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Introduction

The present review article was aimed to discuss distinct 
and common functions of the three members of miR-183 in 
cell fate determination in the inner ear. In this regards, Web 
of Science and PubMed databases were searched for the 
publications about the role of miRNA-183 family in inner 
ear: hair cell development and deafness between 2000 and 
2016 using the EndNote software. The used search terms were 
miRNA-183 and deafness or hearing loss and miRNA-183 

family or miRNA or microRNA in Title/Keywords/Abstract. 
Each database was searched independently. The articles re-
trieved from both databases were analyzed once. Abstracts 
were reviewed based on predefined inclusion and exclusion 
criteria. When necessary, full texts were retrieved to assess 
study eligibility. The articles without English abstract and 
English available full texts were excluded. Only the articles 
directly addressing the effect of miRNA-183 family in inner 
ear: Hair cell development and deafness were selected and 
analyzed. From the Web of Science, 5 articles were retrieved 
and from the PubMed, 8 articles retrieved. Overal, 13 articles 
were retrieved from both databases and 90 were included in 
the final analysis. After reviewing the abstracts, we excluded 
17 articles from the analysis as they did not meet the inclu-
sion criteria. 73 articles investigated the role of miRNA-183 
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miRNAs are essential factors of an extensively conserved post-transcriptional process 
controlling gene expression at mRNA level. Varoius biological processes such as growth 
and differentiation are regulated by miRNAs. Web of Science and PubMed databases 
were searched using the Endnote software for the publications about the role miRNA-183 
family in inner ear: hair cell development and deafness published from 2000 to 2016. A 
triplet of these miRNAs particularly the miR-183 family is highly expressed in vertebrate hair 
cells, as with some of the peripheral neurosensory cells. Point mutations in one member of 
this family, miR-96, underlie DFNA50 autosomal deafness in humans and lead to abnormal 
hair cell development and survival in mice. In zebrafish, overexpression of the miR-183 
family induces extra and ectopic hair cells, while knockdown decreases the number of 
hair cell. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in 
some types of sensory cell in the eye, nose and inner ear. In the inner ear, mechanosensory 
hair cells have a robust expression level. Despite much similarity of these miRs sequences, 
small differences lead to distinct targeting of messenger RNAs targets. In the near future, 
miRNAs are likely to be explored as potential therapeutic agents to repair or regenerate 
hair cells, cell reprogramming and regenerative medicine applications in animal models 
because they can simultaneously down-regulate dozens or even hundreds of transcripts.
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family in inner ear: hair cell development and deafness.

History of miRNA and Biogenesis

The first miRNA (lin-4) was discovered in 1993 [1]. Gen-
erally, miRNAs are small RNAs originated from a stem-loop 
shaped precursor RNA that mainly intervenes in the regula-
tion of gene expression. This regulation occurs after target-
ing and leading particular mRNAs to degradation [2]. The 
seed region of the 5' mature miRNA molecule including sev-
en nucleotides contribute to binding to the 3'–UTR of com-
plementary mRNA [3]. The miRNA molecule can complete-
ly bind to the mRNA target leading to full degradation of the 
target mRNA or partially bind to the target mRNA and cause 
the inhibition of mRNA translation. A wide variety of miR-
NAs exist in different cells and tissues which play an impor-
tant role in many biological processes such as cell cycle, 
apoptosis, tumorigenesis and neurogenesis [4,5]. In addition 
based on bioinformatic predictions, almost one third of pro-
tein-coding genes in the human genome are regulated by 
miRNA [6]. To date, more than 100 gene loci have been 
demonstrated to be involved in deafness, 44 of which have 
been reported to possess at least on mutation; however, there 
are still a large number of unexplained cases. Approximately 
98% of RNA in mammalian cells do not code protein [7] and 
non-coding RNA such as miRNAs may be involved in the 
development of the inner ear and thus have a role in hearing 
loss [8]. In 2005 miRNAs were identified in the vestibular 
system for the first time. Since the discovery of a tissue-spe-
cific miR-183 family and its correlation with deafness in mice 
and humans, miRNAs have been shown to be involved in 
some other diseases such as cholesteatoma, schwannomas 
and otitis media.

The miR-183 Family

miR-96, detected in human cancer cell lines, was the first 
discovered member of human miRNA of this family [9]. 
Bioinformatics tools allowed the discovery of miR-182 and 
miR-183 through comparison between human or mouse 
RNAs with Fugu rubripes genome (a type of Japanese puff-
er-fish) [10]. Considering the same expression pattern in reti-
na and very close chromosomal loci, both miR-182 and miR-
183 are categorized in the family [11]. In addition, miR-96 
was added to this family due to its sequence homology with 
miR-182 and miR-183, and also its chromosomal locus that 
is between miR-182 and miR-183 [12,13]. miR-183 family 
consists of three homologous miRNA, miR-183, miR-182, 
and miR-96 (Fig. 1) which are expressed in sensory neurons 

and hair cells in vertebrates and sensory cells of all species 
of animals [14]. Among vertebrates, members of miR-183 
family are expressed in the olfactory epithelium, eye, neuro-
mast and ear. In the inner ear of mice, miRNAs are expressed 
in sensory neurons and hair cells of the corti organ and end 
organs of vestibule (Table 1) [15]. Minor differences in seed 
sequence among this family members causes them to have 
independent target RNAs (Fig. 1). This miRNAs is expressed 
in a completely synchronous manner throughout develop-
ment and is needed for maturation of sensory organs [16]. 
miR-96, mir-182, and miR-183 comprise a fully conserved 
family of miRNAs and localize in intergenic loci of chromo-
some 7 long arm (Fig. 1) [17]. In vertebrates, the expression 
of miR-183 family seems to be limited to ciliated sensory 
epithelial cells and certain cranial and spiral ganglia. In ze-
brafish, these miRNAs have been detected in eye, nasal epi-
thelium, sensory hair cells in ear, and neuromasts [18,19]. 
miR-182, alongside miR-183 and miR-96, are from a poly-
cistronic miRNA cluster which localize in a 4 kb region on 
the long arm of chromosome 6. They are expressed particu-
larly in certain organs such as eye, nose, and inner ear [12]. 

miR-96

miR-96 could indirectly cause increase in the expression 
of significant developmental genes such as Gfi1, Ptprq, and 
Tmc1 [21]. In olfactory system, this miRNA family is vital 
for differentiation of neural precursor into mature olfactory 
neurons, but has no contribution to onset of specific differen-
tiation or maturation steps [22]. miR-96 is likely to play a 
similar role in auditory system. Understanding miR-96 mech-
anism may help to explain the complicated expression of the 
genes required for cochlear activity and contribute to ad-
vances in non syndromic progressive deafness. Studies of di-
minuendo mice (a mice model to investigate the causes of 

miR-183 miR-96 miR-182

Human: chr 7q32.2
Mouse: chr 6qA3

4.5 kb
3.7 kb

A

hsa-miR-183	 UAUGGCACUGGUAGAAUUCACU--
hsa-miR-96	 UUUGGCACUAGCACAUUUUUGCU-
hsa-miR-182	 UUUGGCAAUGGUAGAACUCACACU-

mmu-miR-183	 UAUGGCACUGGUAGAAUUCACUG
mmu-miR-96	 UUUGGCACUAGCACAUUUUUGCU
mmu-miR-182	 UUUGGCAAUGGUAGAACUCACA-B

Fig. 1. A: Family chromosomal loci of miR-183, 182, and 96 in hu-
man and mouse. B: Seed sequence of miRNAs. Adapted from 
Wei, et al. Thorac Cancer 2015;6:2-9. [20].
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hearing loss and its progression) have demonstrated that a 
mutation in miR-96 gene causes a mutation at locus 7 of 
miR-96 seed sequence [23]. Functional activity of miR-96 as 
an miRNA-183 family member was confirmed in a mice 
model with a mutation at seed regions loci. The mutation 
was caused by N-ethyl-Nitrosurea and led to partial hearing 
loss in heterozygous mice and absolute hearing loss in ho-
mozygous mice. The mechanism through which miRNAs af-
fect inner ear development has not been yet explained fully. 
In a study to determine the miR-96 target genes, 12 genes 
were predicted by miRanda software with strong filtering, 
five of which (Aqp5, Celsr2, Myrip, Odf2, and Ryk) were 
confirmed as miR-96 target by analysis of luciferase. In a 
study to compare the genes expression in inner ear between 
wild and mutant diminuendo mice using microarray, 96 tran-
scripts were affected significantly and the expression of five 
genes (Pitpnm1, oncomodulin, Preston, Ptprq, and Gfi1) was 
found to decline. None of these genes have a binding site for 
miR-96. They are likely to affect downstream targets indi-
rectly and the changes in expression could phenotype dimin-
uendo mice. Studies of diminuendo mice have indicated that 
miR-96 is responsible for maturation of stereocilia bundle in 
inner and external ear [24]. In addition, synaptic morphology 
of mutant mice remained immature and miR-96 is speculated 
to contribute to developing cochlear nerve. C1ic5 is an inner 
chloride cell canal alongside stereocilia in inner ear and has 
been known as a target for both miR-96 and miR-182 [25]. 
Mutant mice for C1ic5 have a similar stereocilial morpholo-
gy to ENU mice which has been already described. C1ic5 has 
a binding site for miR-96, which has been confirmed by lu-
ciferase. Transfecting miR-96-contained liposomes into HEI-
OC1-derived hearing cell leads to decline of C1ic5 at surfac-
es of both mRNA and protein [26].

miR-182 

miR-182 is expressed as hair cell-like at differentiation of 
fundamental precursor cell of inner ear. Differentiation of 
fundamental precursor cell of inner ear into hair cell-like is 
accelerated. miR-182 activity could be associated with tar-
geting Tbx1, which is a transcription factor playing role in 
development and differentiation of hair cell [27]. Increased 
expression of miR-182 causes increase in the number of ec-
topic hair cells in the inner ear. Ectopic expression of miR-
182 in supporting cell could suppress and convert their gene 
into hair cell. Therefore if deafness is due to losing hair cells, 
direct transfection of miR-182 into SC could facilitate their 
transforming into hair cells (hair cell regeneration). Previous 
studies have shown that miR-183 family members are likely 

to suppress prosensory or SC genes to help to differentiate 
hair cell specifically. SOX2 as a marker prosensory cells 
which is also targeted by miR-182 [28,29]. In several ge-
nome wide studies on autism, the susceptibility gene to this 
disease, which is near 7q32/2, has been detected close to 
miR-182 chromosomal locus. Defective activity of miR-182 
family could cause defect in sensory development steps and 
contribute to autism incidence [30-35]. C>A mutation has 
been detected at a binding site of miR-182 on radixin (RDX) 
3'UTR in a human family with recessive autosomal non syn-
dromic deafness [36]. Moreover in addition to the mutation 
at protein-coding loci, mutation at 3'UTR non coding loci, 
where miRNAs usually bind, could cause disorder in gene 
activity. Although in vitro investigation of luciferase did not 
confirm the mutual effect between RDX and miR-182 [29]. 
In vitro studies have indicated that Microphthalmia-associat-
ed transcription factor is a transcription factor required for 
retinal development and maintenance. A gene is directly tar-
geted by miR-182. miR-182 is likely to contribute to regulat-
ing visual circadian rhythm, which is probably done by 
changing ADCY6 adenylyl cyclase expression [12].

Expression and Activity 
of the miR-183 Family in the Developing 

Hearing Organ of Chicken

Basillar papilla is similar to mammals auditory organ (corti 
organ) in various dimensions [37-39]. In studies, chicken 
embryo was used to investigate whether this family was ex-
pressed. Basillar papilla, an auditory organ, exhibited a mild 
increase in expression (mostly on peripheral neuron) in pro-
sensory cells at seventh embryonic day and an increase in 
expression (mostly in apical hair cells) nine years later for 
this family. However transfection had no effect on pheno-
type. No detectable change in hair cell or bundle morphology 
was seen due to increasd expression by miR-183 family vec-
tor [40]. 

Expression and Activity 
of the miR-183 Family 

in Hearing Organ of Mouse 
 
Throughout development of mice embryos, miR-183 fam-

ily is initially expressed across the entire otic and spiral vesi-
cle and atrial ganglionic neurons, and then only in hair cells 
and neurons accompanying them. miR-183 family has been 
also seen in greater epithelial ridge at 15.5-17.5 embryonic 
days, and is expressed in inner sulcus and spiral lumbus 4- 

11 days after birth [41]. Although miR-183 family in the in-
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ner ear of nature mice become evident by microarray data, in 
situ hybridization technique demonstrated that they disap-
peared in hari cell and spiral ganglion at the second and third 
weeks after birth (Fig. 2) [14,41]. 

miR-183 Family Activity in Hair Cell

The significance of miR-183 family for hair cell develop-
ment has been recently confirmed in human, mice, and ze-
brafish (Fig. 3). In genetic investigation of deafness locus of 
human autosomal the two families had a common point mu-
tation in seed sequence which was transferred to mature 
miRNA and cause loss of miRNA function. Knocking down 
miR-183 family members cause defect in semicircular canals 
and inner ear [51]. 

 

The Functional Role 
of miR-183 Family in the Development 

of the Inner Ear

The functional role of miR-183 family members has been 
explored in inner ear development in zebrafish embryo [52]. 
Synthetic injection of miR-182 and miR-96 into embryos ac-
celerates hair cell ectopic growth while mir-183 leads to hair 
cell normal development (Fig. 4). Although this family are a 
scended from similar initial transcript, their role varies prob-
ably due to difference in their downstream targets. miR-183 
family inhibition using morpholino antisense oligonucle-
otides affects ear normal development at frontier and posteri-
or macula. The severity of hair cell loss depends on the num-
ber of inhibited miRNA. All miR-183 family members are 
involved in controlling sensory cell. Since both the inhibition 
of this family proliferation and increase in its expression 

Table 1. Validation of miRNA-gene targets found in the inner ear

miRNA Gene target Experimental system used Ref.

miR-183 TAO kinase 1 (Taok1) Early growth response 1 
(Egr1)Insulin receptor substrate 1 (Irs1)

Rat cochlear organotypic cultures transfected with 
antisense morpholinos.

Patel, 
et al. [49]

miR-182 SRY-box containing transcription factor 
(Sox2)

In situ hybridization; luciferase assay in HEK293 cells. Weston, 
et al. [50]

miR-182 T-box 1 (Tbx1) Luciferase assay in COS1 cells; overexpression of miRNA
in cultured otic progenitor/stem cells.

Wang, 
et al. [27]

miR-96, 
miR-182

Chloride intracellular channel 5 (Clic5) Co-expression in mouse auditory HEI-OC1 cells; luciferase
assay in A549 cells; down-regulation of target

Liberman, 
et al. [26]

Marginal cells
miR-376a, -376b

Supporting cells
miR-15a, -30b, -99a

Reissner’s membrane
miR-205

Inner sulcus
miR-96, -182, -183

Hair cells
miR-96, -182, -183
-15a, -30b, -99a,
-18a, -140, 194

Spiral limbus
miR-96, -182,
-183, -205

Basilar membrane
miR-205, -15a,
-30b, -99a

Spiral ligament
miR-205

Spiral ganglion
miR-96, -182, 
-183, -15a, 
-30b, -99a,
-18a, -124a, 
-194

Fig. 3. Illustrates the network and diagram of mRNAs targeted by 
miR-183 family, and overlapping and differentiated mRNAs. The 
network diagram was developed by cyto scape 3.1 [53]. Target 
mRNA-miR-182 is shown in red color, miR-183 in yellow, miR-96 in 
blue, miR-182 and mir-183 in orange, miR-96 and miR-183 in green, 
miR-96 and miR-182 in purple, miR-182 and miR-183 in grey [16]. 
Adapted from Smoot, et al. Bioinformatics 2011;27:431-2. [53]. 
Adapted from Dambal, et al. Nucleic Acids Res 2015;43:7173-88. 
[16].

Fig. 2. miRNAs expression pattern in mice cochlea [8,14,41-48].
Adapted from Friedman et al. Proc Natl Acad Sci U S A 2009; 
106:7915-20. [8]. Adapted from Kent WJ, et al. Genome Res 
2002;12:996-1006. [14]. Adapted from Sacheli et al. Gene Expr 
Patterns 2009;9:364-70, with permission of Elsevier. [41]. Adapted 
from Soukup et al. Dev Biol 2009;328:328-41, with permission of 
Elsevier. [42]. Adapted from Wang et al. Neuroreport 2010;21:611-
7, with permission of Lippincott Williams & Wilkins. [43]. Adapted 
from Wang et al. Brain Res 2010;1346:14-25, with permission of 
Elsevier. [44]. Adapted from Elkan-Miller, et al. PLoS One 2011;6: 
e18195. [45]. Adapted from Hertzano, et al. PLoS Genet 2011;7: 
e1002309. [46]. Adapted from Yan, et al. Int J Exp Pathol 2012;93: 
450-7. [47]. Adapted from Ushakov, et al. Front Mol Neurosci 
2013;6:52. [48].
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cause disorder in development, the balance in expression of 
this family could be critical to normal development of hair 
cell.

miRNAs and Regeneration 
of Hair Cells

Treatment of hair cell regeneration is still a big challenge. 
Due to hair cell inability to regenerate, the stem cells with hair 
cell-like phenotype have been genetically manipulated [54]. A 
challenge of this approach is that how cells proliferation and 
differentiation should be regulated in reprogramming and 
differentiating. miRNAs could contribute greatly to initiating 
cell differentiation, maintaining differentiation steps, and ter-

minating differentiation. To date, hundreds of miRNAs have 
been identified in cultured cochlear precursor cells. Expres-
sion patterns are different in differentiated and undifferenti-
ated cells [55]. Therefore, the role of any involved miRNAs 
in cochlear (Fig. 2) cells differentiation has been yet ex-
plained fully. Understanding miRNAs regulatory roles could 
elucidate the hair cell regeneration in mammals inner ear. 

Family miR-183 and Age-Related 
Hearing Loss 

The above-mentioned miR-183 expression in hair cells 
could help to differentiate and maintain the apical structures 
of these cells. At older ages, the hair cells gradually lose their 
apical structure and hearing threshold increases. By increas-
ing miR-183 family level in auditory cell, the apical struc-
tures and hearing ability may be recovered. 

 

Regulatory Factor Atoh1 and 
miR-183 Family

Atoh1 is an important transcription factor which can initi-
ate hair cell differentiation and begins to express approxi-
mately at E12.5-E14.5 in hair cells [50]. Studies have indi-
cated that miR-183 in developing cochlea did not express at 
E12.5 and expressed partially at E14.5. At E16.5, miR-183 
family is expressed in all sensory ganglia and 17.5 entire in-
ner ear epithelium. These findings confirm no evidence of 
miR-183 family in vivo (Fig. 5) expression prior to Atoh1. 
Therefore, this family has no contribution to onset of devel-
opment although it may play a significant role in development. 
The expression level of miR-183 family ranges within the ini-
tial steps of inner ear development. However miR-183 family 
expression is specific to hair cells in the subsequent steps of 
development [55]. 

Fig. 5. Shows the time table of mi-
RNAs expression at development 
and early steps after birth. miR-183 
family is a subgroup of miRNAs that 
has been already investigated more 
frequently. miR-183 are expressed 
initially in otic vesicle at E9.5, which 
continues till reaching into cochle-
ar-vestibular ganglion and neural 
tube at E11.5 and E17.5. The above 
expression has been reported in co-
chlear hair cells till p30 in some stu-
dies.Other miRNAs were identified 
by ISH. *represents the miRNAs 
that were tested only at this step [56]. 
Adapted from Rudnicki, et al. EMBO 
Mol Med 2012;4:849-59. [56].

Fig. 4. miR-183 regulates the number of hair cells. In developing 
zebrafish, injecting miR-183 family reagents into an embryonic cell 
and then analyzing the inner ear were done 1-2 days after fertil-
ization. Injecting miR-96 or miR-182 at monocellular embryonic 
step causes production of a large number of hair cells after one 
day. Declined level of any members of miR-183 family after mor-
pholino antisense injection leads to producing few hair cells two 
days after injection [29,52]. Adapted from Li, et al. Curr Opin Oto-
laryngol Head Neck Surg 2010;18:459-65. [29]. Adapted from Li, 
et al. J Neurosci 2010;30:3254-63. [52].

miR-96/182/183
morpholinos

miR-96 or
miR-182

Inject one-celled
zebrafish embryo

Water control Normal

Extra and ectopic hair cells

Fewer hair cells

*

*

*

*

*

*

*
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Conclusions

Because of the limitations of studying miRNAs and their 
targets in human inner ear, animal models are very important 
in this regard. Therefore miRNAs role in development and 
activity of inner ear has been investigated in zebrafish and 
mice. Transcriptomic and proteomic investigations help to 
figure out miRNAs role and targets. miRNAs are thought to 
be used for regeneration of inner ear hair cells and finally 
contribute to treatment [56]. Normal expression of miR-183 
family is specific to sensory organs and essential for their 
development. Knocking down miR-183 causes increase in 
the expression of the genes that are through the signaling 
axis PI3K/AKT/mTOR as they undergo apoptosis and dys-
regulation. Migration and invasion are upregulated by miR-
183 family and mainly mediated by miR-182. miR-183 ex-
pression has been confirmed in various cancers [57-69]. The 
association of miR-183 family with development and diseas-
es could be also explained by beta-catenin being able to reg-
ulate this family expression [70,71]. Beta-catenin is activated 
in downstream Wnt signaling pathway and is a survived tran-
scription factor which plays a role in embryonic period and 
contributes to regulation of organ development. Under nor-
mal biological conditions, miR-183 expression takes place 
only in ciliated sensory cells, where the length and durability 
of survival activities are important for the entire organism. 
These findings make the assumption that the miR-183 family 
is a constituent of developmental mechanism for maintenance 
and longevity of sensory neuron. Obviously when miRNAs 
are removed in rodents, neurodegeneration takes place, con-
firming the hypothesis stating that this family plays a critical 
role in maintaining neurons health. These findings have been 
obtained by combined in vitro/bioinformatic studies [72]. 
Studies have speculated that miR-183 family is likely to sup-
press prosensory cells genes or to suppress SC genes to assist 
hair cells in specific differentiation, and SOX2 as a prosen-
sory marker has been predicted to be a target for miR-182 
[28]. Recent studies of nervous system in several organism 
models have demonstrated the critical role of miRNAs in de-
velopment and function of nervous system. miRNAs have a 
great potential to help to develop a new generation of drugs 
but potential problems continue to raise about them, includ-
ing high dose-dependent side effects and toxicity (if used in 
vivo) [73]. However researchers argue that miRNAs-based 
therapeutic interventions will be definitely helpful for the pa-
tients in the near future thanks to rapid developments in sci-
ence and technology.
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