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Abstract

More than 30 million people are infected with HIV, and HIV remains the fifth leading cause of disability-
adjusted life years worldwide. Antiretroviral therapy (ART) dramatically decreases mortality rate, but there are
side effects, long-term toxicities, expenses, stigmas, and inconveniences associated with chronic treatment, and
HIV-infected individuals on ART have an increased risk of malignancies, cardiovascular disease, neurologic
disease, and shortened life expectancy. Therefore, a cure for HIV remains an important goal. Combining new
cell and gene therapy technology is an exciting approach that appears promising in vitro. Animal testing and
careful clinical trials will be needed to determine if these strategies are clinically useful.
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Introduction

More than 30 million people are infected with HIV,1

and HIV remains the fifth leading cause of disability-
adjusted life years worldwide.2 Antiretroviral therapy (ART)
dramatically decreases mortality rate,3 but there are side ef-
fects, long-term toxicities, expenses, stigmas, and inconve-
niences associated with chronic treatment, and HIV-infected
individuals on ART have an increased risk of malignancies,4

cardiovascular disease,5 neurologic disease,6 and shortened
life expectancy.7 Therefore, developing new HIV treatment
strategies that induce long-term remission or complete
eradication of HIV remains an important goal.

Long Half-life and Proliferation of HIV-Infected Cells
Require New Therapies That Eradicate HIV-Infected
Cells

Current antiretrovirals inhibit viral enzymes, stop viral
replication, and effectively reduce plasma viral load by
several logs. However, HIV-infected cells are thought to have
a long half-life, on the order of 3–4 years.8,9 In addition, it has
become clear that HIV-infected cells also proliferate during
ART.10–13 Although many cells are infected with defective
viruses, and many proviruses never reactivate, the combi-
nation of long-lived HIV-infected cells that can also prolif-
erate makes it unrealistic that prolonged antiretrovirals alone
will cure HIV simply by allowing the reservoir of HIV-

infected cells to decay. Instead, new therapeutic strategies
that can kill HIV-infected cells are needed. This therapeutic
challenge is similar to the challenge of treating cancer.
Unlike antiviral therapy, chemotherapy is designed to kill
human cells with specific properties, and therefore, it seems
logical to adapt therapies that have proven promising for
cancer and adapt them in an effort to cure HIV. One exciting
new technology is adoptive transfer of chimeric antigen re-
ceptor (CAR) expressing T cells.

Background on CAR1 T Cells for Cancer

CARs are genetically engineered T cell receptors designed
to redirect T cells to target cells that express specific cell-
surface antigens. In most approaches, CARs are transduced
into donor lymphocytes and expanded ex vivo before being
transfused back into the patient (Fig. 1). CAR+ lymphocytes
function by inducing MHC-independent cytotoxicity. First-
generation CAR comprised an extracellular single-chain
variable fragment (scFv) derived from an antibody that
targets the surface of cancerous cells, linked to the intracel-
lular domain of the T cell receptor (CD3f).14–19 Newer CARs
include intracellular costimulatory domains (e.g., CD28 and
4-1BB), which are important for lymphocyte activation and
persistence.15,16,18 Adoptive transfer of autologous lympho-
cytes genetically engineered with newer generation CAR has
shown dramatic clinical benefit (67%, 6-month survival for
relapsed/refractory leukemia compared with <25% with best
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available chemotherapy20), and the efficacy of the CAR+ T
cells has persisted for >6 months in the majority of partici-
pants who did not undergo stem cell transplantation.20–24

Analogous to cancer, adoptive transfer of lymphocytes en-
gineered to express anti-HIV CAR may be able to persistently
target HIV-infected cells that are expressing HIV or reactive
and express HIV in the future.

Residual HIV Expression Despite ART is a Critical
Barrier to Curing HIV

The majority of individuals on ART have no evidence of
ongoing viral evolution,25–27 which argues against persistent
viral replication. However, most antiretrovirals function be-
fore viral integration and do not inhibit the expression of HIV
proteins from infected cells. Residual viral expression likely
explains the cell-associated viral RNA,28–33 viral proteins,34–38

and low-level plasma viremia (one to three copies of HIV
RNA per milliliter of blood)39–42 frequently seen during ART.
Given the short half-life of free virions in the plasma,43 the
plasma HIV RNA concentrations during ART imply that tens
of thousands of virions are produced per day, representing a
major barrier to discontinuing ART without viral rebound.
Although latently infected cells clearly exist44 when ART is
discontinued, high-level plasma HIV RNA normally returns
within weeks,45 mirroring the timeline observed with primary
infection.46 This suggests that cells actively producing virions
exist and are likely an important target of efforts to cure HIV.

Mechanisms That May Allow Persistence of Residually
Active HIV-Infected Cells

The paradigm has been that when long-lived latently in-
fected cells reactive and express HIV, the HIV-infected cells
are killed by cytotoxic T lymphocytes (CTLs) or direct virus-
induced cell lysis.47–49 On this premise, a variety of latency-
reversing agents are being investigated as a means to eliminate
latently infected cells.50–55 However, Shan et al. demonstrated
that HIV infection does not necessarily lead to cell death by
either viral-induced cell lysis or autologous CTL-mediated
effect.56 Several biological mechanisms seem to limit the ef-

ficacy of CTL-mediated clearance of reactivated cells. First,
HIV evolution selects for CTL-escape mutations,57–60 which
are less likely to be cleared by autologous CTL. Second,
there is evidence that HIV Nef mediates downregulation of
MHC-I,61–63 which helps shield HIV-infected cells from
CTL responses. Third, HIV-specific CTL responses may be
ineffective, either because of exhaustion64,65 or because of
peripheral immune tolerance.66,67 Therefore, new strategies
that circumnavigate these limitations of the host immune
response, perhaps in combination with latency-reversing
agents, could be important in the effort to cure HIV.

Advantages of CAR1 Lymphocytes to Target Residually
Active HIV-Infected Cells

Anti-HIV CARs are appealing for three primary reasons.
(1) CAR+ CTLs function independent of MHC and can
therefore target HIV-infected cells that are not effectively
cleared by the host’s endogenous CTLs (because HIV vari-
ants evolve to escape restriction by host CTL,58–60 HIV Nef
downregulates MHC-I expression,61–63 immune exhaus-
tion,64,65 or immune tolerance66,67). (2) CAR+ lymphocytes
can retain cytotoxic activity for at least 6 months,20,68,69 and
CAR DNA has been detectable in the peripheral blood for up
to 10 years,70 potentially providing prolonged therapeutic
benefit by targeting both the actively HIV-expressing cells
and cells that reactivate in the future. (3) CAR+ lymphocytes
have also been found to traffic to the central nervous sys-
tem,23 a potentially important reservoir of HIV, that is diffi-
cult to treat with traditional pharmacologic agents.

Previous Trials of Anti-HIV CAR

The majority of CARs have been designed to target ma-
lignant cells, but since 1991, many anti-HIV CAR strategies
have been described.71–80 A Phase II randomized placebo-
controlled clinical trial of a first-generation CAR to treat HIV-
infected individuals on partially effective ART [only 62.5%
(25/40) had viral load <50 c/mL throughout the study] dem-
onstrated a significant decrease in infectious units per million
peripheral blood mononuclear cells (-0.36 log; a commonly

FIG. 1. Schematic representation of
therapy for HIV with anti-HIV CAR-
expressing cells. CAR, chimeric antigen
receptor.
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used measure of the viable HIV reservoir) and rectal HIV
DNA (-0.5 log), and a trend toward less viral rebound, al-
though no decrease in peripheral blood HIV DNA or rectal
HIV RNA.81 Long-term follow-up suggests that this approach
was safe and results in long-lived cells with CAR DNA that
persisted for more than a decade.70 However, no further clin-
ical trials of anti-HIV CAR have been reported. More recent
data have revealed that HIV can infect CD8+ CAR T cells that
express the CD4-zeta CAR used in the earlier trial,82,83 which
may have been an important limitation of this approach.

Previous Therapy with DCCR5 T Cells

Another cell-based approach to treating HIV is to adop-
tively transfer cells that are resistant to HIV infection. The
most striking example of this was the use of naturally oc-
curring homozygous DCCR5 cells for stem cell transplanta-
tion, which led to the only documented HIV cure.84 However,
a more practical methodology that is potentially scalable has
been to collect patient cells, disrupt the CCR5 coreceptor ex
vivo using a zinc finger nuclease, and then reinfuse the ge-
netically modified cells. This approach appeared safe and
feasible in a Phase I trial85 and produced a population of HIV-
resistant lymphocytes (13.9% of circulating CD4 T cells 1
week after infusion), which had an estimated mean half-life
of 48 weeks. Whether there was an antiviral effect with this
approach was not clear from the small Phase I trial. Efforts
are under way to increase the number of HIV-resistant cells,
or the half-life HIV-resistant cells, in order to determine if
this approach can have a clinical benefit. It remains possible
that producing a population of HIV-resistant cells will restore
general CD4 function and achieve a ‘‘functional cure,’’ but
that a ‘‘sterilizing’’ cure will require a population of cells that
are both HIV specific and HIV resistant.

Combining Cell and Gene Therapy to Treat HIV

Anti-HIV CAR T cells that are also genetically protected
from HIV infection is a strategy that several groups are now
pursuing. Zhen et al. introduced a short hairpin RNA upstream
of a CD4-zeta CAR, which targets CCR5.83 Our group de-
veloped anti-HIV CAR T cells based on scFV from broadly
neutralizing antibodies and engineered the cells to be DCCR5
(article in submission). In all cases, it is clear that the HIV-
resistant CAR+ T cells have better antiviral activity than CAR+

T cells that are not engineered to be HIV resistant. These
results demonstrate that CAR T cells can be infected by HIV
and suggest that strategies which combine an HIV CAR with
strategies to protect CAR+ T cells from infection might be
a promising path toward a cure. As shown in Fig. 1, these
therapeutic approaches are complex, highly experimental, and
there is real potential for toxicity; therefore, extensive in vivo
testing in animal models and carefully controlled clinical trials
is needed. There is excitement that clinical studies may begin
within the next few years. Despite the tantalizing promise of
cell and gene therapy to treat HIV, participants who volunteer
for trials will have to be carefully counseled not to assume that
these approaches will be effective and they will need to clearly
understand the potential risks.
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