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Abstract

Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial dis-

ease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several

cardiovascular indications but the mechanism of action is not well-understood. We investi-

gated the therapeutic potential of DHI on experimental PAD in mice with chemically induced

as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating

both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic

background wild type (WT) mice, both DM mice showed impaired perfusion recovery in

hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery,

lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent

imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor

receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI

stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial pro-

genitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI admin-

istration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and

VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced

angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis

(IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-

activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes.

We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene

expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component

Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in
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diabetic mice by promoting angiogenesis and improving glucose tolerance through a con-

comitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.

Introduction

There is a high prevalence of peripheral artery disease (PAD) and the lower extremities are its

most common sites. Individuals with PAD and diabetes mellitus (DM) co-morbidity have a

seven-fold higher risk of critical limb ischemia and a five-fold higher risk of amputation com-

pared with PAD patients without DM [1]. Since diabetic patients have a four times greater risk

of developing PAD compared to the general population, it is accepted that there is a close rela-

tionship between hyperglycemia and vascular complications [2]. Therefore, diabetic patients

have much worse lower-extremity function and a higher risk of amputation [3]. Ample evi-

dence suggests that DM affects the function of blood vessel, which may lead to a greater sever-

ity of disease.

Novel pharmacological approaches, based mainly on the knowledge gained from studying

therapeutic angiogenesis, have been developed and applied clinically for PAD. Angiogenesis is

the growth of new vessels from pre-existing vascular structures. Vascular endothelial growth

factors (VEGFs), well-known pro-angiogenic factors involved in blood vessel growth during

development and post-natal angiogenesis [4], mediate their biological effects through binding

to their receptors, VEGF receptors 1 and 2 (VEGFR-1 and VEGFR-2). The Ligand-receptor

interactions of VEGF and VEGFR play a critical role in perfusion recovery following HLI. It

has been shown that VEGFR-2 is a dominant receptor that mediates post-natal angiogenesis

[1]. We hypothesized that the impaired perfusion recovery in HLI of Type 2 DM mice may be

associated with decreased expression of VEGF-A and VEGFR-2. Peroxisome proliferator-acti-

vated receptor δ (PPARδ) is a ligand-activated transcription factor that belongs to the nuclear

receptor super-family, which also includes PPARα and PPARγ. Among these three isotypes,

PPARδ is the most important regulator for executing key cellular functions in the heart, liver,

colon, and skeletal muscle. Both in vitro and in vivo studies have shown that PPARδ is pro-

angiogenic and plays an important role in the activation of angiogenic pathways [5].

On the other hand, numerous studies have shown that peripheral blood (PB) or bone mar-

row (BM)-derived EPCs are mobilized to ischemic tissue and contribute significantly to angio-

genesis, collateral vessel development and augment blood flow recovery in ischemic damaged

tissues in HLI model. Animal studies suggest that transplanted BM cells or BM-derived EPCs

contribute to the development of collateral vessels. Blood flow recovery and capillary density

in the ischemic hind-limb were markedly improved, and the rate of limb loss was significantly

reduced. Therefore pharmacologic and/or biological agents that could mobilize EPCs into

peripheral blood and improve recruitment and incorporation of EPCs to the ischemic tissue

would enhance angiogenesis and improve the perfusion recovery [6,7].

Danhong injection (DHI) is a patent injection medicine made from the extracts of Radix

Salviae Miltiorrhizae and Flos Carthami, which are two TCMs with a property of activating

blood circulation and removing blood stasis. DHI is widely prescribed for the treatment of car-

diovascular and cerebrovascular disease in clinical practice. We have previously identified 11

polyphenolic acids in DHI using ultra-performance liquid chromatography (UPLC) coupled

with UV detection [8]. With a newly developed proton nuclear magnetic resonance (1H

NMR) profiling method, we also simultaneously identified and quantified 23 primary metabo-

lites together with 7 polyphenolic acids in DHI [9]. Recently, other investigators have further

DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice

PLOS ONE | DOI:10.1371/journal.pone.0167305 December 8, 2016 2 / 18

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: Buchang Pharma, Heze,

Shandong, China was the co-recipient of and

supplied supplemental funding to the following

state grant from the Ministry of Science and

Technology, China: National Major New Drug

Discovery Grant (2013ZX0920102). The

corresponding author (YZ) has participated

consultancy and lectureships sponsored by

Buchang Pharma but declare no other commercial

interest to the company. Other members of

research team have no commercial interest to

declare. We confirm that this does not alter our

adherence to PLOS ONE policies on sharing data

and materials.



characterized and identified a total of 63 compounds, including 33 phenolic acids, 2 C-glycosyl

quinochalcones, 6 flavonoid O-glycosides, 4 iridoid glycosides, 6 organic acids, 5 amino acids,

and 3 nucleosides in DHI [10]. Our previous studies revealed that DHI increased endothelial-

dependent vasorelaxation in vivo and ex vivo in rat aortas via prostacyclin/ cyclooxygenase-2

pathway [11]. DHI could prevent ischemia/reperfusion-induced brain damage through acti-

vating Nrf2/ARE signaling pathway [12]. Interestingly, DHI protected rat cardiac myocyte

damage induced by overdose arginine vasopressin (AVP) and significantly decreased the

injury of both primary rat neuronal cells and rat cardiac myocytes. The ability of DHI to rein-

state AVP level may be one of the mechanisms of its brain and heart co-protection effects [13].

DHI also played an important role in suppressing inflammatory responses through inhibiting

the NF-κB signaling pathway [14]. It may exert anti-cardiac hypertrophic effects by regulating

p38 and NF-κB pathway [15]. Danshensu (DSS) was identified as a major vasorelaxation factor

in DHI [11]. DSS could also improve circulation in smaller arteries, reduce ROS generation

[16,17], inhibit cardio fibroblast proliferation and improve collagen synthesis [18,19], inhibit

cell apoptosis [20] and protect heart against ischemia reperfusion injury [21,22]. A previous

study showed that phenolic acids were the potential components responsible for the antioxi-

dant activity of DHI [8]. Researches have shown that Hydroxysafflor yellow A (HSYA) may be

a major active component of DHI from Flos Carthami. It exerts a variety of effects upon the

cardiovascular system. For example, HSYA inhibits thrombosis and platelet aggregation,

improves congestive cardiac failure in rats by suppressing ET-1 and iNOS and reduces oxida-

tive stress in infarcted tissue [23]. HSYA has also been shown to reduce phenylephrine or KCl-

induced vasoconstriction and to reduce blood pressure and heart rate [24].

Mouse model of hind-limb ischemia, with surgical ligation and excision of the femoral

artery, has been used extensively to study processes that are involved in ischemia-induced per-

fusion recovery following vessel occlusion. Using this model, several studies have shown that

perfusion recovery is impaired in diabetic mice [25]. KKAy mouse is a transgenic model of

spontaneous development of type-2 diabetes (T2D). This congenic strain is established by

transfer of the yellow obese gene (Ay) into KK mice with moderate hyperglycemia through

repeated crossing of yellow obese mice [26]. This mouse is widely used as an experimental

model for T2D. VEGFR-2-luc transgenic mice carry a transgene containing a 4.5-kb murine

VEGFR-2 promoter and a modified firefly luciferase cDNA. The VEGFR-2 promoter drives

the expression of luciferase to allow monitoring of the VEGFR-2 expression by biolumines-

cence imaging (BLI) [27]. Type 2 diabetes were induced by a high-fat diet (HFD) combined

with low-dose streptozotocin (STZ) treatment [28]. In this model, after induction of hind-

limb ischemia (HLI) therapeutic angiogenesis and VEGFR-2 expression can be visualized and

monitored in vivo noninvasively and recovery of the ischemic limb measured continuously

[27].

The goal of this study is to explore the effects of DHI on PAD with diabetes mellitus co-

morbidity. Using the two independent mouse models of diabetic PAD described above, we

demonstrated that DHI effectively increased blood flow recovery after tissue ischemia in dia-

betic mice by promoting angiogenesis and improving glucose tolerance through a concomitant

activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.

Materials and Methods

Reagents

Danhong injection (DHI, Batch No.12081024077, 10mL/ampulla) comprising 750g Salvia mil-

tiorrhiza, 250g Safflower and 7g Sodium chloride, was supplied by Heze Buchang Pharmaceu-

tical Co., Ltd, Shandong, China.
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Animals

Female 6-week-old KK/Upj-Ay/J and 6-week-old C57BL/6J mice were purchased from HFK

Bioscience Co, Ltd, (Beijing, China). Homozygous VEGFR-2-luc males were obtained from 3

transgenic breeding colonies currently maintained in a barrier room of Tianjin International

Joint Academy of Biotechnology and Medicine (TJAB). These mice were housed in a 12-hour

light/dark cycled facility with free access to food and water. All experiments were reviewed

and approved by the Committee of Ethics on Animal Experiments at the TJAB (TJAB-JY-

2011-002) and were carried out under the Guidelines for Animal Experiments at the Tianjin

University of Traditional Chinese Medicine. Chloral hydrate (4%) was used as anesthetizing

agent to achieve quick sedation in terminal tissue harvesting and blood drawing experiments.

For invasive procedures, mice were anesthetized by inhalation of 3% isoflurane driven by

100% O2 for induction, then maintained at 2% isoflurane (100 ml/min O2). Animals were

euthanized by cervical dislocation. All precautions were taken to minimize suffering.

Experimental design

Since DHI is administered intravenously at a dosage of 10 ml per day in clinics, we converted

to a concentration of 1.3 ml/kg for mouse by intraperitoneal injection (i.p.) once daily. After

operative excision of one femoral artery, KKAy mice were randomly divided into four groups

(Table 1) and daily i.p. injected with saline (1.3 ml/kg body weight, vehicle group, n = 7), DHI

(1.3 ml/kg body weight, Danhong group, n = 7), rosiglitazone (1mg/kg body weight, rosiglita-

zone group, n = 3), and AMD3100 (5mg/kg body weight, AMD3100 group, n = 3) respectively

for 35 days. C57BL/6J mice daily injected with saline (1.3 ml/kg body weight, C57 group,

n = 7) were used as normal controls. Homozygous VEGFR-2-luc males were divided into four

groups (Table 2). Except for three non-diabetic mice, other homozygous VEGFR-2-luc males

were induced by high fat diet for one month, then received daily i.p. injections of 50mg/kg

STZ freshly dissolved in 10 mmol/L citrate buffer (pH 4.5), for 5 consecutive days to induce

type 2 diabetic models. After operative excision of one femoral artery, diabetic mice were ran-

domly divided into three groups and daily i.p. injected with saline (1.3 ml/kg body weight,

vehicle group, n = 7), DHI (1.3 ml/kg body weight, Danhong group, n = 7), metformin (129

mg/kg body weight, metformin group, n = 3) respectively. DHI and metformin were injected

i.p. once daily for 35 days. Non-diabetic mice were used as normal group and daily i.p. injected

with saline (1.3 ml/kg body weight, non DM group, n = 3).

Table 1. Groups of KKAy mice and WT mice.

Group Number Dosage per day Duration (days)

C57 7 1.3 ml/kg 35

KKAy+vehicle 7 1.3 ml/kg 35

KKAy+rosiglitazone 3 1 mg/kg 35

KKAy+AMD3100 3 5 mg/kg 35

KKAy+DHI 7 1.3 ml/kg 35

doi:10.1371/journal.pone.0167305.t001

Table 2. Groups of VEGFR-2-luc mice.

Group Number Dosage per day Duration (days)

Non DM 3 1.3 ml/kg 35

DM+vehicle 7 1.3 ml/kg 35

DM+metformin 3 129 mg/kg 35

DM+DHI 7 1.3 ml/kg 35

doi:10.1371/journal.pone.0167305.t002
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Blood glucose measurement and, glucose tolerance test (GTT)

Blood samples were collected from lateral tail veins. Blood glucose was measured with an auto-

matic glucometer (Roche ACCU-CHEK Active, Germany) at 2 p.m. every 10 days. Fasted

mice were i.p. injected with dextrose (2 g/kg). Glucose level was measured in tail blood before

and at 15, 30, 60, and 120 min after dextrose injection using a glucometer.

Murine hind-limb ischemic model

Mice were anesthetized with isoflurane and unilateral hind-limb ischemia was induced, as

described [29]. The entire right hind limb femoral artery and vein were exposed and isolated

from the inguinal region to the bifurcation of the saphenous/popliteal artery. Exposed vessels

were ligated at their proximal and distal ends, and both vessels were excised. The intact per-

fused contra-lateral limb of each mouse was used as an internal control. After hind-limb ische-

mia, saline or drugs were administrated daily for 35 days. Mice were euthanized at the end of

the study and muscle tissues were collected and either fixed in 4% paraformaldehyde or snap-

frozen in liquid nitrogen for the future use.

Laser Doppler perfusion imaging (LDPI)

Mice were anesthetized as above and hair was removed using an electric clippers. A serial,

non-invasive assessment of ischemic limb micro-vascular perfusion was performed using the

LDPI system (MoorLDLS, UK). Recovery of hind limb perfusion was monitored periodically

and expressed as the ratio of perfusion in the ischemic limb to perfusion in the healthy limb as

described before [30].

Bioluminescent imaging in vivo

Bioluminescence imaging (BLI) was performed using a highly sensitive, cooled charge-coupled

device camera mounted in a light-tight specimen box (IVIS1 Lumina K Series III, PerkinEl-

mer), with protocols similar to those described previously [31]. For imaging in vivo, mice were

anesthetized with isoflurane and i.p. injected with D-luciferin (PerkinElmer) at 150 mg/kg

body weight per manufacturer recommendations. Optical signal intensity of the VEGFR-2-luc

mouse was acquired 5 min after D-luciferin administration. Regions of interest (ROI) from

displayed images were identified on the ischemic sites and quantified as photons per second

(p/s) using Living Image1 software.

Flow cytometry

To investigate the effects of DHI on EPC mobilization to circulating peripheral blood (PB) in

response to tissue ischemia, the fluorescence-activated cell sorting (FACS) Caliber flow cytom-

eter (Becton Dickinson, San Jose, CA, USA) was used to assess EPC mobilization. 100 μL of PB

was collected from the inner canthus of KKAy mice. PB was incubated with Fluorescein iso-

thiocyanate (FITC) anti-mouse Sca-1 (eBioscience, San Diego, CA, USA), and phycoerythrin

(PE) anti-mouse Flk-1 (VEGFR-2, eBioscience) antibodies [32]. Isotype-identical antibodies

(IgGs) were used as negative controls (eBioscience). After 30 min incubation, cells were lysed

with red blood cell lysis buffer, washed with phosphate-buffered saline (PBS), and fixed in

1% paraformaldehyde before analysis. Each analysis included 100,000 events. Double positive

Sca-1/Flk-1 cell from the mononuclear fraction were considered to be circulating PB EPCs

[33].
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Capillary count

Muscles were processed for histology. Sections were stained with hematoxylin and eosin

(H&E) for histopathologic evaluation. Sections were prepared from KKAy mice and stained

for Tie-2 to confirm the endothelial phenotype. Sections were prepared from VEGFR-2-luc

mice and stained for VEGFR-2 to confirm the endothelial phenotype. Capillaries were counted

by a single observer blindfolded for the treatment conditions under a fluorescence microscope.

Different fields was selected randomly from each group.

Quantitative real-time reverse transcription–polymerase chain reaction

analysis

Total RNA samples from the muscle tissues were isolated using EasyPure1 RNA Kit (TRANS-

GEN BIOTECH) according to manufacturer’s protocols. RNA samples were subsequently

reverse-transcribed to complementary DNA (cDNA) using Transcriptor First Strand cDNA

Synthesis Kit (Roche) to obtain cDNA. The resulting cDNA was used as a template for real-time

polymerase chain reaction (PCR) amplification using the following oligonucleotide primers:
50- TGGTGAAGCAGGCATCTGAG-30 (forward)and
50- TGCTGTTGAAGTCGCAGGAG-30 (reverse)primersfor mouseGAPDH,
50- TGTACCTCCACCATGCCAAGT -30 (forward)and
50- TGGAAGATGTCCACCAGGGT-30 (reverse)primersfor mouseVEGF-A,50-ACTGCAGTG
ATTGCCATGTTCT-30 (forward)and
50-TCATTGGCCCGCTTAACG-30 (reverse)primersfor mouseVEGFR-2,
50-TCCATCGTCAACAAAGACGGG-30 (forward)and
50-ACTTGGGCTCAATGATGTCAC-30 (reverse)primersfor mousePPARδ,
50-AGGCCGAGAAGGAGAAGCTGTTG-30 (forward)and
50-TGGCCACCTCTTTGCTCTGCTC-30 (reverse)primersfor mousePPARγ,
50-CACAGAACCAGTTTCCATCATCCAGT-30 (forward)and
50-CATGTTCAGAGGGTTAGGGAGAGCA-30 (reverse)primersfor mouseCREBBP,
50- CGGAAATCATATCCAACCAG-30 (forward)and
50- TGAGGACCGCTAGCAAGTTTG-30 (reverse)primersfor mousePPARGC1A

The FastStart Universal SYBR Green Master (ROX) (Roche) was used in qRT-PCR to quan-

tify the level of VEGF-A and VEGFR-2 with GAPDH as an internal control. The PCR reactions

were setup in duplicates in 25 μL of total volumes including 2.5 μL of each primer, 12.5 μL of

FastStart Universal SYBR Green Master (ROX), and 1 μL of template. Amplification was per-

formed on C1000TMThermal Cycler (BIO-RAD, USA) for 45 cycles. The amplification and

analysis were performed using C1000TMThermal Cycler sequence Detection System. Samples

were compared using the relative CT method. The fold increase or decrease was determined rel-

ative to a blank control after normalizing to a housekeeping gene using 2-44CT, GAPDH.

Ingenuity Pathway Analysis

Functional interactions between the angiogenesis and glucose tolerance were analysed by Inge-

nuity Pathway Analysis (IPA) tool (Ingenuity Systems, Redwood City, CA). Since our experi-

mental results revealed DHI-mediated increase in the expression of VEGF-A and Flk-1 in both

genetic and chemically induced diabetic mice in HLI models, we used the Map function of IPA

to predict the potential up- and/or down-regulation of genes in the glucose tolerance pathway.

Statistical analysis

Data analyses were performed by Origin 8.5.1 software (OriginLab, USA) and the significant

difference was analyzed by SPSS 11.5 software (IBM, USA). The results were shown as

mean ± standard error of mean from “n” number of experiments. Statistical significance was

DHI Accelerated Recovery from Peripheral Arterial Disease in Type 2 Diabetic Mice

PLOS ONE | DOI:10.1371/journal.pone.0167305 December 8, 2016 6 / 18



assessed by unpaired Student’s t test for observation between 2 groups or by analysis of vari-

ance test for comparison between multiple groups. A P value of<0.05 was considered to be

statistically significant.

Results

DHI improved glucose homeostasis

After one-month treatment, the level of blood glucose in DHI-treated group was significantly

lower than that in vehicle-treated group in both genetic and chemically-induced diabetic

mouse models (Fig 1A and 1D). We used glucose tolerance test (GTT), a commonly used test

to diagnose diabetes mellitus, to assess the blood glucose-regulating effects of DHI. As shown

in Fig 1B and 1E, the blood glucose levels in all mice elevated sharply from 0 to 15 min after

glucose loading and then gradually decreased over 120 min. Compared to control non-DM

mice, there were noticeable and sustained decreases (p<0.05) in blood glucose levels at 30 and

60 min in DHI-treated mice, strongly suggesting that administration of DHI improved glucose

homeostasis that was impaired in type 2 diabetic mice. Area under the curve (AUC), which

represents the variation in glucose concentration from baseline over the test duration, was sig-

nificantly smaller in DHI-treated than vehicle group mice (Fig 1C and 1F).

DHI improved recovery of ischemic limb perfusion in both KKAy mice

and STZ-induced diabetic mice

To evaluate the effect of DHI on blood perfusion in diabetic mice, laser Doppler perfusion

imaging (LDPI) was performed before, immediately after and over 35 days after hind-limb

ischemia surgery. Pre-operatively, the ratio of blood flow between the two hind limbs in all

animals was set at 1.0. Immediately after induction of hind-limb ischemia, the ratio of the

blood flow between the ischemic and contralateral normal non-ischemic limbs was 0.097

±0.004 (Figs 2C and 3B). In diabetic mice injected with saline, blood flow recovered to a ratio

Fig 1. DHI improved glucose homeostasis. (A) In KKAy mice, the levels of blood glucose in DHI-treated and rosiglitazone-

treated groups were significantly lower than that in vehicle-treated group. (B) Intraperitoneal glucose tolerance testing was

performed in KKAy mice at the end of the feeding course, and the areas under the glucose tolerance tests curves were shown in

(C). (D) In STZ-induced diabetic mice, the level of blood glucose in DHI-treated and metformin-treated groups were significantly

lower than that in the vehicle-treated group. (E) Intraperitoneal glucose tolerance testing was performed in STZ-induced diabetic

mice at the end of the feeding course, and areas under the glucose tolerance tests curves were shown in (F). Values are

mean ± SEM. *P<0 .05, **P<0 .01, ***P<0 .001 vs vehicle.

doi:10.1371/journal.pone.0167305.g001
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of 0.67±0.09 after 35 days (Figs 2C and 3B), whereas in DHI- or AMD3100- treated diabetic

mice and non-diabetic mice, the LDPI ratio was accelerated to 0.92±0.08, 0.99±0.04 and 0.89

±0.07 after 35 days (Figs 2C and 3B). In addition, as early as 14, 21 to 28 days, DHI- or

AMD3100-treated diabetic mice and non-diabetic mice showed a significantly better recovery

of the limb perfusion (Figs 2B, 2C and 3B). Thus, blood-flow recovery was severely impaired

in both genetic and induced diabetic mice and this deficiency was significantly improved by

DHI or AMD3100 treatment.

DHI promoted EPC mobilization to peripheral blood

To investigate the effect of DHI on EPC mobilization in response to tissue ischemia, the num-

ber of double positive Sca-1+/Flk-1+ cells in mononuclear fraction of peripheral blood were

determined by flow cytometry in KKAy mice. EPC mobilization was enhanced by tissue ische-

mia. Administration of AMD3100 or DHI augmented substantially EPC mobilization after tis-

sue ischemia in KKAy mice (Fig 4).

DHI enhanced angiogenesis in vivo in VEGFR-2-luc diabetic mice post

HLI

In order to evaluate the effect of DHI on ischemia-induced angiogenesis in vivo, we chemically

induced diabetes in VEGFR-2-luc mice, in which the expression of luciferase is driven by

Fig 2. DHI improved perfusion of ischemic limbs in KKAy mice. (A) Representative images of laser Doppler perfusion

analysis for WT control mice, KKAy mice treated with AMD3100, KKAy mice treated with or without DHI before surgery and at

different time points after surgery. Low perfusion signals (dark blue) were observed in the ischemic hind limb, whereas high

perfusion signals (red) were detected in KKAy mice treated with DHI on postoperative day 8 through 35 and in KKAy mice

treated with AMD3100 on postoperative days 8, 21, 28, and 35. (B) Hind-limb perfusion recovery was impaired in untreated

KKAy mice. The mean hind-limb blood flow was calculated as the ratio of ischemic (left) side to non-ischemic (right) side. (C)

DHI or AMD3100 significantly improved perfusion recovery after HLI surgery. *P<0 .05, **P<0 .01, ***P<0 .001 vs. KKAy

+vehicle.

doi:10.1371/journal.pone.0167305.g002
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VEGFR-2 promoter to allow a direct visualization of angiogenesis using bioluminescent imag-

ing. There was no difference in average bioluminescent intensities between control and treated

groups before and 3 days after HLI surgery. However, compared to non-DM and DM+vehicle

groups, HLI areas in DHI treatment group showed a higher bioluminescent intensities after 7

days, suggesting an upregulation of VEGFR-2 in the ischemic area (Fig 5A, 5B and 5C, middle)

and a beginning of accelerate blood-flow perfusion recovery. Remarkably, 10 days after the

treatment, bioluminescent intensities in DHI-treated group were not detectable while it

was significantly increased in the DM+vehicle group (Fig 5B vs. 5C, far right; and Fig 5D).

Fig 3. DHI improved perfusion of ischemic limbs in STZ-induced diabetic mice. (A) Representative images of laser Doppler perfusion

analysis for non-diabetic mice, STZ-induced diabetic mice treated with or without DHI before surgery and at different time points after surgery.

Low perfusion signals (dark blue) were observed in the ischemic hind limb, whereas high perfusion signals (red) were detected in diabetic mice

treated with DHI on postoperative days 14, 21, 28 and 35. (B) Perfusion recovery was impaired in untreated STZ-induced diabetic mice. The

mean hind-limb blood flow was calculated as the ratio of ischemic (right) side to non-ischemic (left) side. DHI showed a significantly improved

perfusion recovery after HLI surgery. **P<0.01, ***P<0 .001 vs. DM+vehicle.

doi:10.1371/journal.pone.0167305.g003

Fig 4. DHI increased EPC mobilization in KKAy mice. EPC (defined as Sca-1+/Flk-1+cells) mobilization after

tissue ischemia was determined by flow cytometry in C57BL/6J mice and KKAy mice after administration of saline,

DHI or AMD3100. DHI and positive-control AMD3100 both showed a significantly improved EPC mobilization after

HLI surgery. *P<0 .05 vs. KKAy+vehicle.

doi:10.1371/journal.pone.0167305.g004
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Undetectable expression of VEGFR-2 in DHI-treated mice by day 10 is an indication of

decreased angiogenic signals in the ischemic limb, hence, suggesting a significantly improved

angiogenesis in DHI-treated vs. vehicle-treated group in vivo.

DHI reduced the incidence of limb necrosis

In ischemic conditions, a significantly higher occurrence of limb necrosis was observed in

STZ- induced diabetic mice compared to non-diabetic mice. Both the saline- and DHI-treated

groups demonstrated significant toe necrosis by the second day after ischemia induction,

whereas non-diabetic mice did not (Fig 6A, 6B and 6C, left). Compared to DM+vehicle group,

there was approximately 30% decrease in mice with limb necrosis in DM+DHI group 14 days

after HLI (Fig 6A, 6B and 6C, far right, and Fig 6D).

DHI increased the capillary density in ischemic limb

Immunohistochemical staining for Tie-2 or VEGFR-2 was used to quantify the capillary den-

sity. In both genetic and STZ-induced diabetic mice, there was significant increase in the capil-

lary density in the ischemic muscle tissue in DHI-treated mice, as compared with the vehicle-

treated controls (Fig 7A and 7B). These results provided evidences that DHI-treatment pro-

tected muscle tissue from ischemia-induced necrosis by increasing capillary density.

DHI increased the expression of VEGF-A and Flk-1 in both genetic and

chemically induced diabetic mouse HLI models

Quantitative PCR (qPCR) analyses were carried out to access whether DHI could influence the

expression of angiogenesis-related genes in diabetic HLI mice. VEGF-A is a well-known

angiogenic growth factor that induces formation of new capillaries in the ischemic tissue,

Fig 5. In vivo expression of VEGFR-2 in diabetic VEGFR-2-luc mice. (A-C) Representative Bioluminescent

images of HLI mice were obtained at 0, 7 and 10 days under the same imaging conditions. (D) The dynamic

measurement of bioluminescent intensities in non-DM, DM+vehicle and DM+DHI groups. Regions of interest (ROI)

from displayed images were identified on the HLI sites and quantified as photons per second (p/s). Data is shown as

mean ± SEM. n = 5 in each group. *P<0.05, vs. DM+vehicle.

doi:10.1371/journal.pone.0167305.g005
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Fig 6. DHI decreased incidence of limb necrosis in diabetic mice post HLI. Representative images of hind

limbs showing evidence of tissue necrosis. In DM+vehicle group, six out of seven ischemic limbs showed necrosis

(86%), while in DM+DHI group, four out of seven ischemic limbs showed necrosis (57%).

doi:10.1371/journal.pone.0167305.g006

Fig 7. DHI increased capillary density in diabetic mice post HLI. Representative sections of ischemic limb muscle 5

weeks after DHI treatment. Capillaries were identified by Tie-2 or VEGFR-2 antibody staining. Ischemic limbs of KKAy

mice injected with saline (A1) or DHI (A2) were shown where capillaries were identified by an anti-Tie-2 antibody.

Ischemic limbs of STZ-induced diabetic mice injected with saline (B1) or DHI (B2) were shown where capillaries were

identified by an anti- VEGFR-2 antibody. Quantitative analysis of capillary density of the ischemic region was performed

at the end of week 5 for KKAy (A3) and STZ-induced (B3) diabetic mice. *P<0 .05, **P<0 .01.

doi:10.1371/journal.pone.0167305.g007
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whereas Flk-1 (VEGFR-2) is a predominant receptor of VEGF-A. As shown in Fig 8, the

mRNA levels of VEGF-A and Flk-1 in DHI-treated group were significantly upregulated in

both genetic and chemically induced diabetic mice compared with the control mice.

DHI improved glucose tolerance by increasing the expression of PPARδ
Using Ingenuity Pathway Analysis (IPA), we identified interactions between angiogenesis and

glucose tolerance pathways. As shown in Fig 9A, Red-colored genes were related to glucose tol-

erance and green-colored genes were related to angiogenesis. Continuous lines showed a direct

interaction and arrows indicated regulated genes in the network. Since DHI increased the

expression of VEGF-A and Flk-1 in both genetic and chemically induced diabetic mice post

HLI, the Map function of IPA was used to predict the potential up- or down-regulated genes

in the glucose tolerance pathway. As shown in Fig 9B, the function network analysis suggested

that PPARγ, PPARδ, CREBBP and PPARGC1A are among the activated genes. A qPCR analy-

sis was performed to validate this prediction. As shown in Fig 10A and 10B, DHI increased

expression of PPARδ in both genetic and chemically induced diabetic mice, while in chemi-

cally induced diabetic mice, it also significantly increased the expression of PPARγ and

Fig 8. Increase of angiogenic factors in DHI-treated ischemic muscle. (A) Quantitative PCR showed DHI

increased the expression of VEGF-A and Flk-1 in KKAy mice. (B) Quantitative PCR showed DHI increased the

expression of VEGF-A and Flk-1 in STZ-induced diabetic mice. Data represent the means ± SEM, C57BL/6J: n = 5,

KKAy+vehicle: n = 4, KKAy+DHI: n = 6; Non-DM: n = 3, DM+vehicle: n = 5, DM+DHI: n = 5; vs. vehicle, ***P<0

.001.

doi:10.1371/journal.pone.0167305.g008

Fig 9. IPA indicated the overlap between angiogenesis and glucose tolerance networks. (A) Red colored genes are

related to glucose tolerance and green colored genes are related to angiogenesis. The arrows indicate effects of regulated

genes on other genes. (B) Orange colored are predicted to be activation and blue colored are predicted to be inhibited.

doi:10.1371/journal.pone.0167305.g009
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CREBBP (Fig 10B). These results confirm the predicted activation of these genes by IPA analy-

sis and indicated that DHI’s effects on improved glucose homeostasis is at least in part attribut-

able to its upregulation of PPARδgene expression.

Discussion

Peripheral arterial disease (PAD) is an atherosclerotic occlusive illness of the lower extremities.

Diabetes mellitus (DM) is a well-recognized risk factor for microvascular disease that can lead

to retinopathy and peripheral neuropathy [34]. PAD is a common vascular complication in

patients with DM, most likely due to distal nature of microvascular pathology and its associa-

tion with peripheral neuropathy. In a recent study, increased glycosylated hemoglobin

(HbA1c) levels is shown to be associated with increased complications and prevalence of PAD

in DM patients [35]. In addition to DM, the risk of developing PAD is increased in people

with metabolic disease and obesity, and these risk factors also correlate with decreased ability

to provide alternate conduits for impaired blood flow in the extremities [36]. Diabetes affects

nearly every vessel in body, however, the persistent abnormal metabolic state associated with

DM results in unique changes in arterial structure and function in the peripheral vasculature.

Development of new non-invasive approaches, such as therapeutic angiogenesis, directed at

revascularization and restoration of arterial structure and function are vitally necessary.

The VEGF/VEGFR ligand-receptor interactions play critical role in post-ischemic recovery

following HLI. Studies have shown that in mature vessels, autocrine expression of low levels of

VEGF is essential for vessel homeostasis whereas high levels of VEGF induce branching angio-

genesis [37]. Numerous studies that evaluated the efficacy of proangiogenic gene therapy sug-

gested that VEGF is a critical factor in therapeutic angiogenesis [38–40]. DHI is widely used in

the treatment of cardiovascular diseases such as acute myocardial infarction, coronary heart

and so on [41,42] and the beneficial effects could be seen in experimental ischemia models

[43]. We hypothesized that the angiogenic properties of DHI might depend on VEGF regula-

tion. Our results revealed that treatment with DHI upregulated levels of VEGF-A and VEGFR-

2, a pathway that is crucial for the angiogenic processes. DHI-mediated increases in VEGF-A

and VEGFR-2 were associated with improved tissue perfusion as early as one week after HLI

and increased number of capillaries in the ischemic hind-limb. These findings suggest that

exogenous DHI administration may enhance ischemia-induced angiogenesis in diabetic mice

through VEGF-dependent mechanism. Of note, Liu et al. have reported that DHI improved

renal functions by inhibiting expression of VEGF-A in kidneys [44]. In contrast to findings in

kidney or results showed that DHI increased VEGF-A and VEGFR-2 expression in the ische-

mic muscle and led to accelerated blood flow restoration and improved post-ischemic

Fig 10. DHI increased PPARδ expression in ischemic muscle tissue. (A) Quantitative PCR showing increased

PPARδ expression in genetic diabetic mice treated with DHI. (B) Quantitative PCR showing increased expression

of PPARδ in chemically induced diabetic mice treated with DHI. Data represent the mean ± SEM, C57BL/6J: n = 5,

KKAy+vehicle: n = 4, KKAy+DHI: n = 6; Non-DM: n = 3, DM+vehicle: n = 5, DM+ DHI: n = 5; vs. vehicle, **P<0 .01,

*P<0.05.

doi:10.1371/journal.pone.0167305.g010
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revascularization. Thus, the comparative results of these two studies demonstrated the diver-

gent effect of DHI on angiogenesis in the ischemia tissue versus kidneys. Although hypotheti-

cal, these divergent findings in two organ-tissues with and without tissue ischemia suggest that

DHI treatment could regulate same angiogenic pathway (VEGF/VEGFR-2) in opposite direc-

tions. Even though, underlying molecular mechanisms of these findings are not known, we

postulate that DHI-induced tissue responses may depend on the specific signals from different

cellular microenvironments.

Angiogenesis regulation involves multiple genes and pathways. We also examined the

effects of DHI on expression of other angiogenesis factors. DHI did not significantly alter the

expression of Tie-2, ANG1, ANG2, FGF-2, and PECAM in KKAy mice post HLI. It also did

not significantly alter the expression of CXCL12, PECAM, ANG1, ANG2, Tie-2 and HIF1α,

but did significantly upregulate the expression of FGF-2 and CXCR4 in STZ-induced diabetic

mice. DHI had a trend, although statistically not significant in upregulation of VEGFR-1

expression. This seemingly inconsistent results may be because of the coexistence of pro- and

anti-angiogenic substances in DHI that renders a diverse outcome as far as individual gene

regulation is concerned.

Previous studies in animal models of ischemia [45,25] and limited human clinical trials [46]

have documented that EPCs significantly augmented ischemia-induced angiogenesis. Further-

more, animal studies have shown that EPCs contribute to more rapid recovery of blood flow

in the ischemic areas by augmenting vascular regeneration through formation of structural

component of capillaries and secreting angiogenic growth factors [47,48]. Our studies revealed

that DHI administration increased the number of EPCs in the peripheral blood circulation in

genetic mice to the same level as approved for clinical use drug Plerixafor octahydrochloride

(formerly known as AMD3100). The increase in the number of circulating peripheral blood

EPCs was positively correlated with the ischemic limb recovery. Taken together, our findings

suggested that DHI administration improved ischemia-induced angiogenesis in vivo through a

VEGF-dependent mechanism and mobilization EPCs into peripheral blood could play a sig-

nificant in this improved recovery process.

As a modern Chinese medicine, the chemical complexity of DHI has been well uncovered

by recent studies [8–10]. Although we have yet to identify the specific component(s) in DHI

that promote the growth of new vessels in order to supply sufficient blood flow and that ame-

liorate glucose metabolism, the complex formula of a Chinese medicine serves as a native drug

combination and has the advantage to treat a disease from multiple target points and to regu-

late integrally, which can overcome the limitation of single therapy. Hydroxysafflor yellow A,

salvianolic acid A/B and danshensu are among the main active chemical components in DHI.

It has been confirmed that salvianolic acid A decreased blood glucose levels by improving glu-

cose metabolism in STZ-induced type 2 diabetic rats. Liu M. et al. have reported that DHI

reduced serum cholesterol and glucose levels in db/db mice [44]. In our study, we demonstrate

that DHI also decreased blood glucose levels and improved the glucose tolerance in both

genetic and chemically induced diabetic mice, but did not affect serum cholesterol levels (data

not shown). This experimental difference may be due to the shorter delivery time and the use

of different murine diabetic models (db/db vs. KKAy mice).

Hyperglycemia may be a major vascular risk factor in DM patients with PAD, therefore, a

good glycemic control in all patients with PAD and diabetes may be essential in order to pre-

vent diabetes-associated development and progression of microvascular complications. We

hypothesized that improvement of diabetic peripheral arterial disease by DHI might be partly

dependent on the control of glucose levels. To further elucidate the underlying mechanisms

why DHI improved glucose homeostasis, we enriched the overlapping signaling pathways

involved in angiogenesis and glucose tolerance using Ingenuity Pathway Analysis. Among
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them, PPARγ, PPARδ, CREBBP and PPARGC1A are shown to be highly associated with

angiogenesis and glucose tolerance synchronously. The PPAR family consists of three ligand-

activated nuclear receptors: PPARα, PPARδ and PPARγ. While PPARα is predominantly

expressed in liver, heart, kidney, and brown adipose tissue and PPARγ is primarily expressed

in adipose tissue, PPARδ is the most ubiquitously expressed. These PPARs have important

roles in the regulation of glucose and fatty acid metabolism, cell differentiation and immune

function. In recent years there has been a great interest in the actions of PPARα and PPARγ.

PPARδ has roles in metabolism similar to PPARα and PPARγ such as improving glycemic

control, decreasing insulin resistant and elevating high-density lipoprotein [49–51]. In addi-

tion, PPARδ was reported to have pro-angiogenic effects [5] unlike PPARα and PPARγ [52].

Results of our study showed that upregulation of PPARδ in both genetic and chemically-

induced diabetic mice played an important role in glycemic control and angiogenesis, suggest-

ing that DHI increased blood flow recovery and improved the glucose tolerance may be medi-

ated through DHI-dependent upregulation of the PPARδ and activation of its downstream

genes.

Conclusion

In summary, our findings demonstrate that Chinese medicine DHI is efficacious for diabetic

PAD in two mouse models by simultaneously promoting angiogenesis and enhancing EPC

mobilization via a VEGF/VEGFR-2-dependent mechanism and improving glucose homeosta-

sis via activation of PPARδ signaling. Further studies are needed to confirm and better under-

stand the underlying mechanisms of DHI-mediated therapeutic effects, but these data may

represent a supplementary non-invasive revascularization treatment method for PAD patients

with diabetes.
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