multiple sclerosis (autoimmune). A number of 

methods to increase IL-10 have been developed (e.g. protein administration, viral vectors, naked 

plasmid DNA, plasmid DNA packaged in polymers to enhance their uptake into target cells, and 

adenosine 2A agonists), which will also be discussed. In general, IL-10-based therapies have been 

effective at treating both the symptoms and pathology associated with various neuroimmune 

diseases, with more sophisticated gene therapy-based methods producing sustained therapeutic 

effects lasting for several months following a single injection. These exciting results have resulted 

in IL-10-targeted therapeutics being positioned for upcoming clinical trials for treating 

neuroimmune diseases, including neuropathic pain. Although further research is necessary to 

determine the full range of effects associated with IL-10-based therapy, evidence suggests IL-10 

may be an invaluable target for the treatment of neuroimmune disease.

This article is part of a Special Issue entitled ‘Neuroimmunology and Synaptic Function’.
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1. Introduction

Neuroimmune diseases are debilitating conditions, which involve substantial loss of quality 

of life. The key features of these diseases include ongoing inflammation, pain, fatigue, 

anxiety, and cognitive-impairments, although the etiologies and full range of symptoms of 

these diseases are quite diverse. Here, we will focus on four neuroimmune diseases as 

examples of the common etiologies of such pathologies [i.e. neuropathic pain (NP) (nerve 

trauma), osteoarthritis (OA) (peripheral inflammation), Parkinson’s disease (PD) 

(neurodegeneration), and multiple sclerosis (MS) (autoimmune)]. Treatments for 

neuroimmune diseases have been developed, but notably, most patients remain either 

partially or fully refractory to treatment (Ali et al., 2013; Gutierrez et al., 2014; Tarazi et al., 

2014b; Taruc-Uy and Lynch, 2013).

The purpose of this review is to explore the potential of interleukin-10 (IL-10)-based 

therapeutic strategies for the treatment of neuroimmune disease. IL-10 is a potent anti-

inflammatory cytokine that is endogenously released by immune cells and glia as a process 

of negative feedback during inflammation (Kettenmann et al., 2011; Ledeboer et al., 2002; 

Moore et al., 2001). Importantly, insufficiencies in IL-10 signaling/bioavailability have been 

implicated in these disease states, and in animal studies, strategies aimed at increasing IL-10 

have been effective in treating symptoms and pathology associated with neuroimmune 

diseases. The signaling pathways and function of IL-10, potential therapeutic benefits of 

IL-10 in neuroimmune disease, and various strategies aimed at increasing physiological 

levels of IL-10 will be discussed.

2. Interleukin-10 (IL-10)

2.1. Cellular sources of IL-10

IL-10 was first described by Fiorentino et al. (1989) as a novel immune mediator secreted by 

T helper 2 (TH2) cells that could inhibit the synthesis of interleukin 2 (IL-2) and interferon-

γ (IFN-γ) in TH1 cells. In the periphery, IL-10 is secreted by innate immune cells, including 

dendritic cells, macrophages, mast cells, natural killer cells, eosinophils and neutrophils, and 

by adaptive immune cells, including TH1, TH2, TH17 and regulatory T cells (Tregs), as well 

as B cell subsets (Moore et al., 2001; Nouel et al., 2014; Saraiva and O’Garra, 2010). In the 

central nervous system (CNS), IL-10 is expressed by microglia, astrocytes and neurons 

(Gutierrez et al., 2014; Hulshof et al., 2002; Kettenmann et al., 2011; Ledeboer et al., 2002; 

Tarazi et al., 2014b; Taruc-Uy and Lynch, 2013; Yan et al., 2014). IL-10 is induced in innate 

immune cells by signaling at CD209 and pattern recognition receptors, such as Toll-like 

receptors (TLRs) and Dectin-1, and can be enhanced by CD40 or Fc receptor ligation 

(Saraiva and O’Garra, 2010). Antigenic stimulation at the T cell receptor, cytokine 

stimulation (e.g. IL-12, IL-21 and IL-27), and Notch signaling are sufficient to induce IL-10 

production in T cells (O’Garra and Vieira, 2007; Saraiva et al., 2009; Saraiva and O’Garra, 

2010).
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2.2. IL-10 structure

Mouse (m)IL-10 and human (h)IL-10 genes are encoded by five exons on the respective 

chromosomes 1, rat (r)IL-10 gene is encoded by 4 exons on chromosome 13, and each are 

under epigenetic control (Moore et al., 2001; Saraiva and O’Garra, 2010). A large number of 

polymorphisms have been identified, particularly in the hIL-10 promoter region, which may 

be associated with a range of diseases (Moore et al., 2001; Sabat et al., 2010). hIL-10 is a 35 

kD homodimer that is composed of two non-covalently bonded monomers. The homodimer 

contains two distinct domains that are oriented at right angles to each other. Each of the 

domains is composed of helices, four on one (A–D), and two on the other (E, F) (Syto et al., 

1998; Walter and Nagabhushan, 1995; Zdanov, 2010; Zdanov et al., 1995), with two 

disulfide bridges existing within the monomer (C30–C126 and C80–C132) (see Fig. 2 in 

Zdanov, 2010 for a diagram of IL-10 crystal structure; Syto et al., 1998; Windsor et al., 

1993). This structure is essential to maintain the biological activity of IL-10, with two 

residues located at the bend in helix F (Lys-138 and Glu-142) forming a binding pocket for 

IL-10R1 (Shrestha et al., 2014), while IL-10R2 likely binds to helices A and D (Yoon et al., 

2010). mIL-10 and hIL-10 share 72% homology at the amino-acid level, while rIL-10 shares 

83% homology with mIL-10 and 73% homology with hIL-10 (Ball et al., 2001). IL-10 

protein is trafficked and secreted by constitutive exocytosis (Lacy and Stow, 2011).

2.3. Regulation of IL-10 gene transcription

TLR-dependent IL-10 transcription is mediated though Toll/IL-1 receptor (TIR)-domain-

containing adaptor molecules, such as myeloid differentiation primary-response protein 88 

(MyD88) and TIR-domain-containing adaptor protein inducing IFNβ (TRIF) (Boonstra et 

al., 2006) (Fig. 1). Activation of nuclear factor kappa-light-chain-enhancer of activated B 

cells (NFκB) and the mitogen activated protein kinases (MAPKs) extracellular-signal-

regulated kinase (ERK) and p38 follows recruitment of MyD88, leading to IL-10 
transcription, together with proinflammatory cytokines (Kawai and Akira, 2007; Saraiva and 

O’Garra, 2010) (Fig. 1). However, distinct from proinflammatory cytokines, whose 

transcription is induced by the prototypical NFκB heterodimers (p65/p50), IL-10 
transcription is only induced by p50 homodimers (Cao et al., 2006). IL-10 transcription is 

also differentially regulated by mitogen- and stress-activated protein kinase 1 (MSK1) and 

MSK2, which are downstream of ERK and p38 (Ananieva et al., 2008). Triggering of 

CD209 activates the kinase rapidly-accelerated fibrosarcoma (Raf)-1, which leads to NFκB 

p65 sub-unit acetylation and IL-10 transcription after TLR-dependent activation (Gringhuis 

et al., 2007) (Fig. 1). Dectin-1 receptor-dependent IL-10 transcription follows recruitment of 

spleen tyrosine kinase (SYK) (Rogers et al., 2005). Despite being independent of TLR 

signaling, IL-10 production downstream of dectin-1 receptor signaling is also dependent on 

ERK (Slack et al., 2007) (Fig. 1). Most if not all macrophages produce IL-10 when 

activated. Polarized regulatory macrophages (M2; alternatively activated) produce IL-10, but 

not proinflammatory cytokines (released by M1 macrophages), though the intracellular 

mechanisms governing this selective regulation are not well understood (Murray and Wynn, 

2011).

Alternatively activated macrophages are characterized, among other factors, by elevated 

IL-10 production and the absence of M1 cytokines (Sica and Mantovani, 2012). Several 
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studies have implicated differential expression of suppressor of cytokine signaling (SOCS) 

1, 2, and 3, depending on the signals driving polarization to various M2 phenotypes (Spence 

et al., 2013; Wang et al., 2010; Whyte et al., 2011). SOCS proteins negatively regulate JAK-

STAT signaling leading to selective suppression of proinflammatory mediators, such as TNF, 

IFNγ, and nitric oxide, while retaining antiinflammatory function, such as IL-10 production.

Signaling cascades controlling IL-10 transcription in T cells have not been as well studied as 

those of innate immune cells. IL-10 induction is ERK dependent in all T cell subsets, but in 

addition is dependent on signal transducer and activator of transcription 4 (STAT4) in TH1 

cells; STAT6 and GATA3 in TH2 cells; and, STAT1 and STAT3 in TH17 cells (Saraiva and 

O’Garra, 2010). While Tregs are known to express IL-10 in vivo, the signal transduction 

mechanisms underlying this phenomenon remain elusive. For additional details on 

transcription factors that regulate production of IL-10 beyond those discussed herein, see the 

recent review (Saraiva and O’Garra, 2010).

There are also several mechanisms leading to enhancement or suppression of IL-10 
transcription, though the factors dictating the balance between these mechanisms are not 

well understood. For instance, STAT3 signaling induced by IL-10 elevates CD209 

expression on M2 macrophages, which increases IL-10 transcription (Dominguez-Soto et 

al., 2011). Conversely, IL-10 transcription is negatively regulated by IFNγ, which 

suppresses AP1 binding (Hu et al., 2006). Autocrine IL-10 signaling also negatively 

regulates p38 phosphorylation and thus serves to dampen IL-10 transcription (Hammer et 

al., 2005). IL-10 may be further regulated at a posttranscriptional level by factors that 

modulate mRNA stability and by microRNAs (Nemeth et al., 2005; Powell et al., 2000; 

Schulte et al., 2011; Sharma et al., 2009). For example, IL-10 mRNA contains adenine and 

uridine-rich elements (AREs) found in the 3′ untranslated regions of mRNA molecules that 

are targeted by the RNA binding protein tristetraprolin (TTP) for rapid degradation 

(Anderson, 2008). Adenosine A2B receptor and TLR4 signaling suppress ARE-mediated 

IL-10 mRNA degradation, the latter via p38-mediated suppression of TTP (Kiyota et al., 

2012; Nemeth et al., 2005).

3. IL-10 receptor and consequences of IL-10 receptor signaling

As described above, IL-10 is produced in inflammatory cascades, together with classical 

proinflammatory cytokines, such as TNF and IL-1β. However, regulation of such 

proinflammatory processes is achieved as a consequence of subsequent IL-10 activity at its 

cognate receptor (summarized in Fig. 2).

IL-10 exerts its innate and adaptive immune effects through its cognate cell surface receptor 

complex, a heterotetramer consisting of two IL-10 receptor 1 (IL-10R1) chains and two 

IL-10 receptor 2 (IL-10R2) chains (Moore et al., 2001). While IL-10R1 is specific for the 

IL-10 receptor complex with a relatively high affinity, IL-10R2 is also part of the receptor 

complexes of other cytokines (IL-22, IL-26, IL-28a, IL-28b, and IL-29) (Zdanov, 2010). 

IL-10R2 is widely and strongly expressed in both immune and non-immune cells and tissues 

(Wolk et al., 2004, 2005). In contrast, IL-10R1 expression is restricted to innate and adaptive 

immune cells, is upregulated under inflammatory conditions, and is consequently the 
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determinant of the cellular response to IL-10 (Ding et al., 2001; Ledeboer et al., 2002; Sabat 

et al., 2010; Wolk et al., 2002). The IL-10/IL-10R1 interaction changes IL-10 conformation, 

thereby exposing the IL-10R2 binding site that allows association of the IL-10/IL-10R1 

complex with IL-10R2 (Reineke et al., 1999;Wolk et al., 2005; Yoon et al., 2006). The 

ligation of IL-10 to IL-10R1 and IL-10R2 has diverse consequences, which are elaborated 

upon in the following sections.

3.1. Cytokine modulation

Activation of IL-10 receptors leads to the inhibition of tumor necrosis factor (TNF), IL-1β, 

IL-6, IL-8, IL-12 and IL-23 release and enhanced release of anti-inflammatory mediators 

such as IL-1 receptor antagonist and soluble TNF receptors (sTNFRs) from innate immune 

cells. Activation of IL-10 receptors also leads to the inhibition of both the proliferation and 

the cytokine synthesis of CD4+ T cells, including the TH1 production of IL-2 and IFNγ, and 

TH2 production of IL-4 and IL-5 (Sabat et al., 2010). However, IL-10 does not suppress the 

IL-17 production in TH17 cells (Naundorf et al., 2009).

Ligation of IL-10 to its receptors induces dual activation of two members of the Janus kinase 

(Jak) family: Jak1 (associated with IL-10R1) and tyrosine kinase 2 (Tyk2) (associated with 

IL-10R2), which together induce the phosphorylation of IL-10R1, allowing binding and 

phosphorylation of STAT3 (as well as STAT1 and STAT5 in some cell types) (Finbloom and 

Winestock, 1995; Weber-Nordt et al., 1996; Wehinger et al., 1996). STAT3 migrates into the 

cell nucleus and/or is constitutively present in the nucleus but undergoes a conformational 

change to induce transcription of genes corresponding to effector proteins. These effector 

proteins, such as A20-binding inhibitor of NFκB activation (Abin-3) and dual specificity 

phosphatase-1 (DUSP-1), inhibit transcription of proinflammatory cytokines by inhibiting 

phosphorylation of the MAPK p38 and inducing nuclear translocation and DNA binding of 

p50/p50 homodimers of NFκB, which are insufficient to induce proinflammatory cytokine 

transcription (Sabat et al., 2010). IL-10 signaling also induces SOCS1 and SOCS3 

production that suppresses proinflammatory cytokine production by targeting the p65 NFκB 

subunit for degradation, as well as controlling cytokine receptor signaling by marking 

activated JAK-STAT complexes for proteasomal degradation (Yoshimura et al., 2007). 

Several other factors induced by IL-10 have been described as suppressing NFκB activity 

including Bcl-3, IKBNS, ETV3 and SBNO2 (Sabat et al., 2010). IL-10 also induces 

expression of MAPK phosphatases, including MKP1, which inhibit MAPK signaling and 

hence transcription of proinflammatory cytokines (Chi et al., 2006; Hammer et al., 2005). 

For further reading, see Sabat et al. (2010).

3.2. Decreased antigen presentation

IL-10 inhibits antigen presentation of monocytes/macrophages. It reduces the constitutive 

and induced cell surface expression of major histocompatibility complex class II (MHC II) 

molecules by inducing membrane-associated RING-CH (MARCH) 1, which prevents MHC 

II trafficking to the cell membrane (Koppelman et al., 1997; Thibodeau et al., 2008). IL-10 

also inhibits antigen presentation by inhibiting expression of co-stimulatory (e.g. CD86) and 

adhesion (e.g. CD54) molecules that drive a proinflammatory response (Grace et al., 2011; 

Sabat et al., 2010).
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3.3. Cell polarization

IL-10 promotes the differentiation of anti-inflammatory macrophage phenotypes, such as 

IL-10 producing M2-like macrophages via induction of the transcription factors STAT3, c-

MAF, as well as regulatory macrophages that promote TH2 polarization (Locati et al., 2013; 

Mosser and Edwards, 2008). IL-10 attenuates development of TH1 and TH17 immunity by 

inhibiting the synthesis of proinflammatory cytokines (e.g. IL-12, IL-23; described above) 

(McKinstry et al., 2009; Schuetze et al., 2005). Decreased antigen presentation due to 

factors described above also shifts the balance away from TH1 development. In addition, 

IL-10 inhibits phosphorylation of CD28, inducing a state of anergy (Groux et al., 1996; Joss 

et al., 2000). The presence of IL-10 also enhances the differentiation of Treg cells (Barrat et 

al., 2002; Hawrylowicz and O’Garra, 2005; Roncarolo et al., 2006).

3.4. Neuroprotection

IL-10 has the capacity to act in a neuroprotective fashion. Inhibition of microglial 

proinflammatory mediator production by IL-10 halts astrocyte activation and directly 

inhibits p65 NFκB binding (Balasingam and Yong, 1996). Such a reduction in NFκB 

activity results in increased excitatory amino acid transporter-2 (EAAT2) expression, helping 

to prevent neurotoxic synaptic glutamate accumulation (Bachis et al., 2001; Kim et al., 

2011). In addition, some neuronal populations have been shown to express functional IL-10 

receptors, which when activated promote neuronal survival (Boyd et al., 2003). For example, 

IL-10 activation of the PI3K-AKT pathway, downstream of IL-10R1, protects neurons 

against glutamate-induced excitotoxicity and hypoxic and ischemic injury by inducing 

transcription of survival genes preventing and by normalizing intracellular Ca2+ levels 

(Sharma et al., 2011; Tukhovskaya et al., 2014; Turovskaya et al., 2012; Zhou et al., 2009). 

IL-10 has also been shown to prevent glutamate-induced neuronal apoptosis by restoring 

suppressed anti-apoptotic factors Bcl-2 and Bcl-xl, and by attenuating caspase-3 expression 

(Bachis et al., 2001; Zhou et al., 2009).

4. Diseases that implicate inflammation and impairments in IL-10 signaling

4.1. Neuropathic pain

Neuropathic pain (NP) is a debilitating disorder originating from mechanical/chemical tissue 

damage, infection, or disease to the peripheral and/or central nervous system (CNS), which 

affects approximately four million people in the United States alone (Taylor, 2006). The 

common features of NP involve sensory disturbances including spontaneous pain, increased 

sensitivity to painful stimuli (hyperalgesia), and painful sensitivity to innocuous stimuli 

(allodynia) (Jensen et al., 2007; Macleod et al., 2002; Rowbotham and Fields, 1996). NP 

generally remains at least partially refractory to currently available analgesics, and frontline 

opioid medications have been shown to exacerbate pain and inflammation with chronic use 

(Hansen et al., 2005; Hutchinson et al., 2007; Salengros et al., 2010; Trevino et al., 2013; 

van Gulik et al., 2012; Watkins et al., 2009). In both NP patients as well as in animal models 

of NP, IL-10 levels in blood, sciatic nerve, dorsal root ganglion (DRG), spinal cord and/or 

cerebrospinal fluid (CSF) tissues are decreased versus healthy controls (Backonja et al., 

2008; Franchi et al., 2012; George et al., 2004; Jancalek et al., 2011; Liou et al., 2011; 

Uceyler et al., 2007; Wilkerson et al., 2012a). Moreover, in animal studies, decreased IL-10 
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occurs later after injury despite maintaining high IL-10 mRNA levels, and is preceded by an 

initial increase in IL-10 shortly after injury (Franchi et al., 2012; George et al., 2004; 

Jancalek et al., 2011; Liou et al., 2011; Mika et al., 2008; Okamoto et al., 2001; Taskinen et 

al., 2000; Wilkerson et al., 2012b). These findings suggest that either IL-10 mRNA is not 

translated sufficiently and/or IL-10 is produced endogenously at high levels but is also 

rapidly utilized during NP, thus remaining insufficient to control pain and inflammation 

associated with the disease. In this context, several animal studies have demonstrated 

antinociceptive effects with IL-10-based therapies, which will be covered below (see Table 1 

for summary).

Direct IL-10 protein administration has been shown to produce antinociception after 

peripheral nerve injury. For example, IL-10 injected intrathecally (IT) following CCI 

produced transient reversal of mechanical allodynia for approximately 2 h that resolved by 

24 h (Lee et al., 2013; Milligan et al., 2005b; Shen et al., 2013). This effect was correlated 

with decreased injury-induced TNF, IL-1β, and IL-6 in lumbar spinal cord (Lee et al., 2013). 

Contrastingly, IT injection of the same dose of IL-10 4×/day was effective for each day of 

treatment and 4 days thereafter. This sustained reversal of mechanical allodynia with 

repeated IL-10 injections was also associated with reversal of injury-induced increases in 

total, tetrodotoxin-sensitive, and voltage-gated sodium channel 1.8 current densities, as well 

as reversal of overall excitability of cultured lumbar DRG neurons (Shen et al., 2013). 

Moreover, the therapeutic effect of IL-10 is not limited to central administration, as peri-

sciatic nerve injection of IL-10 at the time of sciatic nerve injury blocks thermal 

hyperalgesia and is correlated with decreased TNF in the sciatic nerve (Wagner et al., 1998).

Viral vector-mediated delivery of IL-10 is another strategy to increase IL-10, which 

produces a longer reversal of NP-related behaviors than direct protein administration given 

the short half-life of IL-10 (~2 h) (Li et al., 1994; Milligan et al., 2005a). IT viral-mediated 

delivery of IL-10 after nerve injury has resulted in sustained reversal of mechanical 

allodynia for as little as 6 days and as long as 4 weeks depending on dose and viral vector 

used, and these effects were associated with decreased injury-induced IL-1β in lumbosacral 

CSF and decreased TNF, IL-1β, and IL-6 protein in lumbar spinal cord (He et al., 2013; Lau 

et al., 2012; Milligan et al., 2005a, 2005b). As with protein, viral vectors are also effective 

when administered peripherally, as intraplantar administration of herpes simplex virus 

(HSV)-IL-10 decreased both mechanical allodynia/hyperalgesia and thermal hyperalgesia 

for at least 4 weeks while also decreasing operant mechanical allodynia-related conflict 

avoidance responses (Lau et al., 2012).

To date, the IL-10-based therapeutic strategy that has produced the longest-lasting reversal 

of NP-related behaviors has been to inject naked (unencapsulated) plasmid DNA encoding 

IL-10 (pDNA-IL-10) or pDNA-IL-10 encapsulated in microparticles composed of various 

polymers (see route of administration, below). Repeated intrathecal (IT) injections of 

pDNA-IL-10 after sciatic nerve injury (chronic constriction injury [CCI]) produced 

increasingly longer periods of anti-allodynia after each subsequent injection (Milligan et al., 

2006a), and a second IT injection of pDNA-IL-10 three days after the first injection, 

produced sustained anti-allodynia and antihyperaglesia after nerve injury for up to 80+ days 

(Ledeboer et al., 2007; Milligan et al., 2007, 2006a, 2006b; Sloane et al., 2009a). This effect 
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was correlated with an increased ED1/ED2 ratio in lumbar CSF cells early after the first 

injection, followed by a decreased ED1/ED2 ratio 6 days after the second injection, 

demonstrating a shift from a predominately proinflammatory to predominately 

antiinflammatory phenotype in CSF cells over time (Sloane et al., 2009a). Administration of 

polyethylenimine (PEI) polymer-based microparticles encapsulating pDNA-IL-10 after CCI 

also required two injections for a maximally sustained antinociceptive effect (Milligan et al., 

2006b). In contrast, a single injection of XT-101, an IL-10-based gene therapy from Xalud 

Therapeutics consisting of an IL-10 plasmid encapsulated in a biodegradable poly(lactic-co-

glycolic) (PLGA) microparticle polymer, reversed CCI-induced mechanical allodynia for up 

to ~3 months and increased the number of ED2 positive cells in CSF at 72 h versus 24 h 

post-injection (Milligan et al., 2006b; Soderquist et al., 2010b). Importantly, reversal of 

allodynia by XT-101 was abolished by IT anti-IL-10 neutralizing antibody, confirming that 

the pain resolving effect of this therapeutic approach was due to ongoing IL-10 induction 

(Milligan et al., 2006b; Soderquist et al., 2010b). Excitingly, we and our collaborators have 

also found that a single IT injection of XT-101 produces sustained reversal of NP-related 

behaviors in dogs in an open-label study for up to 4 months (unpublished observations). As a 

result of these highly successful rodent and promising dog studies, phase I/II clinical trials 

with XT-101 for the treatment of NP in humans are currently planned to begin in 2015.

4.2. Ostoeoarthritis

Osteoarthritis (OA) is a peripherally-based neuroimmune disorder, which involves 

inflammation of tissues within the joints (e.g. synovial membrane and chondrocytes) and 

ongoing pain. Although the precise etiology of OA is unknown, it is thought to involve 

degradation of cartilage that leads to tissue damage, inflammation, and pain with resulting 

alterations in central nervous system function such as peripheral and central sensitization 

(for review, see Fernandes et al., 2002; Martel-Pelletier et al., 1999; Salaffi et al., 2014; 

Taruc-Uy and Lynch, 2013). OA is the leading cause of pain and disability in the world, 

most commonly affecting the elderly but also occurring in younger populations often 

following injury or intense physical activity (Sharma et al., 2006).

In human OA, elevated IL-10 levels in joint tissues and IL-10-associated anti-inflammatory 

effects have been demonstrated in several studies. For example, IL-10 mRNA is detected in 

synovial tissue and is spontaneously produced in synovial cell culture from OA patients 

(Katsikis et al., 1994). IL-10 and TNF are also inversely correlated in cartilage from OA 

patients within and around chondrocytes (Moos et al., 1999), and IL-10 incubation in 

synovial fibroblast culture from OA patients decreased prostaglandin E2-stimulated release 

of TNF, upregulated sTNFRs, and reduced TNF induction of cyclooxygenase 2 (Alaaeddine 

et al., 1999). Moreover, blood cells from OA patients that produced the least amount of 

IL-10 in response to LPS stimulation were correlated with greater disease symptoms (Riyazi 

et al., 2005). This finding is contradicted, however, by another study in which patients whose 

blood cells produced the most IL-10 were correlated with a 4-fold increased risk of joint 

space narrowing progression over a 2-year timespan (Botha-Scheepers et al., 2008). Lastly, 

moderate exercise, which increases intra-articular and peri-synovial IL-10, has been found to 

be beneficial for female patients with OA (Helmark et al., 2010).
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Due to a lack of sufficient preclinical models for OA (Malfait et al., 2013), there have been 

few studies of OA involving IL-10 in animals (see Table 2 for summary). In OA dogs as in 

OA humans, IL-10 mRNA is detected in synovial tissue (Maccoux et al., 2007). In a rabbit 

model of OA, intra-articular injection of primary synoviocytes transfected with retroviral 

vector expressing hIL-10 was moderately effective at preventing cartilage breakdown 

(Zhang et al., 2004). Lastly, we and our collaborators have begun testing of XT-101 for the 

treatment of OA in dogs. Preliminary open-label studies have been promising, with a single 

intra-articular injection reversing pain-related behaviors for up to 4 months (unpublished 

observations). These studies are currently undergoing expansion and aim to provide further 

evidence that IL-10-based gene therapy may be an effective treatment for OA.

4.3. Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder that causes death of dopaminergic 

neurons of the striatum. Neuroinflammation is also closely associated with PD, and has been 

identified an important mediator of PD-induced neurodegeneration (Shrestha et al., 2014; 

Yan et al., 2014). In the United States alone, there are approximately one million people 

currently affected by PD and approximately 40,000–50,000 new diagnoses for PD each year 

(Tarazi et al., 2014a). Although its etiology remains unknown, PD produces motor 

symptoms such as muscle tremors, stiffness, and loss of spontaneous movement (Jankovic, 

2008; Tolosa et al., 2006). Non-motor symptoms of PD include cognitive/memory 

impairment, depression, sleep disturbances, hallucinations, and autonomic motor 

dysfunction (Chaudhuri et al., 2006). Common treatments for PD are mostly limited to 

supplementation with the precursor for dopamine, levodopa, and/or dopamine D2 receptor 

agonists, although these treatments tend to only be partially effective, can lose efficacy over 

time, and are associated with a variety of severe motor and cognitive side effects (Rao et al., 

2006; Tarazi et al., 2014a). Although there is limited information on the relationship of 

IL-10 to PD, current studies do not rule out a potential role for IL-10-based therapy in PD 

and warrant further examination.

The majority of supporting studies for IL-10-based therapies in PD have been conducted in 

animals (see Table 2 for summary). In animal models of PD, IL-10-based therapies have 

been shown to reduce dopaminergic cell damage and related microglial activation and 

inflammation. For example, intra-substantia nigral injection of LPS causes a selective loss of 

dopaminergic neurons, and this effect can be attenuated by osmotic minipump infusion of 

IL-10 into the substantia nigra, producing decreased microglial activation in the same region 

(Arimoto et al., 2007). IL-10 is also protective against LPS-induced dopaminergic cell 

toxicity in rat primary mesencephalic neuron-glia co-cultures, and this effectwas also 

attributed to decreased microglial activation and microglial production of TNF, nitric oxide, 

reactive oxygen species, and superoxide free radicals (Qian et al., 2006a, 2006b). Lastly, in a 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD, which causes striatal 

tyrosine hydroxylase depletion and subsequent dopaminergic cell death, AAV2-hIL-10 

injected intracerebroventricularly (ICV) before MPTP injection provided neuroprotective 

effects by increasing striatal tyrosine hydroxylase (Schwenkgrub et al., 2013).
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To date, there have been no studies examining the efficacy of IL-10-based therapies in PD 

patients. Several studies have investigated potential associations between IL-10 

polymorphisms and risk for developing PD, and although most found no association 

(Bialecka et al., 2008, 2007; Chu et al., 2012; Infante et al., 2008; Nie et al., 2013; Pascale et 

al., 2011), two studies did find IL-10 promoter polymorphisms −819 and −1082 may be 

associated with early onset PD and PD risk in female Han Chinese populations (Hakansson 

et al., 2005; Li et al., 2012). Moreover, plasma IL-10 levels have been shown to be higher in 

PD patients with classical motor symptoms of PD versus healthy controls (Brodacki et al., 

2008; Rentzos et al., 2009), although in a separate study, IL-10 was not found to be 

correlated to the non-motor symptoms of PD (Menza et al., 2010).

Overall, there is limited but promising evidence that IL-10-based therapies could be effective 

for PD. Future studies should focus on the potential of IL-10-based therapies to treat both 

the behavioral and cellular deficits associated with PD.

4.4. Multiple sclerosis

The hallmark of multiple sclerosis (MS) is chronic inflammation directed against 

oligodendrocyte-derived antigens comprising myelin sheaths. The resultant focal de-

myelination and axonal damage leads to motor, sensory, and cognitive impairment (for 

review, see Compston and Coles, 2008). Patients suffer from a variety of neurological 

symptoms, most notably loss of normal gait, paresis, muscle atrophy, gradual paralysis, and 

pain. The majority of patients experience multiple episodes of autoimmune attacks 

interceded by temporary remissions, although succeeding attacks usually increase in severity 

and damage tends to be cumulative. More than two million people are estimated to be 

afflicted globally, with 2–3 times higher prevalence among women (Disanto and 

Ramagopalan, 2013). While the etiology is unknown, evidence suggests that both genetic 

(Kenealy et al., 2003) and environmental factors play a role (Marrie, 2004). Currently, there 

is no effective therapy that eliminates MS, although medications are available that slow 

disease progression (for review, see Ali et al., 2013).

Significant perturbations in cytokine homeostasis have been reported in MS patients, 

including levels of IL-10 (see Imitola et al., 2005 for review). In both relapsing-remitting 

and secondary-progressive MS patients, IL-10 mRNA levels are reduced in unstimulated 

peripheral blood mononuclear cells (Hesse et al., 2011; van Boxel-Dezaire et al., 1999), 

while B cells exhibit deficiency in IL-10-producing capacity, and CD4+ cells show reduced 

IL-10R-mediated signaling compared to healthy controls (Duddy et al., 2007; Martinez-

Forero et al., 2008). Importantly, IL-10 secretion by peripheral blood mononuclear cells is 

decreased prior to relapse and increased during remission (Rieckmann et al., 1994;Waubant 

et al., 2001), suggesting that IL-10 presence is required for recovery to occur.

Multiple autoimmune murine and rat models of MS have been developed, collectively 

known as experimental autoimmune encephalomyelitis (EAE) (for review, see Batoulis et 

al., 2011; Croxford et al., 2011). Elevated gene expression of proinflammatory cytokines is 

an early, lasting, and shared feature of rodent EAE models, while expression of the IL-10 
gene depends on the model and stage of disease progression. For example, the Dark Agouti 

(DA) EAE rat model is commonly used to mimic relapsing MS where spinal cord IL-10 
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mRNA levels increase as the disease progresses, particularly preceding symptoms and 

during remission (Issazadeh et al., 1996; Tanuma et al., 2000). Murine relapsing-remitting 

EAE models likewise show upregulated IL-10 mRNA during remission (Kennedy et al., 

1992), whereas IL-10 mRNA in acute rat models of EAE is elevated throughout the 

monophasic episode and is thought to contribute to the resolution of the disease.

Continuing deterioration of symptoms in EAE may be the consequence of diminished 

bioavailability of IL-10. For example, IL-10-deficient mice develop a stronger 

proinflammatory T cell-mediated immune response with more severe EAE (Anderson et al., 

2004; Bettelli et al., 1998) and accelerated disease progression that does not remit compared 

to wild-type mice (Samoilova et al., 1998), suggesting that IL-10 plays a crucial role in 

recovery. Likewise, mice overexpressing IL-10 are highly resistant to EAE, an effect 

mediated at least in part by suppression of proinflammatory TH1 cells. This effect was 

abolished following administration of anti-IL-10 antibody, demonstrating that resistance to 

disease development was IL-10-dependent (Bettelli et al., 1998; Cua et al., 1999).

Early interventions to abrogate disease development in EAE rodents using IL-10 protein 

have yielded conflicting results (Table 2). Systemic delivery of IL-10 was only modestly 

effective in suppressing EAE in an acute Lewis rat model (Rott et al., 1994) and in the 

relapsing-remitting SJL/J mouse model (Nagelkerken et al., 1997). Contrastingly, intranasal 

delivery of low concentrations of IL-10 strongly suppressed clinical signs of disease in both 

acute and chronic-progressive EAE rats (Xiao et al., 1998). This effect was associated with 

decreased microglial activation, T-cell proliferation, spinal cord infiltration by peripheral 

immune cells, and IFN-γ secretion. Likewise, successive ICV treatment of CSJLF1/J 

chronic EAE mice with IL-10 at disease onset improved clinical scores only over the period 

of intervention (Cua et al., 2001), with motor impairments emerging once daily treatment 

was discontinued. Importantly, intraperitoneal antibody-mediated sequestration of IL-10 was 

found to worsen the disease (Cannella et al., 1996). By contrast, intravenously-delivered 

IL-10 failed to improve histological outcomes and even exacerbated clinical score under 

some treatment regimens (Cannella et al., 1996). Similarly, systemically delivered IL-10 was 

reported ineffective in another murine EAE context (Croxford et al., 2001). A likely 

explanation for the varied success of IL-10 protein administration may be the short half-life 

of IL-10 (~2 h), its route of administration, and its inability to cross the blood–brain barrier 

(Kastin et al., 2003; Li et al., 1994).

More promising results have been noted with IL-10 gene therapy using viral vectors for 

delivery directly into the CNS (Table 2). ICV administration of adenovirus (AD)-IL-10 in 

SJL EAE mice at symptom onset prevented development of inflammation and clinical 

disease symptoms in a dose-dependent manner, including blocking relapse and accelerating 

remission (Cua et al., 2001). By contrast, a similar study involving lower doses of AD-IL-10 

delivered ICV in ABH relapsing-remitting EAE mice was ineffective (Croxford et al., 2001), 

suggesting the need for greater IL-10 ligand bioavailability in ameliorating EAE symptoms. 

Preliminary results from our lab found both relapsing-remitting (non-obese diabetic) and 

chronic progressive (C57Bl/6) EAE mice show improvement of clinical scores following a 

single IT delivery of adeno-associated viral vector (AAV)-IL-10-F129S (a potent variant of 
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IL-10) at disease onset, as well as modest improvement following transgene delivery 12 days 

after manifestation of overt symptoms (unpublished observations).

IL-10 plasmid injections in EAE rodents have likewise yielded promising results (Table 2). 

Our lab found that two successive IT injections of naked IL-10-F129S plasmid arrested and 

reversed paralysis and extended remission of symptoms along with suppression of astrocyte 

and microglial activation in lumbar spinal cord of DA EAE rats. Similar to findings for NP, 

the disease-suppressing effects of T cells were observed only when a second IL-10 plasmid 

injection was administered within a regular time interval following the first, reinforcing the 

importance of time of intervention as a determinant of efficacy (Schif-Zuck et al., 2006; 

Sloane et al., 2009b). A more recent development in IL-10 gene delivery includes XT-101 

(IL-10 plasmid DNA encapsulated in a biodegradable polymer). Preliminary studies in our 

lab show that IT delivery of XT-101 at symptom onset in relapsing-remitting DA rats 

enhanced survival and attenuated EAE-induced paralysis/paresis, anxiety-like behavior, and 

motor impairment (Grace, 2012). Similarly, we have found that XT-101 is most effective at 

suppressing motor deficits in chronic-progressive mouse EAE when administered before the 

onset of symptoms (unpublished observations).

Taken together, there is overwhelming evidence from rodent studies that IL-10-based 

therapies are effective to treat MS disease onset, severity, and progression (see Table 2 for 

summary). In general, IL-10 intervention has been most effective in suppressing EAE when 

administered centrally in the form of a gene therapy at disease onset. Disease suppression 

after the development of overt symptoms has also been demonstrated, however more work is 

needed to ascertain optimal timing and dosing of gene therapy.

4.5. Other

The most promising and extensive research to date with IL-10-based therapies has been done 

with the diseases described above, however other neuroimmune diseases such as 

amyotrophic lateral sclerosis, Alzheimer’s disease, Huntington’s disease, and rheumatoid 

arthritis also share common properties with these diseases (e.g. inflammation/altered 

neuronal functioning), and thus could too benefit from IL-10-based therapy. For example, a 

single study has demonstrated the efficacy of IL-10 gene therapy in a mouse model of 

Alzheimer’s disease (Kiyota et al., 2012). Moreover, IL-10-based therapies for rheumatoid 

arthritis have been explored but remain controversial. This discrepancy is founded primarily 

on two failed clinical studies in which rheumatoid arthritis patients were injected 

subcutaneously with recombinant human-IL-10 (Smeets et al., 1999; van Roon et al., 2003). 

One reason for the failure of these clinical studies may be that IL-10 protein was used, 

which is rapidly degraded upon systemic administration (Li et al., 1994). In contrast to 

clinical findings with IL-10 protein, IL-10-based gene therapy in animal models of 

rheumatoid arthritis has been mostly successful (Keravala et al., 2006; Lechman et al., 1999; 

Lubberts et al., 2000; Whalen et al., 1999), with some conflicting results when administered 

after the development of the disease (Apparailly et al., 1998; Kim et al., 2000;Ma et al., 

1998). There have been no studies to date investigating the efficacy of IL-10-based therapy 

for amyotrophic lateral sclerosis or Huntington’s disease in either humans or animals. Future 
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studies are thus needed to determine the full range of neuroimmune diseases for which 

IL-10-based therapies might be effective.

5. Therapeutic potential of IL-10-based therapies: setting the stage for 

interventions with IL-10

5.1. IL-10 protein

Systemic administration of IL-10 protein is generally not feasible due to the rapid 

breakdown of the protein and its large size, which renders it incapable of crossing the blood 

brain barrier (Kastin et al., 2003; Li et al., 1994). In contrast, studies involving direct IT or 

intranasal administration of IL-10 protein have been mostly successful. However, this route 

of administration still produces only transient effects due to the rapid clearance of IL-10 

protein from intrathecal space (half-life ~2 h) (Milligan et al., 2005a). One advantage of 

IL-10 protein administration over IL-10-based gene-therapy is that it is effective 

immediately, whereas gene therapies have a delayed therapeutic onset. Direct IL-10 protein 

administration can thus be useful in clinical situations where immediate and transient relief 

is needed, and could also be used as an adjuvant to longer-term gene therapies to provide 

immediate relief during the period in which therapeutic onset of the gene therapy is delayed 

(Milligan et al., 2006a, 2006b; Soderquist et al., 2010a).

5.2. IL-10 gene-therapy

IL-10-based gene-therapies have been more successful at producing sustained therapeutic 

effects of IL-10 than protein administration. There are several methods of gene-therapy that 

are currently used. The IL-10 gene can be delivered by a variety of methods from viral 

vectors to naked pDNA to encapsulation of IL-10-pDNA in polymers designed to enhance 

the uptake of pDNA into appropriate cell types.

5.2.1. Viral vectors encoding IL-10—One method for producing sustained therapeutic 

effects of IL-10 is to deliver a viral vector that increases the expression of IL-10. To date, 

AD, AAV, retroviral, lentiviral, and HSV vectors encoding IL-10 have been effective at 

producing therapeutic effects in a variety of animal models of neuroimmune disease 

(Croxford et al., 2001; He et al., 2013; Lau et al., 2012; Milligan et al., 2005a, 2005b). 

Replication-deficient AD, AAV, and HSV are more favored methods of transgene delivery 

due to their specificity of infection as well as their ability to produce large quantities of the 

transgene product over an extended period of time, usually weeks for AD (Wood et al., 

1996), weeks to months for AAV (Beutler and Reinhardt, 2009; Milligan et al., 2005b), and 

months for HSV (Lau et al., 2012). Although not completely understood, the effects of IL-10 

increased by single viral vector have generally been more transient than effects from other 

methods of gene therapy such as optimized injections of naked pDNA or microparticles 

encapsulating pDNA, which have been shown to last up to 4 months. One explanation for 

this difference is exposure to viral proteins, which may ultimately be targeted for 

suppression by the immune system. Repeated dosing has also not been studied with viral 

vector administration, which has been shown with naked pDNA injections to increase the 

potency, efficacy, and duration of its therapeutic effect.
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5.2.2. Naked pDNA-IL-10 injection—Direct IT injection of naked pDNA-IL-10 has also 

been a successful method for producing sustained therapeutic effects of IL-10. With this 

method of IL-10 delivery, the cellular environment at the time of neuroinflammation and 

subsequent pDNA injection is thought to play a critical role in the therapeutic effect. For 

example, shortly after nerve injury, macrophages infiltrate CSF and surrounding meningeal 

tissue (Gomez-Nicola et al., 2008), and following pDNA injection, additional macrophages 

are recruited to CSF (Sloane et al., 2009c). These infiltrating cells have been shown to be 

primarily ED1-positive (blood-derived macrophages or monocytes) (Dijkstra et al., 1985) 

and/or ED2-positive (mature tissue or resident macrophages) (Polfliet et al., 2001). 

Importantly, both of these cell populations are highly phagocytic (Duffield, 2003), which is 

thought to be a critical cell property for uptake of pDNA. Accordingly, pDNA-IL-10 has 

been most effective when administered IT as two injections separated over 5 h to 3 days, 

which is thought to be a result of a higher number of phagocytic cells to uptake pDNA at the 

time of the second injection as a result of the first injection. This argument is further 

supported by a study in which efficacy of treatment is similar whether the first injection 

included only the control pDNA or the actual IL-10 plasmid (Sloane et al., 2009a). Although 

some IL-10-transfected macrophages are likely to undergo apoptosis or be cleared to the 

lymph nodes (de Vos et al., 2002), many of the infiltrating macrophages may differentiate 

into ED2 positive resident macrophages (Honda et al., 1990) or microglia (Zhang et al., 

2007), which could provide an ongoing source of IL-10 and subsequent therapeutic effects. 

Notably, itwas recently shown that the addition of D-mannose as an adjuvant to IT pDNA-

IL-10 injection dramatically improves the potency of pDNA IL-10 and reduces the need for 

two injections to produce sustained antinociceptive efficacy (Dengler et al., 2014), providing 

a potentially revolutionary therapeutic strategy for pDNA-IL-10 delivery. Future studies will 

be necessary to explore the full capabilities of D-mannose as an adjuvant to pDNA-IL-10 

injections.

5.2.3. Polymer-based microparticles encapsulating IL-10-pDNA—The most 

successful method to date for producing sustained therapeutic effects of IL-10 has been to 

encapsulate pDNA-IL-10 into biodegradable polymer-based microparticles that enhance the 

uptake of pDNA into phagocytic cells. One major advantage to this technique is that it 

protects the pDNA from extracellular and intracellular degradative enzymes (Kaneda, 2001; 

Sebestyen et al., 1998), thus greatly reducing the amount of pDNA that is required to 

produce a comparable effect with naked pDNA (Meuli-Simmen et al., 1999; Shi et al., 

2003). To date, two polymers have been the most extensively studied in the context of IL-10 

(i.e. PEI and PLGA). The increased potency of PEI-pDNA complexes over naked pDNA is 

thought to be mainly due to the efficiency of releasing pDNA from the complex (see Meuli-

Simmen et al., 1999; Pack et al., 2005; Shi et al., 2003 for more information). PLGA is a 

copolymer of lactic and glycolic acid approved by the US Food and Drug Administration 

and has also been demonstrated as a successful method for slow release of peptides and 

proteins (Hedley, 2003). The advantage of PLGA-based microparticles is that they naturally 

stimulate the innate immune system, allowing increased infiltration of phagocytic cells, 

which readily phagocytize PLGA microparticles. Accordingly, a single IT injection of a 

PLGA-based IL-10 gene therapy (now called XT-101 and being forwarded toward clinical 

trials by Xalud Therapeutics), was as effective as two optimized IT injections of pDNA-
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IL-10 in a model of NP at a tenth of the dose (Sloane et al., 2009a; Soderquist et al., 2010b). 

Also importantly, IT PLGA is non-toxic to cells of the meninges (Ayhan et al., 2002), and 

proteins released from PLGA microparticles have been shown to be non-toxic for up to 35 

days after treatment (Lagarce et al., 2005a, 2005b; Sendil et al., 2003). Phase I/II clinical 

trials with XT-101 for the treatment of NP are expected to begin in 2015.

5.3. Adenosine 2A agonists

Adenosine 2A receptors (A2ARs) are typically activated by adenosine but can also be 

activated by various A2AR-selective agonists. A2ARs are found on both glial cells 

(Gyoneva et al., 2009) and neurons (Guntz et al., 2008) and activation following 

inflammation has been shown to increase IL-10 and decrease proinflammatory molecules 

released from a variety of different inflammatory cell types in culture (Grinberg et al., 2009; 

Hasko et al., 1996; Khoa et al., 2001; Link et al., 2000; Perez-Aso et al., 2013; Vincenzi et 

al., 2013a, 2013b). Interestingly, the A2AR is upregulated on macrophages and microglia 

following inflammatory signals such as LPS, CpG, lipoteichoic acid, or TNF, and on 

lymphocytes from MS and ALS patients, providing a unique pharmacological target for 

immune cells and glia exclusively activated by prior proinflammatory signals (Grinberg et 

al., 2009; Gyoneva et al., 2009; Vincenzi et al., 2013a, 2013b). As with IL-10-based gene 

therapies, a single administration of A2AR agonist after the onset of CCI-induced allodynia 

or collagen-induced arthritis resulted in sustained suppression of disease symptoms (Loram 

et al., 2009, 2013; Mazzon et al., 2011). A2AR agonist effects on allodynia appear to 

furthermore be dependent on sustained IL-10 release, although the mechanisms underlying 

this effect are not fully understood (Loram et al., 2009, 2013). Genetic inactivation of the 

A2AR has also been shown to exacerbate brain damage in the experimental autoimmune 

encephalomyelitis (EAE) model of MS, providing further evidence for a protective effect of 

A2ARs in neuroimmune diseases (Yao et al., 2012).

6. Conclusion

In conclusion, IL-10 is implicated in neuroimmune diseases of varying etiologies such as NP 

(nerve trauma), OA (peripheral inflammation), PD (neurodegeneration), and MS 

(autoimmune). A common feature of these disorders is an insufficiency in IL-10 signaling/

bioavailability and ongoing inflammation. In animal studies, increasing physiological levels 

of IL-10 in the context of these diseases has generally been a successful strategy to reduce 

disease symptoms and associated inflammation. Various methodologies to increase 

physiological levels of IL-10 have been employed (i.e. direct protein administration, viral 

vectors, naked plasmid delivery, plasmid delivery in microparticles, A2AR agonist 

administration), which have grown increasingly sophisticated in their ability to produce 

sustained therapeutic effects following a single injection. Future studies including clinical 

trials planned for XT-101 will critically evaluate the efficacy of IL-10-based therapies for the 

treatment of neuroimmune diseases in both animals and humans.
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Fig. 1. 
Interleukin-10 (IL-10) gene transcription regulation. IL-10 transcription is initiated after a) 

CD209 signaling mediated via rapidly-accelerated fibrosarcoma (Raf)-1, which activates 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB); b) Toll-like receptor 

4 (TLR4) signaling mediated via TIR-domain-containing adaptor protein inducing IFNβ 
(TRIF) and Myeloid differentiation primary response gene 88 (MyD88). MyD88 activates 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB). MyD88 also activates 

the mitogen activated protein kinases (MAPKs) p38 and extracellular related kinase (ERK), 

further activating mitogen- and stress-activated protein kinase (MSK) 1 and 2; c) Dectin-1 

signaling mediated via the ERK pathway and upstream spleen tyrosine kinase (SYK) 

activation. IL-10 mRNA is post-transcriptionally regulated by a range of micro-RNAs and 

by tristetraprolin (TTP).
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Fig. 2. 
Interleukin-10 (IL-10) receptor signaling. IL-10 exerts effects through a heterotetramer 

consisting of two IL-10 receptor 1 (IL-10R1) chains and two IL-10 receptor 2 (IL-10R2) 

chains. IL-10R1 activates Janus kinase 1 (Jak1), while IL-10R2 activates tyrosine kinase 2 

(Tyk2), leading to phosphorylation of IL-10R1 followed by phosphorylation of STAT3 

(other STAT proteins have also been implicated including STAT4 in TH1 cells; STAT6 and 

GATA3 in TH2 cells; and, STAT1 and STAT3 in TH17 cells). Such signaling results in 

diverse consequences, such as a) cytokine modulation by the induction of A20-binding 

inhibitor of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) (Abin-3) 

and dual specificity phosphatase-1 (DUSP-1) that inhibit mitogen activated protein kinase 

(MAPK) phosphorylation as well as NFkB. Suppressor of cytokine signaling (SOCS) 1 and 

3 are also produced which target the p65 NFκB subunit for degradation and mark activated 

JAK-STAT complexes for degradation. Mitogen activated protein kinase (MAPK) 

phosphatase (MKP) expression, including MKP1, is elevated to inhibit MAPK signaling; b) 

decreased antigen presentation by reducing expression of major histocompatibility complex 

class II (MHC II) molecules by inducing membrane-associated RING-CH (MARCH) 1 and 

by inhibiting expression of adhesion (e.g. CD54) and co-stimulatory (e.g. CD86) molecules 

c) cell polarization via induction of transcription factors such as c-MAF, and d) 

neuroprotection by normalizing expression of excitatory amino acid transporter-2 (EAAT2), 

by releasing intracellular calcium stores via PI3K-AKT, by preventing apoptosis through 

restoration of suppressed anti-apoptotic factors Bcl-2 and Bcl-xl, and by attenuating 

caspase-3 expression.
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