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Abstract

This article provides an overview of studies addressing effects of ionizing radiation on the heart. 

Clinical studies have identified early and late manifestations of radiation-induced heart disease, a 

side effect of radiation therapy to tumors in the chest when all or part of the heart is situated in the 

radiation field. Studies in preclinical animal models have contributed to our understanding of the 

mechanisms by which radiation may injure the heart. More recent observations in human subjects 

suggest that ionizing radiation may have cardiovascular effects at lower doses than was previously 

thought. This has led to examinations of low-dose photons and low-dose charged particle 

irradiation in animal models. Lastly, studies have started to identify noninvasive methods for 

detection of cardiac radiation injury and interventions that may prevent or mitigate these adverse 

effects. Altogether, this ongoing research should increase our knowledge of biological mechanisms 

of cardiovascular radiation injury, identify non-invasive biomarkers for early detection, and 

potential interventions that may prevent or mitigate these adverse effects.
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1. Introduction

Exposure of the heart to high doses of ionizing radiation has long been known to cause 

cardiac injury. Although some pathology can be observed early after irradiation, the heart is 

considered a late responding organ with the appearance of most manifestations of radiation 

injury a decade or more after exposure. More recently, clinical, epidemiological, and 

experimental studies have provided evidence that the cardiovascular system may also be 

injured by ionizing radiation at low doses.

This review article describes clinical and preclinical studies on cardiac effects of cancer 

therapy-induced high doses local to the heart, and potential cardiovascular risks of low doses 

of radiation exposure that may occur on Earth and in space. Lastly, we summarize recent 

research aimed at identifying non-invasive methods for the detection of cardiac radiation 

injury and interventions that may prevent or mitigate these effects. Because vascular 

alterations play a central role in the cardiac response to radiation, when appropriate we have 

included research into vascular radiation effects. Table 1 provides an outline of the article 

and its main points.

2. Cardiac injury of high-dose radiation

2.1. Clinical studies of high-dose local irradiation as associated with radiation therapy

Exposure of the heart to ionizing radiation during radiation therapy of intrathoracic and 

chest wall tumors has long been known to cause radiation-induced heart disease, a mostly 

late and sometimes severe side effect [1–3]. While high doses of radiation can cause acute 

pericarditis, most manifestations of radiation-induced heart disease are observed more than a 

decade after radiation therapy and include accelerated atherosclerosis, adverse myocardial 

remodeling, conduction abnormalities, and injury to cardiac valves [4–6]. Atherosclerotic 

plaques in high-dose exposed arteries are described as fibrous and rich in proteoglycans 

[7;8]. Since most injury in heart and blood vessels is observed years to decades after 

exposure to ionizing radiation, long post-radiation follow-up is required for a full assessment 

of deleterious effects.

Survivors of childhood cancer are at high risk of developing late side effects of radiation 

therapy [9,10]. For instance, in a French cohort of 3162 childhood cancer survivors, in those 

patients who did not receive anthracyclines, at median follow-up of 26 years after estimated 

average doses to the heart ≥30 Gy, the risk of heart disease was increased several fold 

compared to patients who had received doses to the heart <0.1 Gy [11].

Population studies in patients treated with tangential irradiation of breast cancer have also 

been used to determine cardiac disease risk in response to X-ray exposure. With this 

treatment modality, treatment of left-sided breast cancer typically leads to a higher dose to 

the heart compared to the treatment of patients with right-sided breast cancer, although right-
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sided breast cancer treatment can also be associated with some radiation exposure of the 

heart [12;13]. A significant increase in cardiac mortality rate is observed in patients with 

left-sided breast cancer compared to right-sided breast cancer at 10 years or more after 

diagnosis [14]. Since other cardiovascular risk factors can be assumed to be the same in both 

patient groups, these studies confirm that cardiac radiation exposure is associated with 

increased risk of heart disease. A limitation is that in many of these patients the radiation 

dose to the heart was not determined at the time of treatment. The group of Sarah Darby 

performed a study in which the mean radiation dose to the whole heart and to the left 

anterior descending coronary artery of individual patients was determined from the original 

treatment planning documents and applied to a computed tomography scan of a woman of 

typical anatomy. The rate of coronary events increased by 7.4% per Gy mean dose to the 

heart [15]. Additional studies on the cardiac effects of high-dose radiation exposure have 

been described in many previous reviews, of which we here can only list a few [16–18].

From a clinical perspective, the only available approach to reducing late cardiac 

complications is through efforts to reduce cardiac exposure during therapy. Indeed, radiation 

therapy has undergone many improvements in treatment planning and radiation delivery. 

Nonetheless, a significant subset of patients with thoracic cancers, including those of the 

lung, esophagus, and proximal stomach, still receive considerable doses of radiation to the 

heart [19–21]. Moreover, radiation therapy is often combined with chemotherapeutic agents 

that have their own side effects in the heart. With improved cancer detection and treatment, 

more patients will survive longer and may be at risk for late side effects of radiation therapy 

and other cancer treatments.

2.2. Cancer cachexia and heart disease

In addition to radiation and chemotherapeutic agents, cancer-related metabolic alterations 

can contribute to atrophy and adverse remodeling in the heart. Although underlying 

mechanisms are not yet fully understood, there seems to be a contribution of an imbalance 

between cardiac protein synthesis and degradation [22;23]. To better understand heart failure 

due to cachexia, animal models are being designed [24;25]. Heart disease in cancer cachexia 

and interactions with adverse cardiac effects of cancer treatment should be investigated 

further, to aid in improving the safety of cancer therapy.

2.3. Interaction between radiation therapy and other cancer treatments

Radiation therapy is commonly combined with chemotherapeutics. Since several of these 

agents, for example anthracyclines, adversely affect cardiac function [18], there may be a 

concern for cardiac toxicity of combined treatment. Although some studies show no 

interaction between radiation therapy and anthracyclines [10], other reports in both human 

subjects and animal models indicate that the adverse cardiac effects of these two cancer 

treatments are at least additive [26–29]. Radiation therapy is increasingly combined with 

targeted cancer therapies such as biological and small molecule inhibitors of growth factor 

receptors and tyrosine kinases. Some of these therapies have their own cardiotoxic effects 

and may require close monitoring of cardiac function during and after treatment [30–32]. 

However, mechanisms of cardiotoxicity of targeted therapies are largely unknown, and the 

long-term effects of combination treatments with classical chemotherapeutics and radiation 
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therapy have yet to be determined [30;33–37]. In time, cardiovascular outcome of radiation 

in combination with targeted cancer therapies will become apparent as the number of 

patients receiving this treatment regimen grows. In the meantime, studies in animal models 

may provide first indications about potential interactions between cardiac radiation exposure 

and targeted therapies.

2.4. Experiments with high-dose irradiation in animal models

Clinical studies of cardiac toxicity of cancer treatments are complicated by common 

confounding cardiovascular risk factors. Preclinical studies in animal models in which the 

cardiac radiation dose is known and confounding factors are mostly controlled, may shed 

light on the risk of cardiac injury from exposure to ionizing radiation and biological 

mechanisms by which radiation causes cardiac injury. While it can take 10–15 years for 

cardiovascular radiation effects to become apparent in human subjects, because of the 

shorter life span of (small) experimental animals, long-term follow-up can usually be 

achieved within a year. Radiation-induced accelerated atherosclerosis is not commonly 

found in regular laboratory animal models, but myocardial alterations in response to local 

exposure to high doses of radiation are similar to those observed in human subjects [38;39]. 

Most pre-clinical studies thus far have used (young) adult male animals. As described in 

sections 3.1 and 3.2, there is still uncertainty about myocardial effects of low doses of 

ionizing radiation in both human subjects and experimental animal models.

Radiation therapy is typically administered in 30 one-a-day fractions of ~2 Gy. The response 

of tissues to fractionated radiation is generally described by the linear quadratic model, in 

which the ratio of the parameters α and β is an indication of the sensitivity of the tissue or 

organ to radiation dose per fraction. A low α/β ratio (below ~4 Gy) indicates that an organ 

or tissue shows enhanced injury particularly with increased dose per fraction. Early 

experiments with fractionated local heart irradiation in dog and rat models resulted in 

calculations of α/β ratios between 2.5 and 3.7 Gy, depending on the nature of the cardiac 

endpoint [40–42]. These relatively low α/β ratios are typical for late radiation responding 

organs and, as described above, suggest that cardiac injury is dependent on dose per fraction. 

However, most research into mechanisms by which radiation modifies the heart has been 

performed mostly with a high-dose rate single high dose of radiation to the heart, or a 

limited number of fractions [43–46]. While these radiation protocols seem to cause 

comparable late cardiac remodeling, there is insufficient data available from animal models 

to determine whether fractionation schedules as used in the clinic cause cardiovascular 

effects similar to single high-dose exposures. Since sensitive techniques for the measurement 

of cardiac function and molecular alterations have become available, this seems to be the 

appropriate time to assess the cardiovascular effects of clinically relevant radiation fractions 

in animal models in long-term follow-up.

We here give some examples of the many studies in rodent models designed to identify 

potential biological mechanisms by which radiation may cause cardiac injury. Several 

months after local heart irradiation with a single dose or a limited number of fractions, an 

increase is seen in the deposition of both perivascular and interstitial collagen in the 

myocardium, which become progressively worse in time [47–49]. This radiation-induced 
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fibrosis is preceded by changes in the density and function of the microvasculature in the 

myocardium [50–53]. Interestingly, a mouse model with an endothelial cell-specific deletion 

of p53 showed increased myocardial necrosis and cardiac dysfunction in response to local 

heart irradiation with a single dose of 12 Gy [54], confirming the importance of the 

myocardial vasculature in maintaining cardiac function and structure after irradiation. While 

whole body irradiation of the rat (15 Gy single dose) caused a significant reduction in 

cardiac vascular density, this effect was not observed after irradiation of the thorax alone 

[55], indicating that alterations elsewhere in the body may enhance the effects of radiation in 

the heart. Follow-up experiments by the same group of investigators suggest that these 

indirect effects may be mediated by the kidney [56]. These results are in agreement with 

recent reports in human subjects that also suggest a connection between kidney radiation 

exposure and adverse cardiovascular effects [57].

Increases in collagen deposition also coincide with local increases in growth factor 

expression [58;59], and pharmacological induction of transforming growth factor beta 1 

enhances cardiac radiation fibrosis, confirming that increased growth factor signaling may 

worsen radiation-induced heart disease [60].

Single dose local heart irradiation in rodent models causes long-term alterations in the 

function, morphology, and protein expression of cardiac mitochondria [43;61–63]. 

Sequestered on the mitochondrial membrane in its inactive form is nuclear factor erythroid 2 

[NF-E2]-related factor 2 (Nrf2), a transcription factor that regulates the expression of 

various anti-oxidant enzymes [64]. While the Nrf2 pathway is linked to reduced radiation 

injury in several organs including the heart [43;65–67], the exact role of mitochondrial 

alterations and the Nrf2 pathway in radiation-induced heart disease has not yet been 

determined.

Local heart irradiation in rodent models (15–21 Gy single dose or 5 daily fractions of 9 Gy) 

leads to an increase in cardiac mast cell numbers that coincide with the development of 

radiation fibrosis [43;47]. However, contrary to what may be expected, experiments in a 

mast cell-deficient rat model suggest that mast cells play a predominantly protective role in 

radiation-induced heart disease [68]. Mast cells may mediate these effects via their close 

interactions with the sensory nervous system in the heart [49;69].

Work with targeted single dose proton irradiation of the rat heart and lung has shown that the 

lung and heart interact in their response to ionizing radiation [70;71]. The angiotensin 

converting enzyme (ACE) inhibitor captopril reduced pulmonary radiation injury, but only in 

those rats in which the heart was included in the radiation field [72]. Moreover, the reduction 

in pulmonary radiation injury was associated with a reduction in cardiac damage, again 

suggesting that heart and lung radiation injury are influenced by each other.

To study radiation-induced accelerated atherosclerosis, animal models with one or more 

additional vascular risk factors are required, such as genetically modified mouse models 

with enhanced susceptibility to atherosclerosis. Localized irradiation of the neck (single 

dose of 8 or 14 Gy, or 20 fractions of 2 Gy) in apolipoprotein E (ApoE) knockout (KO) mice 

caused increased macrophage-rich atherosclerotic plaques in the carotid artery [73–75]. In 
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addition, upon local heart irradiation these mice showed increased microvascular damage 

and atherosclerotic lesions in the coronary arteries [76]. These studies in small animals 

corroborate observations in clinical tissue specimens that show increased intima-media 

thickness and other artery wall lesions upon external beam irradiation [8;77].

In addition to rodents, larger animal models such as rabbits, dogs, and non-human primates 

have been used for many years to study radiation effects in both the heart and vasculature 

[78–80]. For instance, cardiovascular pathology after localized single-dose exposure in 

rabbit models has been described as very close to the pathology observed in cardiac tissue 

specimens of human subjects [28;38]. Moreover, radiation-induced accelerated 

atherosclerosis is observed in rabbits given a high lipid diet [81]. These types of studies in 

addition to work in rodent models should aid in the translation of preclinical results into 

understanding cardiac radiation injury in human subjects.

3. Cardiac alterations after exposure to low-dose ionizing radiation

3.1. Epidemiological studies

Japanese atomic bomb survivors who were exposed to high-dose rate γ-radiation at single 

doses, mostly up to ~2 Gy to a large part of their body have been followed closely to identify 

short-term and long-term health effects [82–84]. Some of the recent reports have shown an 

increased incidence of cardiovascular disease in these people several decades after exposure 

[84–88]. Additional epidemiological studies in low-dose exposure due to occupation or 

medical treatment confirm that cardiovascular alterations may occur after lower doses of 

ionizing radiation than was previously thought [89–93]. Some of the main cardiovascular 

effects are ischemic heart disease and stroke, potentially enhanced by an increased rate of 

hypertension [87].

While it is likely that different biological mechanisms underlie heart disease after high doses 

compared to low doses of radiation, these mechanisms are largely unknown. The outcomes 

of ischemic heart disease and stroke in atomic bomb survivors suggest that vascular 

alterations may play a prominent role in the response to low-dose radiation. There is still 

uncertainty about potential direct effects of low doses of ionizing radiation on the 

myocardium and cardiomyocytes.

3.2. Determination of the cardiac response to low-dose radiation in animal models

The recent observations of potential adverse cardiovascular effects of low doses of ionizing 

radiation have led to further investigations in animal models to aid in identifying the risks 

and underlying mechanisms. Single low doses of ionizing radiation (0.025 – 2 Gy) 

administered to the heart or whole body may cause inflammatory responses in ApoE KO 

mice [94;95]. Hence, a potential role of inflammatory responses in low-dose radiation 

induced cardiac injury deserves further investigation. In addition, proteomics analysis of 

primary human coronary artery endothelial cells exposed to a single dose of 0.2 Gy revealed 

a dysregulation of pathways involved in cellular organization and molecular transport [96], 

which may contribute to an adverse microenvironment in the vasculature.
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4. Cardiovascular effects of space radiation

4.1. Does exposure to space radiation cause adverse effects in the cardiovascular system?

Space travel is associated with exposure to protons due to solar particle events, and protons 

and heavy charged particles in the form of galactic cosmic rays. While proton exposure due 

to solar particle events can occur at dose rates as high as 1.5 Gy/hour [97], galactic cosmic 

ray exposure occurs at low dose rates (1.3 mGy/day) [98]. Most of space travel thus far has 

been within low-Earth orbit. In this environment, doses of ionizing radiation, although 

higher than those found on the Earth’s service, may not be of concern for biological effects 

such as cardiac radiation injury. However, plans are being made for space travel beyond low-

Earth orbit, and in that scenario larger doses of ionizing radiation will be encountered. Since 

both men and women travel in space, it is important to determine radiation risk in both 

sexes. While recent reports on human populations exposed to low doses of radiation have 

raised the concern about potential adverse cardiovascular effects of ionizing radiation during 

long-distance space travel [99], types of ionizing radiation in space (mostly charged 

particles) are different from photons encountered on Earth, and as described above, 

exposures in space generally occur at much lower dose rates. As a result, biological effects 

of low doses of space radiation may be different from low doses of ionizing radiation 

encountered on Earth. Determination of short-term and long-term health risks of exposure to 

space radiation depends largely on research in animal models.

4.2. Animal models of exposure to space-like radiation

The concern of adverse cardiovascular effects of exposure to space radiation is relatively 

new, and experimentation has only recently begun. Studies are performed with cell cultures 

and animal models exposed to high energy charged particles to model space radiation. 

Although most studies are performed with appropriate doses of 1 Gy and below, practical 

considerations thus far have limited most studies to administering these doses within 

minutes, while it takes up to a year for galactic cosmic rays to provide these doses. 

Cardiovascular effects have not yet been studied in animal models of low-dose rate charged 

particle exposures.

Among studies with charged particles, some previous research has focused on the cardiac 

response to fission spectrum neutrons at a mean energy of 0.8 MeV [100–103]. In these 

experiments, both a single dose (0.8 or 2.4 Gy) and protracted exposure regimens (24 

weekly fractions to a total of 0.2 – 2.4 Gy) induced significant radiation injury in the 

myocardium, coronary arteries, and aorta in a mouse model.

Targeted exposure of ApoE KO mice to iron ions (600 MeV/n) at single doses of 2 and 5 Gy 

caused accelerated atherosclerosis in the irradiated parts of the aorta [104]. Additional 

studies with lower doses of particle irradiation may provide a more comprehensive estimate 

of cardiovascular risk in this mouse model. More recently, studies were designed to 

determine the effects of protons and heavy ions at doses up to 1 Gy on cardiac function and 

structure. In a mouse model of single-dose exposure to protons (1 GeV, 0.5 Gy) or iron ions 

(1 GeV/n, 0.15 Gy) caused cardiac infiltration of monocytes/macrophages, increased DNA 

oxidation, myocardial fibrosis, and modified cardiac function in a radiation-type specific 
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manner. These effects were observed both at baseline and after the induction of experimental 

myocardial infarction [105;106]. Moreover, in a mouse model of single dose exposure to 

silicon ions (300 MeV/n, 0.1 – 0.5 Gy), increased cardiac apoptosis and expression of pro-

inflammatory cytokines were observed [107].

At 1 week and 3 months after exposure of mice to 0.1 Gy of protons (150 MeV), no 

detectable structural or molecular changes had occurred in the heart. However, when 

administered 24 hours before a subsequent exposure to iron ions (0.5 Gy, 600 MeV/n), 

proton exposure prevented iron ion-induced markers of inflammatory infiltration, cardiac 

remodeling, and formation of cleaved caspase 3 [108]. These results suggest that proton 

exposure induced an as of yet unknown response in the heart that provided protection 

against further charged particle exposure. Proteomics analysis has started to reveal potential 

signaling pathways induced by low-dose particle irradiation in the heart [109].

It is becoming increasingly evident that ionizing radiation can cause epigenetic alterations. 

Among epigenetic parameters, DNA methylation has received most attention in the context 

of radiation biology. Low doses of charged particle have been shown to induce changes in 

DNA methylation in various cell types and tissues [110–112]. Recently, alterations in DNA 

methylation have been described in the heart in response to protons and iron ions [113;114]. 

The role of DNA methylation in cardiac function and disease has only recently started to 

emerge [115–117]. For instance, changes in gene-specific methylation were reported in 

dilated cardiomyopathy, arrhythmia and in heart failure [118–122]. The role of epigenetic 

alterations in the cardiovascular response to ionizing radiation is not yet known. Further 

research is required to identify whether charged particle-induced epigenetic alterations 

contribute to an altered physiology in organs such as the heart.

5. Detection of radiation-induced heart disease and non-invasive 

biomarkers

Studies in both animal models and human subjects have shown that manifestations of 

radiation-induced heart disease can be detected relatively early with non-invasive imaging 

techniques such as conventional echocardiography and strain rate analysis [123;124]. In 

addition, molecular markers in body fluids such as plasma or urine may aid in the early 

detection and monitoring of cardiovascular radiation injury. Common circulating markers of 

cardiac injury from various causes, such as troponins, atrial natriuretic peptide, and brain 

natriuretic peptide have been tested as early identifiers of cardiac radiation injury in patients, 

with varying results [125–131]. Studies are increasingly focused on finding molecular 

markers that can specifically indicate radiation injury [132], and new sensitive high-

throughput technologies prove to be useful [133]. The goal of these studies is to identify 

biomarkers that can distinguish cardiovascular radiation toxicity from cardiovascular disease 

due to other causes. Hence, the ideal biomarker is upregulated in individuals with radiation-

induced cardiovascular injury, but is unaffected in individuals with cardiovascular disease 

who have not previously been exposed to ionizing radiation.
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6. Methods to intervene in the adverse effects of ionizing radiation on the 

heart

6.1. Pharmacological interventions in radiation-induced heart disease are required

Clinical treatment of radiation-induced heart disease currently consists of standard 

interventions, including cardiac transplantation and other surgical procedures [134–136]. 

The only available approach to prevent cardiac complications is through efforts to reduce 

cardiac exposure during radiation therapy. However, ongoing research efforts are aiming at 

identifying safe pharmacological countermeasures that may prevent or mitigate the adverse 

effects of radiation in the heart.

6.2. Testing of anti-oxidants in experimental animal models

Radiation-induced heart disease in animal models appears to be associated with long-term 

oxidative stress [36;43;46]. Hence, some of the interventions that have been tested in animal 

models of radiation-induced heart disease act via anti-oxidant mechanisms.

Amifostine is one of the few clinically approved compounds that may be administered as 

radiation protector in cancer patients. Upon administration, amifostine is metabolized into its 

active compound, WR-1056 that is thought to act at least in part by scavenging free radicals 

[137]. Amifostine was shown to protect against cardiac fibrosis and function loss when 

administered before local irradiation with high single doses in the rat [138–140]. However, 

although approved for clinical use, amifostine is not in wide use because of side effects.

Other protective treatments in animal models of radiation-induced heart disease may act via 

anti-oxidant properties. Black grape juice, for instance, when administered starting one week 

before irradiation in a rat model, reduced adverse cardiac effects [141]. Moreover, 

administration of water saturated with molecular hydrogen starting 24 hours before single 

dose local heart irradiation reduced chronic myocardial injury in a mouse model, and the 

main suggested mechanism of action was free radical scavenging [142]. On the other hand, 

when administered 24 hours before local heart irradiation (21 Gy single dose), the vitamin E 

analog and anti-oxidant γ-tocotrienol prevented radiation-induced alterations in cardiac 

mitochondria but did not protect against late cardiac fibrosis [46].

Altogether, while anti-oxidant strategies alone may not suffice in fully preventing 

cardiovascular radiation injury, they may contribute to radiation protection when 

administered in combination with other radioprotective compounds.

6.3. Testing of potential countermeasures with non-antioxidant biological mechanisms

In addition to anti-oxidant strategies, certain interventions with known beneficial effects in 

heart disease have been tested in animal models of cardiac radiation injury. The common 

cholesterol-lowering drugs statins, for instance, have shown promising effects in mouse and 

rat models of single dose local heart irradiation [143;144] and whole body irradiation [145]. 

On the other hand, atorvastatin did not modify radiation-induced accelerated atherosclerosis 

in the carotid artery upon a single dose of 14 Gy to the neck of ApoE KO mice [146]. Since 

some of the intermediates of the cholesterol signaling pathway are used to modulate 
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signaling molecules such as Ras-like proteins, statins have various anti-inflammatory and 

anti-coagulant effects on endothelial cells [147]. Hence, their mechanisms of action in the 

cardiovascular system may go beyond improving cholesterol levels.

Besides some gene and protein expression data [148], there is no evidence of activation of 

the renin angiotensin system (RAS) in the irradiated rat heart. Nonetheless, the ACE 

inhibitor captopril has shown to reduce cardiac radiation injury in the rat [149]. However, 

captopril has various other effects not related to ACE inhibition, and the beneficial effects on 

the irradiated heart may be mediated in part by its non-ACE inhibitory properties. Moreover, 

the effects seem to rely on modifying the lung and/or the interaction between the heart and 

lung [72].

The anti-platelet agent clopidegrol did not modify radiation-induced accelerated 

atherosclerosis in the carotid artery of ApoE KO mice [146]. Moreover, a nitric oxide 

releasing aspirin reduced age-related atherosclerosis but not atherosclerosis associated with a 

single local dose of 14 Gy in this mouse model [150].

Even though radiation-induced heart disease in animal models is associated with cardiac 

inflammatory infiltration [60;93;151], a strategy to inactivate macrophages with the use of 

thalidomide did not alter late cardiac radiation injury from a single dose of 16 Gy in a mouse 

model [152].

The rheological agent pentoxifylline has been tested as a potential radiation mitigator that 

may be administered after irradiation, at a time when late effects have become apparent. 

When administered in combination with α-tocopherol from 3 until 6 months after local heart 

irradiation with 5 fractions of 9 Gy in a rat model, pentoxifylline reduced cardiac fibrosis 

and improved cardiac function [153]. However, when administered after a single dose of 21 

Gy using an image-guided protocol with reduced lung radiation exposure, pentoxifylline 

caused increased bradycardia and arrhythmia that seemed to offset its beneficial effects in 

the heart [154]. We speculate that the single dose irradiation and/or the reduced lung 

radiation exposure in the second study revealed the adverse chronotropic effects of 

pentoxifylline in the irradiated rat heart.

6.4. Countermeasures against adverse effects of space radiation

Experiments involving pharmacological countermeasures against the effects of space 

radiation, including those in the heart and vasculature, have been reviewed in detail 

elsewhere [155]. Some of these interventions may eventually prove to be safe in reducing 

early or late adverse effects of both photon and charged particle irradiation in the heart.

7. Conclusions and future directions

While high doses of ionizing radiation have long been known to cause injury in the heart, 

recent studies suggest that low doses may also have adverse cardiovascular effects, possibly 

via different mechanisms. With recent developments in radiation delivery to small animals 

and high-resolution in vivo imaging, future preclinical studies can include clinically relevant 

radiation schedules and close monitoring of animals to increase our knowledge of biological 
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mechanisms of cardiovascular radiation injury and test potential interventions that may 

prevent or mitigate these effects. As is the case for most animal experiments in the 

biomedical sciences, the majority of experiments focused on cardiovascular effects of 

ionizing radiation have been performed in male animals. Since cardiovascular disease risk is 

known to be sex-dependent, future studies will have to include both male and female 

animals. Moreover, since childhood cancer survivors are at higher risk of developing 

radiation-induced heart disease, experimental models that mimic childhood radiation 

exposure may enhance our understanding of the role of age at exposure in cardiovascular 

radiation injury. Lastly, high-throughput small molecule analysis will contribute to the 

identification of novel non-invasive biomarkers for early identification of patients at risk.
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Table 1

Key points of this article.

Section Main outcomes Reference

2.1

Exposure of the heart to high doses of ionizing radiation causes radiation-induced heart disease. 1–3

A study in 2168 breast cancer survivors estimates that the rate of coronary events increases by 7.4% per Gy 
mean dose to the heart. 15

2.2

In addition to treatment, the cancer itself can cause metabolic alterations, cachexia, with an adverse impact on 
the heart. 22;23

Work in animal models has recently begun to investigate mechanisms of heart failure due to cachexia. 24;25

2.3

The adverse cardiac effects of ionizing radiation and anthracyclines appear to be at least additive. 26–29

There is a concern about potential interactions between ionizing radiation and recently developed targeted 
chemotherapies. 33–35

2.4

Experiments with local heart irradiation in animal models have resulted in calculations of α/β ratios of 2.5 – 3.7 
Gy. 40–42

Animal models indicate that the myocardial (micro)vasculature contributes to the development of radiation-
induced heart disease. 50–57

Animal models indicate that radiation injury in the heart and lung influence each other. 70–72

Genetically modified atherosclerotic-prone mouse models are used to assess radiation-induced vascular 
alterations. 73–77

3.1 An increased incidence of cardiovascular disease is reported in various populations decades after low doses of 
photon radiation to a large part of the body. 84–93

3.2 Low-dose radiation exposures in animal models are associated with cardiac inflammation and endothelial cell 
alterations. 94–96

4.2

Mouse models of exposure to protons, iron ions, or silicon ions (0.15 – 0.5 Gy) show cardiac inflammatory 
infiltration, DNA oxidation, myocardial fibrosis and apoptosis. Effects of lower dose rates remain to be 
determined 104–107

While charged particle exposures cause alterations in DNA methylation in the heart, their role remain to be 
determined. 113;114

5

Common circulating markers of cardiac injury have been tested to identify cardiac radiation injury in patients, 
with varying results. 125–131

Current studies are focused on using high-througphut –omics technologies to identify novel biomarkers of 
radiation injury. 132;133

6.2 Anti-oxidants have been tested as potential countermeasures in animal models of radiation-induced heart 
disease, with varying results.

46;138–142

6.3 Both statins and ACE inhibitors reduce myocardial injury in animal models of radiation-induced heart disease. 143–146; 72;149
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