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Abstract

Measurement invariance assesses the psychometric equivalence of a construct across groups or 

across time. Measurement noninvariance suggests that a construct has a different structure or 

meaning to different groups or on different measurement occasions in the same group, and so the 

construct cannot be meaningfully tested or construed across groups or across time. Hence, prior to 

testing mean differences across groups or measurement occasions (e.g., boys and girls, pretest and 

posttest), or differential relations of the construct across groups, it is essential to assess the 

invariance of the construct. Conventions and reporting on measurement invariance are still in flux, 

and researchers are often left with limited understanding and inconsistent advice. Measurement 

invariance is tested and established in different steps. This report surveys the state of measurement 

invariance testing and reporting, and details the results of a literature review of studies that tested 

invariance. Most tests of measurement invariance include configural, metric, and scalar steps; a 

residual invariance step is reported for fewer tests. Alternative fit indices (AFIs) are reported as 

model fit criteria for the vast majority of tests; χ2 is reported as the single index in a minority of 

invariance tests. Reporting AFIs is associated with higher levels of achieved invariance. Partial 

invariance is reported for about one-third of tests. In general, sample size, number of groups 

compared, and model size are unrelated to the level of invariance achieved. Implications for the 

future of measurement invariance testing, reporting, and best practices are discussed.
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Measurement invariance assesses the (psychometric) equivalence of a construct across 

groups or measurement occasions and demonstrates that a construct has the same meaning to 

those groups or across repeated measurements. Measurement invariance takes many forms 

and is key to psychological and developmental research because it is a prerequisite to 

comparing group means. Measurement invariance applies to group comparisons, to mean 

Address Correspondence to: Diane L. Putnick, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 
6705 Rockledge Drive, Suite 8030, Bethesda, MD 20892, 301-496-6291, putnickd@mail.nih.gov. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Dev Rev. Author manuscript; available in PMC 2017 September 01.

Published in final edited form as:
Dev Rev. 2016 September ; 41: 71–90. doi:10.1016/j.dr.2016.06.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparisons across measurement occasions, and to differential relations between constructs 

by group (e.g., interactions by group), all of which are staples in psychological and 

developmental science. It applies equally to research topics in clinical, cognitive, social, 

experimental, cross-cultural, and developmental psychology. For example, before testing 

mean differences in a construct, researchers should test for invariance across child genders 

(Hong, Malik, & Lee, 2003), mothers and fathers (Wang et al., 2006), ethnic groups 

(Glanville & Wildhagen, 2007), and cultural groups (Senese, Bornstein, Haynes, Rossi, & 

Venuti, 2012). Because the interpretation of a construct can change over time, developmental 

researchers should test for invariance across measurement occasions (e.g., invariance across 

time; Little, 2013; Widaman, Ferrer, & Conger, 2010) and even for pretests and posttests 

before and after interventions (Nolte, Elsworth, Sinclair, & Osborne, 2009).

A study may measure the same cognition or behavior (form) across groups or times, but that 

cognition or behavior can have a different meaning (function) for the different groups or at 

different times (Bornstein, 1995). Like the meaning derived from sound-word associations in 

language, meaning is essentially conventionalized, and so different groups can apply 

different meanings to the same cognition or behavior. Appropriate and proper comparison of 

a construct between groups or across times, therefore, depends first on ensuring equivalence 

of meaning of the construct. The untoward consequences of measurement noninvariance can 

be readily illustrated in the study of depression in men and women. Suppose frequency of 

crying, weight gain, and feelings of hopelessness are indicative of the severity of depression 

in women, but only feelings of hopelessness are indicative of the severity of depression in 

men. If the three indicators are combined into a scale to compare depression in women and 

men, mean differences on the scale may mislead because crying and weight gain have little 

relation to depression in men. In this example, men may score lower than women on the 

depression scale because they cry less and gain less weight. However, crying and weight 

gain are not associated with depression in men in the first place. Another example comes 

from experimental designs. It is common to assess the effectiveness of an intervention, 

protocol, or trial by comparing pretest and posttest scores, or treatment and control groups. 

However, the intervention, protocol, or trial could change the way participants interpret the 

constructs under study. In an investigation of the effects of a training program to improve 

reading fluency, the intervention group may have learned to rely on one component of 

fluency (e.g., prosody – intonation patterns and phrasing), rather than fluency as a whole 

(including accuracy and automaticity) which could affect the measurement of the fluency 

construct (e.g., prosody could have a stronger loading on fluency in the treatment group or 

on the posttest). If the measure used at pretest and posttest (or in treatment and control 

groups) is noninvariant, then it is no longer clear that the change in reading fluency overall 

can be attributed to the intervention. Rather, it could be that the intervention only improves 

one aspect of fluency. Hence, noninvariance of a construct across groups or measurements 

can lead to erroneous conclusions about the effectiveness of a trial. As is clear, measurement 

invariance is a central and pervasive feature of psychological and developmental science.

In this report, we provide a brief history and non-technical description of measurement 

invariance, review current practices for testing and reporting measurement invariance, and 

discuss best practices and future directions for measurement invariance testing in 

psychological research.

Putnick and Bornstein Page 2

Dev Rev. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



History of Measurement Invariance

The conceptual importance of testing measurement invariance entered the literature more 

than 50 years ago (e.g., Meredith, 1964; Struening & Cohen, 1963), but statistical techniques 

for testing invariance have become more accessible to, and expected from, the research 

community only relatively recently. Indeed, measurement invariance is fast becoming de 
rigueur in psychological and developmental research. Around the turn of the 21st century, 

methodologists increasingly directed attention to the significance of measurement 

invariance, especially within a structural equation modeling framework (Cheung & 

Rensvold, 1999, 2002; Little, 2000; Rensvold & Cheung, 1998; Steenkamp & Baumgartner, 

1998; Vandenberg, 2002). In landmark papers, Widaman and Reiss (1997) and Vandenberg 

and Lance (2000) synthesized the measurement invariance literature, delineated the ladder-

like approach to measurement invariance testing, and provided researchers with step-by-step 

guides to conducting invariance tests (interested readers should turn back to these articles for 

a more thorough accounting of the history and mathematics supporting measurement 

invariance; see also Millsap, 2011). As Vandenberg (2002) noted shortly thereafter, “there is 

adoption fervor” (p. 140) with respect to measurement invariance. This fervor continued to 

crest in the succeeding decade, but it has not been accompanied by consistent or adequate 

advice, explication, best practices, or understanding.

Testing Measurement Invariance

Measurement invariance can be tested in an item-response theory (IRT) framework or a 

structural equation modeling (SEM) framework, and some contemporary researchers are 

working to integrate the two approaches (e.g., Raju, Laffitte, & Byrne, 2002; Reise, 

Widaman, & Pugh, 1993; Stark, Chernyshenko, & Drasgow, 2006; Widaman & Grimm, 

2014). Here, we focus exclusively on the SEM framework using confirmatory factor analysis 

(CFA) because SEM is more commonly used than IRT. Readers interested in the IRT 

approach are referred to Tay, Meade, and Cao (2015) for an overview and tutorial, and 

Meade and Lautenschlager (2004) for a comparison of the SEM-CFA and IRT approaches.

In a CFA, items that make up a construct (e.g., questionnaire items that form a scale) load on 

a latent or unobserved factor representing the construct. Widaman and Reiss (1997) 

described four main steps for testing measurement invariance: configural, weak factorial 

(also known as metric), strong factorial (also known as scalar), and strict (also known as 

residual or invariant uniqueness). Vandenberg and Lance (2000) soon after outlined 8 steps 

for testing measurement invariance, with the first 5 steps consisting of the main tests of 

measurement invariance. The last 3 steps reflected structural invariance of the derived latent 

factors themselves (e.g., equivalence of factor variances, covariances, and means) and will 

not be considered in this report. Here, we review the four measurement invariance steps that 

Widaman and Reiss (1997) identified and which coincide with steps 2-5 in Vandenberg and 

Lance (2000). We exclude Vandenberg and Lance's (2000) first step, invariant covariance 

matrices, because rejection of this test is “uninformative with respect to the particular source 

of measurement inequivalence” (Vandenberg & Lance, 2000, p. 36), because contemporary 

guidelines now omit this first step (Milfont & Fischer, 2010; van de Schoot, Lugtig, & Hox, 

2012), and because this test is rarely performed in practice. Hence, the four measurement 
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invariance steps considered are: (1) configural, equivalence of model form; (2) metric (weak 

factorial), equivalence of factor loadings; (3) scalar (strong factorial), equivalence of item 

intercepts or thresholds; and (4) residual (strict or invariant uniqueness), equivalence of 

items' residuals or unique variances.

To concretely illustrate each step we invoke an example comparing parental warmth and 

control in the United States and China. Figure 1 displays the multiple-group CFA model that 

will serve as the example. In Figure 1A, warmth and control are the latent variable 

constructs that we ultimately want to compare across the two cultures. Parental warmth and 

control are measured by a 10-item questionnaire with 5 continuously distributed items that 

load on a latent factor that represents warmth (love, praise, etc.) and 5 continuously 

distributed items that load on a latent factor that represents control (monitor, punish, etc.). 

The item loadings (weights) on each latent factor are indicated by parameters l1-l10. The 

item intercepts (means) are indicated by parameters i1-i10. Item residual variances (item-

specific variance + error variance) are indicated by parameters r1-r10. In the multiple-group 

framework, this model is applied to parents in China and the United States separately, and, 

following an initial test, various levels of model constraints are applied (i.e., parameters are 

set to be equal) across the two cultures. In general through this example, we are focusing on 

estimation of measurement invariance with continuously distributed items, but we also note 

some variations in the procedure for items that are measured in a different scale (e.g., ordinal 

or dichotomous items).

Configural invariance

The first, and least stringent, step in the measurement invariance ladder is configural 

invariance, or invariance of model form. This step is designed to test whether the constructs 

(in this case, latent factors of parental warmth and control) have the same pattern of free and 

fixed loadings (e.g., those that are estimated by the model and those that are fixed at 0) 

across groups (in this case the two cultures). Invariance at the configural level (how this is 

determined is discussed below) means that the basic organization of the constructs (i.e., 5 

loadings on each latent factor) is supported in the two cultures (Figure 1A applies to both 

groups). Configural noninvariance (assume Figure 1A applies to one group and Figure 1B 

applies to the other) means that the pattern of loadings of items on the latent factors differs 

in the two cultures (e.g., in one culture only, at least one item loads on a different factor, 

cross-loads on both factors, etc).

Finding configural noninvariance leaves two options: (1) redefine the construct (e.g., omit 

some items and retest the model) or (2) assume that the construct is noninvariant and 

discontinue invariance and group difference testing. Redefining the construct in any step of 

invariance testing (e.g., by omitting items or making other post-hoc alterations to the model) 

is a “data-driven” strategy, rather than a “theory-driven” one, that is exploratory in nature, 

and results should be interpreted with this concern in mind. To validate exploratory model 

alterations, empirical replication in similar samples is particularly important.
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Metric invariance

If configural invariance is supported, the next step is to test for metric invariance, or 

equivalence of the item loadings on the factors. Metric invariance means that each item 

contributes to the latent construct to a similar degree across groups. Metric invariance is 

tested by constraining factor loadings (i.e., the loadings of the items on the constructs) to be 

equivalent in the two groups. In the example, the loadings of the 5 warmth questionnaire 

items (noted as l1-l5 in Figure 1A) are set to be equivalent across U.S. and Chinese groups, 

and the loadings of the 5 control questionnaire items (noted as l6-l10 in Figure 1A) are set to 

be equivalent across U.S. and Chinese groups (e.g., l1 in China = l1 in U.S.; l2 in China = l2 
in U.S., etc.). The model with constrained factor loadings (Figure 1C) is then compared to 

the configural invariance model (Figure 1A) to determine fit. If the overall model fit is 

significantly worse in the metric invariance model compared to the configural invariance 

model (model fit is discussed below), it indicates that at least one loading is not equivalent 

across the groups, and metric invariance is not supported. For example, noninvariance of a 

loading related to kissing a child on the warmth factor would indicate that this item is more 

closely related to parental warmth in one culture than in the other (assume Figure 1C applies 

to one group and Figure 1D applies to the other). If the overall model fit is not significantly 

worse in the metric invariance model compared to the configural invariance model, it 

indicates that constraining the loadings across groups does not significantly affect the model 

fit, and metric invariance is supported.

Finding metric noninvariance leaves three options: (1) investigate the source of 

noninvariance by sequentially releasing (in a backward approach) or adding (in a forward 

approach; see e.g., Jung & Yoon, 2016) factor loading constraints and retesting the model 

until a partially invariant model is achieved (partial invariance is discussed below), (2) omit 

items with noninvariant loadings and retest the configural and metric invariance models, or 

(3) assume that the construct is noninvariant and discontinue invariance and group difference 

testing.

Scalar invariance

If full or partial metric invariance is supported, the next step is to test for scalar invariance, 

or equivalence of item intercepts, for metric invariant items. Scalar invariance means that 

mean differences in the latent construct capture all mean differences in the shared variance 

of the items. Scalar invariance is tested by constraining the item intercepts to be equivalent 

in the two groups. The constraints applied in the metric invariance model are retained. In the 

example, assuming full metric invariance, the intercepts (means) of the 5 questionnaire items 

that load on parental warmth (noted as i1-i5 in Figure 1A) are set to be equivalent across 

U.S. and Chinese groups, and the intercepts of the 5 questionnaire items that load on control 

(noted as i6-i10 in Figure 1A) are set to be equivalent across U.S. and Chinese groups (e.g., 

i1 in China = i1 in U.S.; i2 in China = i2 in U.S., etc.). Any items that had unequal loadings 

in the metric invariance model (and were allowed to vary) should be allowed to vary in the 

scalar invariance model because it is meaningless to test for equal item intercepts if the 

metric of the items differs across groups. The model with constrained item intercepts (Figure 

1E) is then compared to the metric invariance model (Figure 1C) to determine fit. If the 

overall model fit is significantly worse in the scalar invariance model compared to the metric 
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invariance model, it indicates that at least one item intercept differs across the two groups, 

and scalar invariance is not supported. For example, noninvariance of an item intercept for 

kissing a child would mean that parents in one culture kiss their children more, but that 

increased kissing is not related to increased levels of parental warmth in that culture (assume 

Figure 1E applies to one group and Figure 1F applies to the other). If the overall model fit is 

not significantly worse in the scalar invariance model compared to the metric invariance 

model, it indicates that constraining the item intercepts across groups does not significantly 

affect the model fit, and scalar invariance is supported. Scalar invariance is not always tested 

separately from metric invariance. For example, for models with items that are measured 

with two categories (binary) rather than on a continuous scale, metric and scalar invariance 

may be tested in a single step (Muthén & Asparouhov, 2002), and models intended to 

compare SEM-CFA to IRT methods may also report a combined metric-and-scalar 

invariance step because discrimination and location parameters are conventionally tested 

together in IRT (e.g., Stark et al., 2006).

Finding scalar noninvariance leaves three options: (1) investigate the source of noninvariance 

by sequentially releasing (in a backward approach) or adding (in a forward approach) item 

intercept constraints and retesting the model until a partially invariant model is achieved, (2) 

omit items with noninvariant intercepts and retest the configural, metric, and scalar 

invariance models, or (3) assume that the construct is noninvariant and discontinue 

invariance and group difference testing.

Residual Invariance

If scalar invariance is supported, the final step for establishing measurement invariance is to 

test for residual invariance, or equivalence of item residuals of metric and scalar invariant 

items. Residual invariance means that the sum of specific variance (variance of the item that 

is not shared with the factor) and error variance (measurement error) is similar across 

groups. (It should be noted that there could be larger measurement error and less specific 

variance in one group than another, and residual invariance could still be supported if the 

totals of these two components were similar.) Although a required component for full 

factorial invariance (Meredith, 1993), testing for residual invariance is not a prerequisite for 

testing mean differences because the residuals are not part of the latent factor, so invariance 

of the item residuals is inconsequential to interpretation of latent mean differences 

(Vandenberg & Lance, 2000). On this account, many researchers omit this step. However, 

we include it here because residual invariance is still reported in many tests of measurement 

invariance. Residual invariance is tested by constraining the item residuals (noted as r1-r10 
in Figure 1A) to be equivalent in the two groups (e.g., r1 in China = r1 in U.S.; r2 in China = 

r2 in U.S., etc.). The constraints applied in the scalar invariance model are retained. Like in 

the scalar invariance model, any items with unequal loadings and/or intercepts should be 

allowed to vary across groups (i.e., not constrained) in the residual invariance model. The 

model with constrained item residuals (Figure 1G) is then compared to the scalar invariance 

model (Figure 1E) to determine fit. If the overall model fit is significantly worse in the 

residual invariance model compared to the scalar invariance model, it indicates that at least 

one item residual is different across the two groups, and residual invariance is not supported. 

If the overall model fit is not significantly worse in the residual invariance model compared 
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to the scalar invariance model, it indicates that constraining the residuals across groups does 

not significantly affect the model fit, and residual invariance is supported.

If residual noninvariance is found, researchers can (1) investigate the source of residual 

noninvariance by sequentially releasing (in a backward approach) or adding (in a forward 

approach) item residual constraints and retesting the model until a partially invariant model 

is achieved, or (2) accept the noninvariant residuals and proceed with tests of mean 

differences or differential relations in the latent factors across groups.

Mean Differences in Latent Factors

Once the configural, metric, and scalar invariance steps have been passed, the researcher is 

free to compare group means on the latent factors (warmth and control in Figure 1E, for 

example). One common way to do this is to set the latent factor mean to 0 in one group and 

allow it to vary in the second group. The estimated mean parameter in the second group 

represents the difference in latent means across groups. For example, if the latent factor 

variance is set to 1.0 and the standardized mean of the parental control latent factor is 

estimated at 1.00, p < .05, in the United States, then control in the United States is one 

standard deviation higher than control in China. Regardless of the method used to compare 

means, an effect size like Cohen's (1988) d should be reported to allow comparisons across 

different studies.

Parameterization and Model Identification

There are two main ways to parameterize (set the parameters of) the tests of metric and 

scalar invariance in a CFA model in a multiple-group test of measurement invariance. The 

first approach is to set the variance of the latent factor at 1 and the mean of the latent factor 

at 0 in both groups. However, if the factor variance and mean are not actually the same for 

both groups, the metric and scalar invariance tests may be incorrect because the factor 

loadings and intercepts for each group are on different scales. As there is no way to know 

whether the factor variance and mean are truly equivalent across groups, this is not an ideal 

way to parameterize the model.

The second and most commonly used approach to parameterize the metric and scalar 

invariance models is to fix the loading of one item on a factor (the referent or marker item) 

at 1 and the intercept of the same item to 0 in both groups to identify the model and set the 

scale of the latent factor (latent factors have no scale by default, so this method makes the 

factor follow the same scale as the referent item). However, the choice of referent item has 

implications for the interpretation of the model (Johnson, Meade, & DuVernet, 2009). If a 

noninvariant item is chosen as the referent item, all other items on the factor may appear 

metric and/or scalar noninvariant because the scales of the latent factor are different for the 

groups. Of course, the researcher does not know which items are invariant prior to 

conducting invariance tests. Consequently, Cheung and colleagues (Cheung & Lau, 2012; 

Cheung & Rensvold, 1999; Rensvold & Cheung, 2001) described two procedures, the 

factor-ratio test and the stepwise portioning procedure, for testing pairs of items to identify 

those that are noninvariant. These tests are lengthy and somewhat complex, and the evidence 

Putnick and Bornstein Page 7

Dev Rev. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is mixed regarding their ability to correctly identify invariant and noninvariant items (French 

& Finch, 2008; Jung & Yoon, 2016).

Fit of Measurement Invariance Models

Measurement invariance is tested by evaluating how well the specified model (e.g., the 

model set up by the researcher) fits the observed data. Current practice emphasizes the 

importance of using multiple fit statistics to assess model fit (Kline, 2015). Configural 

invariance is tested by evaluating the overall fit of the model. Which fit statistics should be 

reported is a source of debate (discussed below), but most scholars recommend reporting the 

chi-square (χ2) and two to four alternative fit indices (AFIs), here defined as all fit statistics 

other than χ2: Root Mean Square Error of Approximation (RMSEA), Standardized Root 

Mean-square Residual (SRMR), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), 

McDonald's (1989) Noncentrality Index (McNCI), etc. (Definitions and advantages and 

disadvantages of these various fit statistics are described in the Supplementary Information.) 

The fit of metric, scalar, and residual invariance models is typically evaluated by comparing 

the fit of two nested models that are identical except for a target set of restrictions in one. 

For example, the configural and metric invariance models are nested because they have the 

same model structure except that the metric invariance model imposes equality constraints 

on the factor loadings. Differences between the two models can therefore be attributed to the 

imposed constraints. Nested model comparisons involve computing the difference between 

fit statistics for the two models (e.g., Δχ2, ΔCFI). Current conventions for evaluating model 

fit are described below.

Measurement Invariance Conventions

There remain many methodological issues surrounding the execution of measurement 

invariance testing. Among them are (1) the number and order of tests required to establish 

measurement invariance, (2) the criteria used to evaluate model fit, (3) partial invariance, and 

(4) the sample and model characteristics that may moderate invariance. The literature on 

each of these topics is still evolving; here we summarize and evaluate contemporary 

conventions and recommendations for each.

Number and Order of Tests

In their review of the literature from the 1980s and 1990s, Vandenberg and Lance (2000) 

noted that few studies tested all levels of invariance, and in particular testing scalar 

invariance was infrequent. However, the literature on measurement invariance converged 

considerably in the 2000s. To test measurement invariance, it is becoming more common to 

use a mean and covariance structure (MACS; Little, 1997; Ployhart & Oswald, 2004) 

framework, which includes item intercepts and factor means, rather than just item loadings 

and residual terms. An increase in MACS models should be accompanied by an increase in 

scalar invariance tests. Below, we document which measurement invariance steps are 

commonly tested, and the order in which they are tested, in a sampling of recent studies.
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Criteria Used to Evaluate Model Fit

Classically, measurement invariance was evaluated using a single criterion, significance of 

the change in χ2 for two nested models (Byrne et al., 1989; Marsh & Hocevar, 1985; Reise 

et al., 1993). However, some researchers have shifted from a focus on absolute fit in terms of 

χ2 to a focus on alternative fit indices because χ2 is overly sensitive to small, unimportant 

deviations from a “perfect” model in large samples (Chen, 2007; Cheung & Rensvold, 2002; 

French & Finch, 2006; Meade, Johnson, & Braddy, 2008). Cheung and Rensvold's (2002) 

criterion of a -.01 change in CFI for nested models is commonly used, but other researchers 

have suggested different criteria for CFI (Meade et al., 2008; Rutkowski & Svetina, 2014) or 

the use of other alternative fit indices (e.g., ΔRMSEA, ΔSRMR; Chen, 2007; Meade et al., 

2008), and some question the use of alternative fit indices entirely because of their lack of 

precision (Barrett, 2007; Bentler, 2007; Fan & Sivo, 2009). For sample sizes with adequate 

power, equal group sizes, and mixed invariance (i.e., some loadings are higher and some 

lower in the first group), Chen (2007) also suggested a criterion of a -.01 change in CFI, 

paired with changes in RMSEA of .015 and SRMR of .030 (for metric invariance) or .015 

(for scalar or residual invariance). Meade et al. (2008) suggested a more conservative cutoff 

of -.002 for the change in CFI as well as using a condition-specific cutoff (i.e., a cutoff value 

that depends on the number of items and factors in the model) for McDonald's (1989) 

noncentrality index (McNCI), but cautioned that neither criterion should be used for models 

with low statistical power. Rutkowski and Svetina (2014) investigated model fit in conditions 

comparing 10 or 20 groups. They concluded that changes in CFI of -.02 and RMSEA of .03 

were most appropriate for tests of metric invariance with large group sizes, but the 

traditional criteria of -.01 for ΔCFI and .01 for ΔRMSEA were appropriate for scalar 

invariance tests. There is no consensus about the best fit indices or cutoff values for 

alternative fit indices under all conditions, leaving researchers to choose fit criteria. Below, 

we document the fit statistics used to evaluate measurement invariance in a sampling of 

recent studies.

Partial Invariance

Because full measurement invariance in all four steps is often not supported, it is becoming 

common practice to accept some violations of measurement invariance (e.g., releasing 

constraints on one or more loadings or intercepts or both) and continue with tests of mean 

differences or relations among constructs using the partially invariant factor. However, 

standards for partial invariance vary. Byrne, Shavelson, and Muthén (1989) described testing 

partial measurement invariance, but placed no restrictions on the number of parameters 

released other than nebulously suggesting that it “makes substantive sense to do so” (p. 465). 

Steenkamp and Baumgartner (1998) suggested that ideally more than half of items on a 

factor should be invariant. Similarly, Vandenberg and Lance (2000) suggested that a factor 

can be considered partially invariant if the majority of items on the factor are invariant. 

However, no empirical studies are cited to support these guidelines. Other researchers 

explored the consequences of partial invariance for interpretation of mean differences. Chen 

(2008) demonstrated that, as the proportion of noninvariant items on a factor increased, so 

did the bias in mean estimates for subgroups (and therefore the estimated difference between 

subgroup means), but made no suggestion for an “acceptable” proportion of invariant items 

(see also Guenole & Brown, 2014, for bias of regression parameters under noninvariance). 
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In a Monte-Carlo simulation, Steinmetz (2013) demonstrated that metric noninvariance 

(unequal factor loadings) had a negligible effect on mean differences of a latent factor, but 

that scalar noninvariance (unequal intercepts) led to serious misinterpretation of true mean 

differences (see also Schmitt, Golubovich, & Leong, 2011). Given the burgeoning literature 

on partial invariance, below we document the level of invariance (no, partial, full) reported 

in each invariance step of a set of contemporary studies.

Sample and Model Characteristics that May Moderate Measurement Invariance

There are several sample and model characteristics that may affect the level of measurement 

invariance achieved. Three characteristics that have demonstrated relations with the fit of 

measurement invariance models - sample size, the number of groups compared, and model 

size (e.g., the complexity of the model that is being tested) - are considered.

Sample size—The number of participants included in tests of measurement invariance is 

known to affect the power of the tests, and hence the test's sensitivity to detecting differences 

in absolute model fit. Because χ2 increases in power to reject the null hypothesis as the 

sample size increases, having a larger total sample may lead to over-rejection of 

measurement invariance tests if the change in χ2 is the only criterion used to evaluate fit. 

Change in alternative fit indices (AFIs) may be less sensitive to sample size (Cheung & 

Rensvold, 2002), but some evidence suggests that measures of absolute model fit (like the 

RMSEA) over-reject correct models in small samples (N < 100; Chen, Curran, Bollen, 

Kirby, & Paxton, 2008). As it becomes common practice to use AFIs as fit criteria, sample 

size (assuming adequate power) may be less important to the level of measurement 

invariance achieved because AFIs are less sensitive to sample size.

Number of groups—It is unclear whether the number of groups compared in tests of 

measurement invariance affects the ability to achieve full or partial invariance. For practical 

reasons, most studies of the power and sensitivity of measurement invariance tests compare 

two or three groups. We located only one study that investigated the performance of fit 

indices with a larger number of groups. Rutkowski and Svetina's (2014) simulation study of 

10-20 groups suggested that, as the number of groups increased, the change in CFI 

decreased and the change in RMSEA increased. This result led the authors to recommend 

less stringent cutoff values for tests of metric invariance (but not for the other steps) with 10 

or more groups.

Model size—There is some evidence that the performance of fit statistics varies by the size 

of the model (e.g., the number of observed variables and factors estimated; model degrees of 

freedom). The χ2 statistic is sensitive to model size, and Herzog, Boomsma, and Reinecke 

(2007) recommended using a Swain correction to the χ2 (which corrects for sample size and 

model size) when large models are tested. Fan and Sivo (2009) questioned the use of change 

in alternative fit indices (e.g., ΔCFI, ΔRMSEA) because the performance of these tests was 

highly related to model size (e.g., tests were more sensitive in small models and much less 

sensitive as model size grew) in their Monte Carlo simulation. They reasoned that applying a 

single AFI cut-off to models of various sizes was likely to lead to dubious conclusions about 

measurement invariance. Sensitivity to model size is also the reason Meade et al. (2008) 
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suggested using a condition-specific McNCI cutoff that depends on the number of items and 

factors in the model. Using simulated data, Kenny, Kaniskan, and McCoach (2015) also 

found that the RMSEA is overly sensitive in models with few (e.g., < 10) degrees of 

freedom.

Following, we determine how sample size, number of groups, and model size relate to 

achieved levels of measurement invariance. Using adjusted model fit criteria with large 

sample sizes, numbers of groups, and models may reduce the effects of these moderators on 

measurement invariance outcomes, but more targeted simulation research is needed to 

support differential cutoffs under various special conditions, such as small samples, large 

numbers of groups, and small and large models.

Contemporary Uses of Measurement Invariance

Here, we document the levels of invariance (no, partial, full) achieved for each invariance 

step tested (configural, metric, scalar, residual) in a sampling of articles published over a 1-

year period, and explore whether model fit criteria and sample size, number of groups being 

compared, and model size (as indexed by model degrees of freedom) relate to the invariance 

level (no, partial, full) achieved for each step. We expected that: (1) most researchers would, 

at a minimum, test configural, metric, and scalar invariance because those tests are required 

prior to group mean comparisons; (2) partial invariance tests would be relatively common; 

(3) use of the χ2 difference test as the only index of model fit would be associated with 

lower levels of measurement invariance; (4) use of alternative fit indices would be associated 

with higher levels of measurement invariance; and (5) larger sample size, number of groups 

compared, and model size would be associated with lower levels of measurement invariance.

Method

To illustrate common contemporary practices in measurement invariance research, we 

surveyed general psychological articles indexed in APA's PsycNet database and published 

from May 2013 through April 2014. Search criteria included: Any Field: “measurement 

invariance” OR “metric invariance” OR “measurement equivalence” OR “metric 

equivalence” OR “multiple group model” OR “multisample model”.

A total of 157 articles was identified, but 31 were excluded because they were dissertations 

(n = 7), theoretical, or included only simulated data (n = 9), did not include a test of 

measurement invariance (n = 7), used a non-SEM technique (n = 7), or were not in English 

(n = 1). Therefore, 126 articles which included 269 tests of at least one measurement 

invariance step were evaluated.

Coding

Measurement Invariance—Four invariance steps were documented: configural, metric, 

scalar, and residual. Three levels of measurement invariance were coded for each step: No 
(0) -coded if the study was unable to achieve adequate model fit (with or without 

modifications). Partial (1) - coded if the study reported adequate model fit only after 

modifications (e.g., releasing parameters). Full (2) - coded if the study reported adequate 
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model fit with no model modifications. Because of varying guidelines in the literature for 

different sample sizes, procedures, and models, level of invariance achieved was judged 

based on the criteria stated in each study (e.g., nonsignificant Δχ2, ΔCFI < .01, absolute fit).

Model Fit Criteria—The model fit criteria used for each test of invariance were recorded. 

Fit criteria that were coded included change in chi-square (Δχ2); change in alternative fit 

indices (ΔAFI), including the Comparative Fit Index (ΔCFI), Root Mean Square Error of 

Approximation (ΔRMSEA), Standardized Root Mean Square Residual (ΔSRMR), Tucker-

Lewis Index (ΔTLI), McDonald's Noncentrality Index (ΔMcNCI), Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), and Expected Cross Validation 

Index (ECVI); and absolute model fit (i.e., no comparison of nested models).

Model Characteristics—Total sample size, number of groups compared, and model size 

(df of baseline model) were recorded for each test of measurement invariance.

Results

Most tests compared 2 (75%) or 3 groups (12%), but up to 19 groups were compared. 

Median total sample size was 725 (range=152-43,093), and median df of the base model was 

62 (range=0-3,138). The fit statistics used to evaluate measurement invariance were: only the 

Δχ2 for 16.7%, only alternative fit indices (ΔAFI; e.g., ΔCFI, ΔRMSEA) for 34.1%, both 

Δχ2 and ΔAFI for 45.9%, and only measures of absolute fit (no change in model fit) for 

3.3%. Overall, the Δχ2 was reported for 62.6% of tests, the change in CFI was reported for 

73.2% of tests, and the change in another alternative fit index (e.g., ΔRMSEA, ΔTLI, 

ΔSRMR) was reported for 56.1% of tests.

Table 1 displays the percentage of measurement invariance tests that established the three 

levels of measurement invariance in each of the four steps. All tests of measurement 

invariance surveyed included a test of configural invariance. The majority included tests of 

metric invariance (82%) and scalar invariance (86%), but only 41% included a test of 

residual invariance. Contrary to Vandenberg and Lance's (2000) observation that scalar 

invariance was rarely tested, more tests of measurement invariance included scalar than 

metric invariance steps. However, the order of tests was invariably from least to most 

restrictive. Full configural and metric invariance were established for most comparisons, but 

full scalar and residual invariance were established for 60% or fewer comparisons. Partial 

invariance was reported for 2-26% of individual invariance steps (configural, metric, scalar, 

residual), and overall 32% of measurement invariance tests reported partial invariance for 

one or more steps.

Relations of model fit criteria and sample and model characteristics with levels of invariance 

appear in Table 2. The criteria used to determine fit of nested models were associated with 

the level of invariance achieved. Using only Δχ2 as a measure of exact fit (and no other 

criteria) was associated with lower levels of scalar invariance. Using the ΔCFI (with or 

without other criteria) was associated with higher levels of metric, scalar, and residual 

invariance. Including another AFI was associated with slightly higher levels of scalar 
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invariance. Finally, including Δχ2 as well as ΔAFI was associated with slightly higher levels 

of metric invariance.

Larger sample size was associated with a higher level of residual invariance, but otherwise 

sample size, number of groups, and model degrees of freedom were unrelated to the level of 

invariance achieved. Implications of these findings (or lack thereof) are discussed below.

Discussion

Measurement invariance is a key methodological feature of comparative and developmental 

psychological science that is gaining prominence. Assessing contemporary measurement 

invariance practices is critical to understanding what is expected of research reports, as well 

as identifying where more research is needed. We explored current practices for testing 

measurement invariance in a sampling of recent psychological studies. Issues included the 

number and order of measurement invariance tests, the model fit criteria reported, the 

frequency with which partial invariance was reported, and how sample and model 

characteristics moderated the level of measurement invariance achieved. Each of these 

practices is discussed in the context of our overall discussion of measurement invariance, 

followed by suggestions for best practices and future directions.

Number and Order of Tests

As expected, most measurement invariance tests include configural, metric, and scalar 

invariance steps. The lower percentage for metric than scalar invariance likely arises because 

some analyses do not allow for or recommend separate tests of metric invariance (e.g., Stark 

et al., 2006). For example, separate metric invariance tests are often not computed when 

using the weighted least squares mean and variance adjusted estimator in Mplus (WLSMV; 

for estimating models with categorical variables; Muthén & Muthén, 2010) and multiple 

indicators multiple causes models (MIMIC; an alternative method of testing measurement 

invariance; Willse & Goodman, 2008). As expected, because it is not necessary for latent 

mean comparisons, fewer than half of tests of measurement invariance included the residual 

invariance step. With the exception of occasionally skipping the metric invariance test, steps 

occurred in the order of least to most restrictive (configural, metric, scalar, residual).

Model Fit

Our review of studies which reported measurement invariance showed that 80% used one or 

more ΔAFI as a criterion for model fit (either alone or in combination with the Δχ2). 

Including ΔAFIs (and ΔCFI in particular) as a criterion may prevent over-rejection of 

models that demonstrate practical fit in large samples. Our survey showed, consistent with 

expectations, that use of ΔCFI was associated with higher levels of metric, scalar, and 

residual invariance and use of only Δχ2 was associated with lower levels of scalar 

invariance. However, the criterion most often used, Cheung and Rensvold's (2002) ΔCFI < −.

01, has been criticized as overly liberal (e.g., allowing meaningful differences in the 

measurement of the construct across groups to go unchecked). Meade et al. (2008) 

recommended a ΔCFI < .002 based on the results of their Monte Carlo simulation, but Little 

(2013) suggested that the simulation parameters used by Meade and colleagues were too 
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strict for real-world models and therefore Meade et al.'s proposed cut-off may be too 

conservative. More simulation studies are needed to determine the best fit criteria for 

determining measurement invariance as well as the practical effects of noninvariance in 

different steps on the variances, covariances, and mean differences of the latent factor across 

groups.

One reason different researchers suggest different model fit criteria is that the model 

parameters tested in each study differ. No one researcher can test all possible models 

(sample size, number of groups, number of factors, number of items, loading sizes, latent 

mean differences, degree of misspecification, etc.). Consequently, any given Monte Carlo 

simulation is testing limited conditions, and the results of a given simulation apply only to 

the conditions tested. Focusing on tests of a particular element (e.g., large numbers of 

groups), as some do (e.g., Rutkowski & Svetina, 2014), helps to pin-point the model fit 

statistics and cutoffs that perform best for particular model conditions.

Partial Invariance

Despite ambiguity in the research literature about the effects of partial invariance and 

lingering lack of consensus about the best ways to test partial invariance, approximately one-

third of our sample of measurement invariance studies reported partial invariance for one or 

more steps. Researchers seem to be adopting the practice of releasing constraints as a way of 

managing noninvariance across groups, but little is known about the statistical or conceptual 

implications of accepting partial invariance. Even the process for identifying noninvariant 

items is still debated. Yoon and Kim (2014) suggested that sequentially releasing constraints 

(backward method) based on the highest modification index has much smaller Type I (false 

positive) error rates than releasing all problematic constraints in a single pass. However, the 

sequential release method was shown to have serious limitations when the proportion of 

noninvariant items was high (Yoon & Milsap, 2007). Jung and Yoon (2016) compared 

backward, forward, and factor-ratio methods for identifying noninvariant parameters. 

Generally, the forward method (sequentially adding parameters) worked better than the 

backward method (sequentially releasing parameters), but both methods worked well when 

adjusted criteria were used (a 99% confidence interval for the forward method and a 

modification index of 6.635 for the backward method). The factor-ratio method had the 

highest error rates.

There is also very little research on the accuracy of mean-level tests for partially invariant 

models, and much more research is needed to identify the statistical and conceptual 

consequences of partial metric and scalar invariance. Steinmetz (2013) suggested that 

researchers may permit more violations of metric invariance than scalar invariance because 

the effects of metric noninvariance on the accuracy of mean-level analyses are minimal, 

whereas the effects of scalar noninvariance are large. For example, just one noninvariant 

intercept on a 4- or 6-item factor lead to a spurious significant mean difference in 13% of 

samples (well above the expected 5% error rate) and reduced the ability to detect a real mean 

difference by about half. Guenole and Brown (2014) explored the effects of ignoring 

nonivariance across groups (e.g., not modeling separate parameters across groups when they 

are warranted) on relations among constructs. Ignoring one noninvariant factor loading (out 
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of six; i.e., metric noninvariant) or intercept (i.e., scalar noninvariant) did not produce 

significant bias (> 10%) in parameter estimates, but ignoring one fully noninvariant item 

(i.e., metric and scalar noninvariant) produced significant bias. Therefore, they concluded 

that it is important to release noninvariant parameters to account for partial invariance of a 

construct. Chen (2008) similarly demonstrated bias > 10% in slopes and factor means when 

more than 25% of loadings were noninvariant and the invariance was uniform (e.g., always 

higher in one group than the other), but the degree of bias was worse when one group was 

small (n = 60) and as the percentage of noninvariant items increased.

To manage partial noninvariance, Chen (2008) suggested comparing the results of interest 

(e.g., mean differences across groups, regression coefficients between latent variables, etc.) 

using a partially invariant model (imposing constraints on invariant items only) to those 

using a fully invariant model (imposing constraints on invariant and noninvariant items). If 

the substantive conclusions using the two models are similar, the researcher could conclude 

that noninvariance had little impact on the results. If the models have different substantive 

conclusions, however, there is no clear path forward. The construct is still noninvariant, 

neither model is clearly superior or correct, and we still do not know what the results would 

be if the construct were truly invariant. Another option is to compare the partial invariance 

model to a reduced (noninvariant items removed) fully invariant model (Cheung & 

Rensvold, 1998) if the argument could be made (and empirically demonstrated – e.g., with a 

very high correlation between the reduced fully invariant and partially invariant factors) that 

the constructs with and without the removed items were interchangeable. In either case, if 

the results of the two models (full and partial invariance, or reduced full and partial 

invariance) were similar, the researcher would have the option to choose which model 

specification to report as the main analyses. If, however, the results differed, the researcher 

in the latter case (reduced full and partial invariance) would have more information about the 

source of noninvariance and how the noninvariant items affected the results, and would have 

the option of reporting the results of the reduced fully invariant model.

Sample and Model Characteristics that Moderate Fit

We explored whether achieving different levels of measurement invariance was related to 

sample size, the number of groups being compared, and model size. Contrary to our 

expectations, the level of measurement invariance achieved was generally unrelated to these 

factors. The lack of relations between level of invariance and sample size, the number of 

groups being compared, and model size is particularly notable because, as detailed above 

and in Supplementary Table 1, many researchers have documented the susceptibility of the 

χ2 difference test and other ΔAFIs to sample size and model size. Hence, researchers may 

use model fit criteria that correct for these problems. For example, researchers may 

appropriately choose to use AFIs rather than χ2 for model comparisons in large samples, 

AFIs that adjust for model size when testing large models, or adjusted cut-off values for 

models with many groups.

The absence of significant relations of sample size with measurement invariance most likely 

results from the increased use of ΔAFIs instead of, or as a supplement to, Δχ2. Even in 

studies that used only Δχ2 as the criterion, sample size was not associated with invariance 
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levels achieved at each step. The lack of association between sample size and invariance in 

tests that used only Δχ2 may have come about because relaxing the requirement to have a 

nonsignificant Δχ2 (although controversial, see e.g. Barrett, 2007; Bentler, 2007) has 

allowed researchers to choose which criteria to report. Researchers may report the Δχ2 as 

their only criterion when it is nonsignificant and default to ΔAFIs when the Δχ2 is 

significant. Furthermore, with a median sample size of over 700, most tests of measurement 

invariance include large samples, precluding exclusive use of the Δχ2.

Most (89%) measurement invariance tests in our sample data set compared two or three 

groups. Comparing two vs. more than two groups was unrelated to levels of measurement 

invariance achieved. However, the small number of studies that compared larger numbers of 

groups impedes our interpretation of the relations with number of groups because the 

statistical difference between testing two and three groups is small. Perhaps tests of many 

groups rarely appear in the literature because fewer researchers study many groups, 

measurement invariance is not achieved (e.g., the file drawer problem; Rosenthal, 1979), or 

model complexity causes researchers to shy away from tests with many groups. More 

research on the mathematical and practical implications of testing few versus many groups is 

needed.

Surprisingly, model size (as indexed by the df of the baseline model) was unrelated to the 

level of measurement invariance in any step. Based on previous research (Fan & Sivo, 2009; 

Kenny et al., 2015; Meade et al., 2008), we anticipated that testing more complex models 

would result in more violations of measurement invariance. Researchers may be using 

adjusted fit criteria to account for large samples, many groups, and complex models.

Reporting Requirements

In the contemporary literature, reporting of measurement invariance models is haphazard. 

About 20% of 269 tests of measurement invariance in our sample data set failed to report the 

model degrees of freedom, and many reports were vague about the criteria used to determine 

model fit. Many failed to report the sample sizes per group. We propose requiring that 

measurement invariance studies uniformly include the following minimal information: (1) 

sample size used in the models if different from the total N in the study, (2) how missing 

data were handled, (3) number of groups being compared and ns in each group, (4) specific 

model fit criteria for the configural model and nested model comparisons, and (5) a table 

detailing the models tested, df, fit statistics, which models were compared, model 

comparison statistics (including Δdf for nested models), and statistical decisions for each 

model comparison. Table 3 provides an example.

Future Directions

Vandenberg and Lance's (2000) review of the applied literature across two decades included 

only 67 articles conducted on measurement invariance (3.35 articles per year). Schmitt and 

Kuljanin (2008) identified 75 articles about measurement invariance over a 8-year period 

from 2000-2007 (9.38 articles per year), and Johnson et al. (2009) reviewed a 3-year period 

from 2005-2007 and uncovered 153 articles on measurement invariance (51 articles per 

year). Our study identified 126 articles with over 250 tests of measurement invariance for a 
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period of just one year (2013-2014). To say that measurement invariance is being 

increasingly adopted by the psychological community is an understatement. Growth is 

exponential. With measurement invariance expectations and applications on the rise, there 

are still several major issues that require more research and theoretical attention: (1) 

conceptual and statistical sensitivity, (2) invariance across continuous variables, and (3) 

statistical techniques for analyzing noninvariant data.

Conceptual and Statistical Sensitivity—The most important future direction, to our 

minds, is grappling with the issue of sensitivity (Vandenberg, 2002), that is, the ability of 

measurement invariance tests to detect real, meaningful differences in constructs across 

groups or measurement occasions. Vandenberg (2002) questioned “what thresholds need to 

be reached for a true difference or shift [in conceptual frames of reference] to exist?” (p. 

144). Conversely, Millsap (2005) asked “when are group differences in factor structure small 

enough to ignore?” (p. 157). Currently, we cannot quantify the impact of violations of 

measurement invariance, and a lot is at stake. If virtually all comparative analyses must first 

show measurement invariance, it is important to know what violations at different invariance 

steps mean for the construct and interpretations of results. Even small violations of 

invariance could preclude researchers from making meaningful group or temporal 

comparisons. Perhaps small violations are serious, but the question of effect size or the 

sensitivity of measurement invariance tests is still open (Davidov, Meuleman, Cieciuch, 

Schmidt, & Billiet, 2014).

To address this issue, Meuleman (2012) and Oberski (2014) suggested ways to compute the 

impact of a noninvariant parameter on the change in the estimated latent mean. Rather than 

relying on nested model comparisons or modification indices that are sensitive to sample 

size, Meuleman's (2012) and Oberski's (2014) procedures estimate the impact of 

noninvariance on mean differences in the construct – a more practical test. Similarly, Nye 

and Drasgow (2011) developed an effect size index, dMACS, to quantify the degree of 

measurement noninvariance of an item across groups, as well as estimates of the change in 

mean and variance of a factor as a result of noninvariance of an item. However, these indices 

assume a simple CFA model where all items are measured on the same scale and load on a 

single factor (e.g., no cross-loadings or secondary factors). Furthermore, at least one 

indicator must be fully invariant to produce accurate estimates. For models that lead to 

selection of individuals into a group, Milsap and Kwok (2004) developed a method for 

testing whether noninvariance has a significant impact on group membership. Returning to 

the example of measuring depression symptoms in women and men, noninvariance of 

depression items may have implications for the proportion of men and women who are 

identified as clinically depressed. Milsap and Kwok's procedure provides an estimate of the 

practical importance of noninvariance through the difference in proportions of women and 

men selected as depressed, for example, under fully invariant and partially invariant models. 

These innovative procedures may help to identify practical differences in a construct under 

different conditions, but research aimed at quantifying the impact of noninvariance in real-

world models in still in its infancy.

Currently, the limited literature on sensitivity mostly focuses on the mathematical aspects of 

model fit criteria to evaluate between-group differences in model fit; namely, which fit 
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indices and criteria should be used to judge “practical” differences in model fit between 

groups (e.g., Chen, 2007; Cheung & Rensvold, 2002). Perhaps more important, however, is 

the conceptual question. What does it mean for the construct's validity if a model is found to 

be noninvariant or only partially invariant? How much deviation in the configural, metric, 

and scalar steps is too much for meaningful group or temporal comparisons to be made? 

Methodologists suggest that comparing means across groups or time from a noninvariant 

model is akin to comparing “apples to oranges” (or any manner of different objects), but 

what if we are really comparing red delicious apples to granny smith? Is that close enough? 

When is noninvariant is too noninvariant?

Invariance across Continuous Variables—In general, measurement invariance is 

discussed across unordered groups (e.g., men and women, measurement occasions). 

However, sometimes a researcher may be interested in invariance across an ordinal variable 

or a continuous variable that does not lend itself to easy or valid post-hoc grouping (e.g., 

socioeconomic status, child age). In cases like these, researchers have begun to study 

methods, such as moderated nonlinear factor analysis (Bauer & Hussong, 2009; Molenaar, 

Dolan, Wicherts, & van der Maas, 2010) or score-based tests of measurement invariance 

(Wang, Merkle, & Zeleis, 2014), that allow for estimation of invariance across a range of 

scores. More research is needed on the performance of these tests across different 

conditions, and methods are currently only implemented using maximum likelihood 

estimation, but these procedures could be applied to other estimation methods in future 

research (Wang et al., 2014).

Statistical Techniques for Analyzing Noninvariant Data—When a researcher finds 

that a construct is nonivariant or only partially invariant, it is unclear whether, or how, to 

proceed with analyses. Sometimes noninvariance is expected, especially across time. As 

children grow, they may acquire skills that reorganize their cognitions. For example, 

language ability moves from single-word production to a more complex expression of 

grammatical rules to reading and comprehending printed words across the first decade of the 

child's life. Some constructs shouldn't be invariant, but if they aren't then how should they be 

analyzed? Should the researcher simply abandon a noninvariant construct, or could an 

alternative analysis be used to manage noninvariance? Cheung and Rensvold (1998) describe 

a procedure for teasing apart the group difference attributable to item responses and unequal 

item-construct relations. This procedure can provide the researcher with more information 

about the source of noninvariance, but it is still unclear what to do with a noninvariant 

construct. Is it better to drop noninvariant items or to model noninvariance under a partially 

invariant model? What if 75% of the items are noninvaraint? What if dropping items changes 

the meaning of the intended construct? Could groups be analyzed separately and then 

aggregated as if across separate studies (e.g., Curran & Hussong, 2009)? More research is 

needed about statistical approaches that could be used to handle partially or fully 

noninvariant data.

Practical Considerations for Demonstrating Measurement Invariance

Many researchers recognize the importance of demonstrating measurement invariance, but 

current limitations of the methods must also be acknowledged. A failure to demonstrate 
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invariance should not necessarily preclude all further analyses of group or developmental 

differences. Noninvariance can be informative and may lead researchers to important 

conclusions about how different groups interpret the same construct. Returning to the 

example of warmth and control in the United States and China, noninvariance of an item for 

kissing a child informs the form and function of warmth across groups. Perhaps warmth is 

not communicated physically, but verbally, or through provisions in the environment in one 

or the other culture. Perhaps physical affection is interpreted as warm in one culture but 

inappropriate or overly indulgent in the other. If the parental warmth construct is 

noninvariant across groups, the researcher could explore mean differences and 

intercorrelations of the individual items to inform development of a better measure of 

parental warmth in future research. Some constructs may simply be non-comparable across 

groups because they are experienced so differently (e.g., how new mothers vs. fathers 

experience the pain of childbirth). However, minor deviations from invariance could be 

stated as a limitation of the study, and group differences could be interpreted accordingly. 

The concern is that potentially important comparative research will never see the light of 

print if full invariance cannot be achieved. Without solid research on the real-life 

implications of noninvariance, we see rejecting all noninvariant models as premature. 

Instead, we encourage researchers to test invariance, report their results and interpret any 

deviations from invariance in the context of the construct, test group differences if it makes 

sense to do so, and report any limitations of the tests. We also encourage editors and 

reviewers to view measurement invariance tests as a dynamic and informative aspect of the 

functioning of a construct across groups, rather than as a gateway test, and to accept well-

reasoned arguments about how and why small deviations from invariance may not be 

practically meaningful to the interpretation of group or developmental differences.

Conclusions

The literature on measurement invariance is rapidly evolving, but more research is needed. If 

establishing measurement invariance is a prerequisite to all tests of developmental change, 

mean comparisons, or differential relations across groups, a large portion of comparative 

research hangs in the balance. Controlled experimental studies, Monte Carlo simulations, 

and other creative analytic techniques that elucidate the consequences of model 

noninvariance at different steps, are needed. However, like many nuanced statistical topics, 

clear and easy general guidelines may not be forthcoming. Through careful exploration and 

analysis of measurement invariance, researchers can learn more about their constructs and 

the groups they study, and make more informed decisions about whether their constructs are 

reasonably invariant and therefore comparable across groups and measurements.
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Highlights

• Measurement invariance assesses the psychometric equivalence of a 

construct across groups.

• Appropriate and proper comparison between groups depends first on 

ensuring equivalence of a construct across those groups though 

measurement invariance testing.

• Current practices for testing and reporting measurement invariance are 

reviewed in a sample of 126 articles with 269 tests of invariance.

• Implications for the practice of measurement invariance and areas of 

research need are discussed.
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Figure 1. 
A simulated confirmatory factor analysis model of parenting warmth and control.

Note. In measurement invariance tests, all models are fit to Chinese and United States 

groups and parameters are constrained to be equal across the groups. For the invariance 

models depicted in C, E, and G, the bolded parameters are the focal constraints, which are 

set to be equivalent in the two groups. For the noninvariance models depicted in B, D, F, and 

H, there is a path or constraint, represented by a dashed line, that applies only to one group 
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(compared to the base invariance model in A, C, E, and G, respectively, which applies to the 

other group).
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Table 1
Percentages of measurement invariance tests in 126 research articles that established 
three levels of measurement invariance in each of the four steps

Configural (n = 269; 100%) Metric (Weak) (n = 220; 
82%)

Scalar (Strong) (n = 232; 
86%)

Residual (Strict) (n = 110; 
41%)

No (0) 3.3 6.4 15.5 33.6

Partial (1) 2.2 11.4 26.7 22.7

Full (2) 94.4 82.3 57.8 43.6

Note. A total of 269 measurement invariance tests was reported in 126 articles, but some articles did not include tests of all steps.

Dev Rev. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Putnick and Bornstein Page 28

Table 2
Spearman correlations of model fit criteria and sample and model characteristics with 
level of invariance achieved in each step

Configural (df = 215-267) Metric (df = 181-218) Scalar (df = 192-230) Residual (df = 83-108)

Fit criteria

 Only Δχ2 .02 -.03 -.20** -.08

 ΔCFIa -.07 .25*** .14* .24*

 Other AFIa .03 .11 .17* .08

 Δχ2 and AFI -.05 .17* .11 .16

Sample and Model Characteristics

 Total sample sizeb .10 .07 -.01 .30***

 Group size (2 vs. >2) -.04 -.10 -.10 .01

 df of base modelb -.08 -.02 .01 .11

Note. CFI = Comparative Fit Index. AFI = Alternative Fit Index - including Root Mean Square Error of Approximation (ΔRMSEA), Tucker-Lewis 
index (ΔTLI), McDonald's Noncentrality Index (ΔMcNCI), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Expected 
Cross Validation Index (ECVI).

*
p ≤ .05.

**
p ≤ .01.

***
p ≤ .001

a
With or without other indices.

b
Log transformed to approximate normality.
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