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Abstract

Objective—To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes 

Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association 

study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required 

to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based 

identification algorithms often suffer in a low recall rate and could miss a large number of valuable 

samples under conservative filtering standards. The goal of this work is to develop a semi-

automated framework based on machine learning as a pilot study to liberalize filtering criteria to 

improve recall rate with a keeping of low false positive rate.

Materials and methods—We propose a data informed framework for identifying subjects with 

and without T2DM from EHR via feature engineering and machine learning. We evaluate and 

contrast the identification performance of widely-used machine learning models within our 

framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support 

Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples 
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(161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes 

related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014.

Results—We apply top-performing machine learning algorithms on the engineered features. We 

benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification 

models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our 

results indicate that the framework achieved high identification performances (∼0.98 in average 

AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC).

Discussion—Expert algorithm-based identification of T2DM subjects from EHR is often 

hampered by the high missing rates due to their conservative selection criteria. Our framework 

leverages machine learning and feature engineering to loosen such selection criteria to achieve a 

high identification rate of cases and controls.

Conclusions—Our proposed framework demonstrates a more accurate and efficient approach 

for identifying subjects with and without T2DM from EHR.
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1. Background and Significance

Type 2 diabetes mellitus (T2DM) is a major disease with high penetrance in humans around 

the globe, a trend that is still on the rise [1,2]. T2DM is a leading cause of morbidity and 

mortality and contributes to increased risks of heart disease by 2 to 4 times [1]. A significant 

number of research investigations have been devoted to it, notably by means of genome-

wide association study (GWAS) and phenome-wide association study (PheWAS) in hope of 

detecting more associations between genotypes and phenotypes [3–10,23–26,36]. To 

discover diverse genotype-phenotype associations affiliated with T2DM via PheWAS and 

GWAS, more cases (subjects with T2DM) and controls (subjects without T2DM) are 

required to be identified from electronic health records (EHR) [11,12,34,35].

A widely adopted approach for identifying subjects with and without T2DM is to have 

human experts (e.g., experienced physicians) manually design algorithms based on their 

experience and examination of EHR data [11,13–15]. However, such strategies increasingly 

prove to be limited and not scalable [11,13,15] due to the laborious process of human 

intervention and rule abstraction capabilities of experts. Furthermore, expert algorithms are 

often designed with conservative identification strategy, thus may fail to identify complex 

(e.g., borderline) subjects and miss a significant number of potential T2DM cases and 

controls. In research settings such as GWAS and PheWAS, accumulating large sample sizes 

is often highly desirable and discarding valuable samples will influence the potentiality to 

discover diverse genotype-phenotype associations [26,36]. A disease may be caused by the 

joint effects of multiple single nucleotide polymorphism (SNPs) (i.e. heterogeneity), while a 

SNP may lead to multiple diseases (i.e. pleiotropy) [32–34]. Involving more cases with 

diverse phenotypic characteristics such as comorbidities will enrich the association studies 

between phenotypes and genotypes. Given the limitations in high missing rate and laborious 

manual intervention, it is increasingly challenging for expert algorithms to scale to the ever-
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increasing volumes of diabetes related EHR data, secondary use and evolved GWAS and 

PheWAS studies [13,15,35].

Machine learning and data mining models are increasingly utilized in diabetes related 

research from EHR data (e.g., diabetes-related adverse drug effect, and association between 

periodontitis and T2DM) [27–29]. These studies have primarily focused on mining T2DM-

related EHR data for clinical purposes, for instance, one such study aimed at forecasting 

clinical risk of diabetes from EHR [29]. The motivation and intended usage of the 

aforementioned work is different from ours, which aims to identify more cases and controls. 

Furthermore, the aforementioned study still has similar limitations in high missing rate [29]. 

To the best of our knowledge, very few studies have focused on reducing missing rate to 

identify more cases and controls for phenotyping purposes.

The goal of this work is to develop a semi-automated framework based on machine learning 

as a pilot study to identifying subjects with and without T2DM. Our method features two 

advancements: 1) low false positive rate; 2) high recall (i.e., detecting as many samples of 

interest as possible). To achieve these goals, we carefully approach feature engineering (i.e., 

construction of features for predictive modeling) by constructing representative features at 

three levels. We then train multiple popular machine learning models based on constructed 

features to identify cases and controls.

Our empirical evaluation is based on three years (ranging from 2012 to 2014) of EHR data 

from a large distributed EHR network consisting of multiple Chinese medical centers and 

hospitals in Shanghai, China. Our choice of this EHR repository is motivated by the fact that 

Chinese EHR data are often much worse than western EHR in terms of meaningful uses and 

data quality [18]. In addition, medical care in China often have non-standard unique 

procedures (such as wide adoption of traditional Chinese medicine) that are not represented 

in EHR and expert algorithms from elsewhere (such as from mainstream western 

counterparts), rendering standard or western expert algorithms less relevant. Given all such 

factors, the Chinese EHR repository provides an ideal test-bed for evaluating the accuracy 

and robustness of our proposed framework. In addition, the customization and empirical 

evaluation of a machine learning-based T2DM identification framework specifically for 

Chinese EHR is also of separate interest, which is under-explored despite constituting huge 

demand.

2. Research design and methods

2.1. Study materials

Our investigations in this work focus on three years of EHR data (from Year 2012 to 2014). 

The data was stored in our centered repository, which has been managed by the District 

Bureau of Health in Changning, Shanghai since 2008. The EHR data generated from 10 

local EHR systems are automatically deposited into the centralized repository hourly.

We have 123,241 patients in total within the investigated three years. We use a filtering 

strategy to pre-select patients as our candidate samples whose EHR data are related to 

diabetes. We pre-selected samples whose EHRs should satisfy at least one of the three 
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criteria: i) diabetes related diagnosis, ii) diabetes related medication and iii) diabetic 

laboratory test. Through this process, we managed to obtain 23,281 patient samples with 

diabetes related information. Our data preparation workflow is summarized in Fig. 1.

Our framework is based on supervised learning (e.g., classification, to be specific), which 

requires labeled training samples. Thus, we invited two clinical experts experienced in 

diabetes to assess EHRs of samples and label these samples into three categories: case, 

control and unconfirmed. We point out that, as is common for similar efforts, our expert 

review process is based on manually judging the whole record of each patient instead of only 

considering the selected few criteria in our data filtering or baseline expert algorithms 

(introduced later). Due to huge amount of manual effort in the expert reviewing process, as a 

pilot study, we randomly selected 300 samples out of the 23,281 pre-selected ones and 

concentrated our reviewing efforts on the smaller subset. For the investigated 300 selected 

samples, there are 20,384 records (e.g., diagnostic notes, communication notes and summary 

notes). Samples with two confirmed labels of T2DM from both clinicians will be considered 

as cases, samples with two confirmations of Non-T2DM considered as controls. The other 

samples with conflicting labels or two confirmations of un-determined from two clinicians 

will be denoted as unconfirmed ones. Through clinicians' assessments, we obtained 161 

cases, 60 controls and 79 unconfirmed samples. For double check, we noticed that of the 

unconfirmed 79 samples, most (78.3%) are severely incomplete in their EHR 

documentation, which are not be suitable for EHR-based phenotyping. In order to reduce 

negative influences of incomplete EHRs on performances of our classification models, we 

dropped 79 unconfirmed samples.

Through our assessing processes of cases and controls, the separation range between cases 

and controls in our study is narrower than that in traditional expert algorithms as shown in 

Fig. 2.

This is because, in our study, controls refer to samples satisfying at least one of the 

following three criteria: i) one time of abnormal lab tests (HbA1C ≥6.0% or fasting plasma 

glucose ≥126 mg/dl or 2-h plasma glucose ≥200 mg/dl or random plasma glucose ≥200 mg/

dl), ii) one time of prescribed diabetic medicine, and iii) one time of diabetic diagnosis. 

However, these controls were excluded in expert algorithms [11,13,15,30]. However, the 

widely used expert algorithms selected controls whose EHR data should not include any of 

the three above mentioned diabetic related information. The selection criteria of expert 

algorithms will miss many controls. For instance, we investigated a number of control 

samples, who had high values of HbA1C (≥6.0%) recorded, but their fasting and post-meal 

blood sugars were normal. Another example is we found several controls whose records 

contained prescriptions of diabetic medications, but no diabetic diagnoses and laboratory 

tests were found in their records. One of reasons is the medications they prescribed were not 

for themselves, but for their friends or someone else.

For the cases selection, expert algorithms selected samples whose EHR data should at least 

satisfy 2 of the following three requirements.

1. Abnormal laboratory tests (glucose ≥110 mg/dl or HbA1c ≥6.0%)
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2. Diabetic medication

3. Diabetic diagnosis

Such selection process does not consider patients satisfying no more than 1 of the above 

three requirements but considering as T2DM patients through their related support 

information such as diabetic complications and self-reported body weight loss, persistent 

hunger, polyuria, and polydipsia. As a result, these cases were missed. According to our 

selection criteria, the range of separations between cases and controls are much smaller than 

expert algorithms as shown in Fig. 2. We applied expert algorithms and our proposed 

framework to identify cases and controls in the same separation range (the range between 

two solid lines as shown in Fig. 2). Both types of algorithms were studied on the same 

sources of 300 samples.

Our proposed framework includes feature construction, and classification models. Feature 

construction transforms raw EHR data into statistical features, which are further served as 

input entities to feed classification models (as shown in Fig. 1). The expert algorithms 

extracted their three major features (abnormal laboratory tests, diabetic medication and 

diabetic diagnosis) in the same raw EHR data and then use their standards (workflows as 

depicted in the Fig. A1 of Appendix F) to identify cases and controls.

2.2. Feature construction

Constructing good features from EHR is often a must to warranty good prediction 

performance either for expert algorithms or machine learning-based models. This is because 

raw EHR data are often noisy, sparse, and contain unstructured information (e.g., text) that 

are not directly “computable”. Traditional researches on identifying subjects with and 

without T2DM were using selection strategies built on three features: diabetic diagnosis, 

diabetic laboratory tests and diabetic medications extracted from EHRs of investigated 

samples [11,16]. Such researches are limited due to their high missing rates on identification 

of cases and controls. This is because such strategies applied a conservative selection criteria 

on cases and controls (e.g., satisfying two of the aforementioned three features) and were 

tested in a broader separation range between cases and controls (the range between two 

dashed lines as shown in Fig. 2).

In our work, we include borderline (samples between two dashed lines of Fig. 2), which can 

help to identify more cases and controls than traditional studies. To make the case/control 

identification more accurate, we need to incorporate more features than traditionally used. 

For instance, we constructed additional T2DM features such as self-reported diabetes related 

symptoms, and diabetic complications, and so on, in hope of better identifying borderline or 

more ambiguous samples. In total, we derived 110 features from seven sources (we denote 

this as First-Level features): “demographic information”, “communication report”, 

“outpatient diagnosis report”, “inpatient diagnosis report”, “inpatient discharge summary”, 

“prescription report” and “laboratory test report”, as summarized in Table 1 and with in-

depth explanation off each feature in Table A1 of Appendix A.

Notably, the features includes supporting materials for T2DM such as diabetic complications 

(e.g., diabetic retinopathy, diabetic neuropathy, diabetic cerebral vascular and diabetic 
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peripheral circulation diseases), self-reported symptoms (e.g., self-report of body weight 

loss, persistent hunger, polyuria, and polydipsia), additional Chinese traditional medications 

and more laboratory test items (e.g., two-hours, fast and random glucose tests).

For the features in the medication category, we list investigated medicines related with 

T2DM treatments as in Table A2 of Appendix B. Notably, to tailor for Chinese EHR, we 

added additional Chinese traditional medicine, and mixtures of Chinese traditional and 

western medicine into the medication list. This is due to observation that T2DM patients are 

usually treated with a combination of Chinese traditional and western medicine in China, 

which is different from the common practice (i.e., western medicine only) of the western 

world and was thus neglected by western EHR-oriented studies.

For the diagnosis notes related features, we use regular expressions combining positive notes 

and negative notes as depicted in Table A3 of Appendix C to build each of them.

2.3. Feature summarization

Features (as shown in Table A1 of Appendix A) cover seven EHR sources, however, some 

sources have the same type of features. For instance, f10 in the source of “communication 
report”, f26 in “outpatient diagnosis record”, and f50 in “inpatient diagnosis record” have the 

same definition on the counting of diagnosis codes. These features are highly correlated with 

each other, which will influence performances of computational models to do classification 

[17,19,22]. And thus we merge correlated features into one feature by summarizing them. 

For instance, f10, f26 and f50 are summarized as a new feature f′10 = f10 + f26 +f50, which 

represents the total number of times T2DM diagnosis codes appearing in “communication 
reports” (f10), “outpatient diagnose records” (f26) and “inpatient diagnose records” (f50) 

respectively. By using the same way, we summarize all similar features across the seven 

sources into 36 features as shown in Table A4 of Appendix D. At the same time, the features 

within a source are also correlated, so we transform 36 features into final 8 features through 

summarizing correlated features within a source. The final 8 features are listed in Table A5 

of Appendix E.

2.4. Classification

We use several widely-used classification model such as k-Nearest-Neighbors (kNN), Naïve 

Bayes (NB), Decision Tree (J48), Random Forest (RF), Support Vector Machine (SVM) and 

Logistic Regression (LR) to model patterns of cases and controls based on our extracted 

features and then use the models to test the ability of our extracted features on identifications 

of T2DM subjects. These classification models are frequently utilized in a wide range of 

fields, and are recognized as popular choices for classification tasks [20,21,37].

3. Results

3.1. Experimental set-up

Our framework adopts feature engineering by abstracting the EHR data at three different 

levels. This ensures to leverage more available data while maximizing predictive power. For 

the 221 T2DM samples (160 cases and 61 controls) collected with expert labels, we first 
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construct 110 features (as mentioned before; see also Table A1 in Appendix A) to represent 

their EHR data. This is roughly a summarized and structured version of the raw EHR data. 

To prevent data sparsity and noise, we then derive higher-level features by condensing the 

data into 36 features (see Table A4 in Appendix D) and 8 features (see Table A5 in 

Appendix E), respectively. Such abstraction is mainly based on common knowledge of EHR 

data hierarchies.

In our framework, we apply several widely-used machine learning models, including kNN, 

NB, J48, RF, SVM and LR. The goal is to find out the comparative performance of machine 

learning models against expert algorithms. We used Weka package to apply these models on 

our engineered features [31]. We perform training and evaluation on different abstraction 

levels of feature sets, e.g., on the 107 aforementioned features1 (the first level of features; as 

shown in Table A1 of Appendix A), 33 features (the second level of features; as shown in 

Table A4 of Appendix D), and 5 features (the third level of features; as shown in Table A5 of 

Appendix E), respectively. We conduct extensive comparison of different classifiers on the 

same level of features, as well as performance across the three different levels of feature sets 

described before. Furthermore, we use the state-of-the-art expert algorithm [11] as a 

benchmark baseline, which is widely adopted by several large EHR and genetics consortia 

studies. We emphasize that the expert algorithm [11] is evaluated on the same raw EHR data 

as mentioned before.

We also point out that our primary focus of this work is to demonstrate feasibility/suitability 

of machine learning-based framework for the given task, and to provide general model 

recommendations and suggestions. Comprehensive and systematic benchmark of different 

machine learning models is not the main focus and is a separate topic with extensive 

literature. To keep our work focused and data-efficient, we adopt default recommended 

model parameters instead of performing hyperparameter tuning, since the latter often 

requires setting aside independent validation datasets, which may not be a wise option given 

our relatively small (and valuable) expert-labeled dataset. Our decision thresholds in certain 

models are also based on default configurations in Weka software [31]. For instance, in 

logistic regression, we use p = 0.50 as the classification cut-off.

3.2. Performance of classification models

For each classifier and each level of feature set, we conduct 4-fold cross-validation and 

report on the average performance and standard deviation. We demonstrate the prediction 

accuracy results in Fig. 3, which measures the ratio of correctly predicted samples. In Fig. 4, 

the prediction sensitivity (also called recall) results are reported, which measures the ratio of 

true positives against all positives. Lastly, in Fig. 5, we plot the specificity, which denotes 

the proportion of true negatives of all negatives. The precision (or positive predictive value) 

results are illustrated in Fig. 6. For more comprehensive comparison, we also present the 

area under the receiver operating characteristic (ROC) curve (AUC) in Fig. 7, which 

demonstrates the trade-off between false positive and true positive rates (larger AUC 

1We exclude three demographic features, because they do not indicate any significant differences between cases and controls, and in 
contrast, they will influence the correct determinations of classifiers such as kNN.
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generally implies better performance). All detailed numerical metrics are also summarized 

in Table 2.

Based on the above results, J48, RF, and SVM have high prediction performances across 

various metrics, yielding over 0.95 in accuracy, sensitivity, specificity, and AUC on all three 

levels of features. As a comparison, the state-of-the-art expert algorithm [11] leads to 

performance of 0.84 in accuracy, 0.78 in sensitivity, 1.00 in specificity, and 0.71 in AUC. 

This indicates that our features constructed at all the three levels can identify T2DM subjects 

much better than the popular expert algorithm. State-of-the-art expert algorithm performs 

slightly better (and almost perfectly) in terms of specificity (1.00) and precision (1.00). This 

seems most likely due to its stringent conditions on case selection (e.g., a case subject 

should satisfy any two of the three metrics: diabetic diagnosis, diabetic medications and 

diabetic lab tests). Obviously, none of our controls satisfy the requirements of cases set 

above via expert algorithm, and thus bringing the specificity of the expert algorithm to 1 in 

our experiments.

LR has the highest accuracy (0.99) at the third level of features (as shown in Fig. 2 and Table 

2), with several other models closely following its performance, such as RF and SVM (with 

0.98 in accuracy).

In terms of sensitivity, according to Fig. 4 and Table 2, most models experience performance 

improvement as features get summarized into higher levels. This indicates that simple 

feature engineering can boost the performance. Meanwhile, multiple models (e.g., LR, NB, 

and kNN) achieve (near) perfect sensitivity, namely 1.00, on the second or third levels of 

feature sets. This implies that our framework is highly efficient in make full use of all 

available data, especially regarding valuable case subjects which are often much rarer and 

more difficult to accumulate for subsequent studies (such as GWAS and PheWAS).

Accuracy and sensitivity of all classifiers at the third level of features are more stable than 

on the other two levels of features as shown in Figs. 3 and 4, which indicates the 

summarized final 5 features are stable discriminators to identify T2DM subjects.

For specificity shown in Fig. 5 and Table 2, half of the classifiers have performance greater 

than 0.95 (e.g., RF, SVM, and J48). LR and kNN performance worst when leveraging the 

first level of features. This may be due to sparsity of features (thus many features end up 

being noise) or correlated features, which can bias such classifiers.

The AUC performance of our framework also exhibits similar encouraging results. In brief, 

when trained over second- or third-level feature sets, all classifiers (except LR) manage to 

perform well above 0.95, which is significantly better than random guessing (0.50) and 

almost approaching the perfect 1.00. State-of-the-art expert algorithm [11] only scored 0.71 

in AUC, making it significantly worse than all models in our framework.

Roughly speaking, as is demonstrated across different metrics in Figs. 3–7, there is a general 

trend of increasing predictive performance, as features are abstracted into higher levels. This 

demonstrates the importance of our feature engineering approach. In addition, we observe 

better performance improvement from feature engineering than from choices of different 
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machine learning models. This implies that when sample sizes are not sufficiently large (as 

in most EHR settings), a better strategy to maximize performance should be to refine 

features.

Overall, across all major metrics, models such as RF, J48 and SVM are more stable than the 

other three classifiers (kNN, NB, and LR) across the three levels of features. This may be 

because RF, J48 and SVM are less influenced by sparsity and noise of EHR data, whereas 

LR, kNN and NB are more vulnerable to these issues.

4. Discussion

Traditional expert algorithms use a wide range of separation to select cases and controls, and 

as a result, a large number of cases and controls are missed. In order to reduce missing rates 

of current studies, we propose a machine learning-based framework to identify cases and 

controls in a narrower separation range. We evaluated our framework through Chinese EHR 

data, and the experimental results show our framework can achieve higher performances 

than the state-of-the-art algorithm in such EHR data.

However, this work is a pilot study, which is limited in the following aspects:

Firstly, the number of samples (cases and controls) we studied needs to be enlarged in 

future. Although current selected 221 samples achieve high identification rates on detecting 

cases and controls, we still need more samples from our repository to confirm scalability of 

our models. For instance, we can use our classification models to select candidate cases and 

controls from 23,281 diabetes related patients, and then submit them to clinicians for 

reviewing. Under such semi-supervised way, we can gain more samples to enrich our 

framework via a large scale of training (e.g., on more diverse cases and controls) and testing 

(e.g., on independent new unseen samples). This process will require more reviewing efforts 

from humans, and will be considered as our next plan.

Second, our framework still involves human efforts in designing of features and 

confirmations of cases and controls. Although we spent a large amount of time on designing 

of features, we believe our extracted features could be utilized in other related studies 

without involving human efforts, which could save them huge amount of time. The 

evaluations of cases and controls are used to feed our machine learning models. According 

to achieved high performances of our classification models, researchers can use our model to 

select cases and controls with a high accuracy, which will save them time to get cases and 

controls through expert assessments.

Third, compared with expert algorithms in terms of high specificity (small number of non-

T2DM are considered as T2DM), our models have lower specificity. This is because we 

include most of patients between the separation range of cases and controls in expert 

algorithms (the range between two dotted lines as shown in Fig. 2), and as a result, it is hard 

to make sure all selected cases are predicted correctly. If a study focuses on accuracy of 

T2DM patient identification more than on number of T2DM patients required, then expert 

algorithms would be a better choice. If number of cases and controls has higher priority, then 

our framework would be a better choice.
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Fourth, our framework is not confirmed on EHR data of other institutes such as western 

EHR data. Although the framework achieves a high performance on Chinese EHR data, we 

believe such EHR data based strategy is also fit for identifying T2DM subjects on western 

EHR data, and we will test such hypothesis in our next step.

Finally, our methodology focuses on case/control design for traditional association study 

between phenotypes and genotypes, which requires a perfect precision (wide range of 

separation between cases and controls in expert algorithms as shown in Fig. 2). The reduced 

precision rate (leading to a higher recall rates of cases and controls) of our method may 

influence the traditional association studies. However, as the development of computational 

phenotyping from EHR data, the association studies will involve more cases with diverse 

phenotypic characteristics such as comorbidities to enrich the association studies between 

phenotypes and genotypes. This is because, a disease may be caused by the joint effects of 

multiple SNPs (i.e. heterogeneity), while a SNP may lead to multiple diseases (i.e. 

pleiotropy).

5. Conclusions

Identifying subjects with and without T2DM is the first step to enable subsequent analysis 

such as GWAS and PheWAS. In this work, we propose an accurate and efficient framework 

as a pilot study to identify subjects with and without T2DM from EHR data. Our framework 

leverages machine learning to automatically extract patterns of T2DM. And we further boost 

its predictive power by overcoming the wide separation rage of cases and controls in expert 

algorithms. Our feature engineering framework considers a diverse set of data features 

spanning diabetic diagnosis codes, diagnosis notes, complications, self-reports, medications 

(both standard and traditional Chinese medicine), and laboratory tests to represent diabetes 

related patients. Based on engineered features, we train classification models. We collected 

160 T2DM cases and 61 controls and use 4-fold cross validation strategy to evaluate 

performances of classification models. The experimental results show that our framework 

can identify subjects with and without T2DM at an average AUC of around 0.98, 

significantly outperforming the state-of-the-art at an AUC of 0.71.
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Summary points

What was already known on this topic?

1. Electronic health record (EHR) data can be leveraged to distinguish 

patients with and without type 2 diabetes Mellitus (T2DM).

2. (Existing EHR-based algorithms often suffer in terms of accuracy and 

could miss a large number of valuable patients under conservative 

filtering standards.

What this study added to our knowledge?

1. Identification accuracy of T2DM patients could be improved by loosen 

conservative selecting criteria of cases (patients with T2DM) and 

controls (patients without T2DM) in current algorithms.

2. A machine learning-based framework to Identify T2DM subjects.

Zheng et al. Page 13

Int J Med Inform. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
A machine learning-based framework to identify subjects with and without T2DM from 

EHR data. The case refers to subjects with T2DM, and control refers to non-T2DM subjects.
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Fig. 2. 
Separated boundary lines between cases and controls in our study and in traditional T2DM 

identification studies.
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Fig. 3. 
Prediction accuracy (y-axis) with different feature sets (x-axis), categorized by different 

classifiers (different lines plotted).
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Fig. 4. 
Prediction sensitivity [True positive rate] (y-axis) with different feature sets (x-axis), 

categorized by different classifiers (different lines plotted).
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Fig. 5. 
Prediction specificity [True negative rate] (y-axis) with different feature sets (x-axis), 

categorized by different classifiers (different lines plotted).
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Fig. 6. 
Prediction precision [Positive predictive value] (y-axis) with different feature sets (x-axis), 

categorized by different classifiers (different lines plotted).
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Fig. 7. 
Prediction AUC (y-axis) with different feature sets (x-axis), categorized by different 

classifiers (different lines plotted).
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Table 1

First-level Features constructed from source “demographic information”, “communication reports”, 

“outpatients diagnosis reports”, “inpatients diagnosis reports”, “inpatients discharge summaries”, “prescription 
reports” and “laboratory test reports”.

Source category Feature

Demographic information De-identification ID, age and gender of a subject. (feature ranging from f1 to f3 as 
shown in Table A1 of Appendix A)

Communication report Self-reporting note Number of times a subject reporting body weight loss, persistent hunger, polyuria, 
polydipsia, prescribed diabetes medicine or returning visits for diabetes in 
communication report. (feature ranging from f4 to f9 as shown in Table A1 of Appendix 
A)

Diagnosis code Number of times codes of type 2 diabetes, diabetic retinopathy, diabetic neuropathy, 
diabetic eye disease, diabetic kidney disease, diabetic cerebral vascular disease or 
diabetic peripheral circulation appeared in communication report. (feature ranging from 
f10 to f17 as shown in Table A1 of Appendix A)

Diagnosis note Number of times communication report containing notes of type 2 diabetes, diabetic 
retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, diabetic 
cerebral vascular disease or diabetic peripheral circulation disease. (feature ranging 
from f18 to f25 as shown in Table A1 of Appendix A)

Outpatient diagnosis record Diagnosis code Number of times codes of type 2 diabetes, diabetic retinopathy, diabetic neuropathy, 
diabetic eye disease, diabetic kidney disease, diabetic cerebral vascular disease or 
diabetic peripheral circulation were appeared in outpatient diagnosis record. (feature 
ranging from f26 to f33 as shown in Table A1 of Appendix A)

Diagnosis note Number of times outpatient diagnosis record containing notes of type 2 diabetes, 
diabetic retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, 
diabetic cerebral vascular disease or diabetic peripheral circulation disease. (feature 
ranging from f34 to f41 as shown in Table A1 of Appendix A)

Inpatient discharge summary Diagnosis notes Number of times inpatient discharge summary containing notes of type 2 diabetes, 
diabetic retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, 
diabetic cerebral vascular disease or diabetic peripheral circulation disease. (feature 
ranging from f42 to f49 as shown in Table A1 of Appendix A)

Inpatient diagnosis record Diagnosis codes Number of times codes of type 2 diabetes, diabetic retinopathy, diabetic neuropathy, 
diabetic eye disease, diabetic kidney disease, diabetic cerebral vascular disease or 
diabetic peripheral circulation were appeared in inpatient diagnosis record. (feature 
ranging from f50 to f57 as shown in Table A1 of Appendix A)

Diagnosis notes Number of times inpatient diagnosis record containing notes of type 2 diabetes, diabetic 
retinopathy, diabetic neuropathy, diabetic eye disease, diabetic kidney disease, diabetic 
cerebral vascular disease or diabetic peripheral circulation disease. (feature ranging 
from f58 to f65 as shown in Table A1 of Appendix A)

Prescription record Medication Number of prescriptions appearing in prescription report for oral hypoglycemic, insulin, 
Chinese traditional hypoglycemic, a mixture of western and Chinese traditional oral 
hypoglycemic, Epalrestat, Alpha-glucosidase inhibitor, Dipeptidyl peptidase IV(DPP-
IV) inhibitors, Meglitinides, Sulfonylureas, Thiazolidinedione, Biguanides, Incretin 
Mimetics, GLP-1 (glucagon-like peptide 1) mimetics, compounds of sulfonylurea and 
thiazolidinedione, compounds of Biguanides and Dipeptidyl peptidase IV(DPP-IV) 
inhibitors, compounds of Biguanides and Sulfonylureas, or compounds of Biguanides 
and Thiazolidinedione. (feature ranging from f66 to f82 as shown in Table A1 of 
Appendix A)

Laboratory test report Venous plasma 
glucose test

Number of times for 2-h venous plasma glucose test, 2-h peripheral plasma glucose test 
≥11.1 mmol/l (200 mg/dl), fasting venous plasma glucose test, fasting venous plasma 
glucose test ranging from 6.1 to 7.0 mmol/l (110 and 126 mg/dl), random venous 
plasma glucose test, or random venous plasma glucose test ≥11.1 mmol/l (200 mg/dl). 
(feature f83, f84, f87, f88, f91, and f92 as shown in Table A1 of Appendix A)
The maximum value of 2-h venous plasma glucose test, fasting venous plasma glucose 
test, or random venous plasma glucose test. (feature f85, f89, and f93 as shown in Table 
A1 of Appendix A) The minimum value of 2-h venous plasma glucose test, fasting 
venous plasma glucose test, or random venous plasma glucose test. (feature f86, f90, 
and f94 as shown in Table A1 of Appendix A)

Peripheral plasma 
glucose test

Number of times for 2-h peripheral plasma glucose test, 2-h peripheral plasma glucose 
test ≥11.1 mmol/l (200 mg/dl), fasting peripheral plasma glucose test, fasting peripheral 
plasma glucose test ranging from 6.1 to 7.0 mmol/l (110 and 126 mg/dl), random 
peripheral plasma glucose test, or random peripheral plasma glucose test ≥11.1 mmol/l 
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Source category Feature

(200 mg/dl). (feature f95, f96, f99, f100, f103, and f104 as shown in Table A1 of 
Appendix A)
The maximum value of 2-h peripheral plasma glucose test, fasting peripheral plasma 
glucose test, or random peripheral plasma glucose test. (feature f97, f101, and f105 as 
shown in Table A1 of Appendix A)
The minimum value of 2-h peripheral plasma glucose test, fasting peripheral plasma 
glucose test, or random peripheral plasma glucose test. (feature f98, f102, and f106 as 
shown in Table A1 of Appendix A)

HbA1Ctest Number of times for HbA1c test, HbA1C test ≥ 6.5%. (feature f107, and f108 as shown 
in Table A1 of Appendix A)
The maximum value of HbA1C test (feature f109 as shown in Table A1 of Appendix A)
The minimum value of HbA1C test (feature f110 as shown in Table A1 of Appendix A)
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