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Abstract

Dendritic cells (DCs) play critical roles in activating innate immune cells and initiating adaptive 

immune responses. The functions of DCs were originally obscured by their overlap with other 

mononuclear phagocytes, but new mouse models have allowed for the selective ablation of subsets 

of DCs and have helped to identify their non-redundant roles in the immune system. These tools 

have elucidated the functions of DCs in host defense against pathogens, autoimmunity, and cancer. 

This review will describe the mouse models generated to interrogate the role of DCs, and will 

discuss how their use has progressively clarified our understanding of the unique functions of DC 

subsets.

eTOC

Durai et al review the progress made in developing new mouse models for the analysis of the 

functions of dendritic cell subsets and what these models have revealed about the roles of these 

cells in immune responses

Introduction

The vertebrate immune system has evolved the remarkable capacity to robustly and precisely 

eliminate the wide variety of potential threats it encounters, from single cell bacteria to 

multicellular parasites to even transformed oncogenic versions of its own cellular 

components. To achieve this goal, many diverse lineages of effector cells must act together 

in different capacities throughout the course of the immune response. As with any system 

possessing such complexity, the careful control and coordination of the numerous 

components of the immune system is critical for its proper functioning. As our 

understanding of each cell type acting within this system has grown, it has become 

increasingly apparent that dendritic cells (DCs) act as the central regulators of the entire 
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immune response, responsible both for sensing the nature of the threats faced and for 

activating the precise combination of effectors required to eradicate them.

First isolated by Ralph Steinman and Zanvil Cohn, DCs were identified by their stellate 

morphology and capacity to stimulate naïve T cells (Steinman and Cohn, 1973; Steinman 

and Witmer, 1978; Nussenzweig et al., 1980). DCs comprise two major branches, the 

classical DCs (cDCs) identified by Steinman and the lymphocyte-like plasmacytoid DCs 

(pDCs) that produce Type 1 interferon in response to pathogens (Perussia et al., 1985; Heath 

and Carbone, 2009; Cella et al., 1999; Siegal et al., 1999). cDCs can be further divided into 

two major subsets recently renamed cDC1s and cDC2s (Guilliams et al., 2014). All DCs 

originate from bone marrow (BM) progenitors arising from hematopoietic stem cells, 

starting with the macrophage/dendritic cell progenitor (MDP) (Fogg et al., 2006; Auffray et 

al., 2009), which gives rise to the common dendritic cell progenitor (CDP) (Naik et al., 

2007; Onai et al., 2007), which finally gives rise to committed progenitors for each branch 

of DC such as the pre-cDC1 and the pre-cDC2 (Grajales-Reyes et al., 2015; Schlitzer et al., 

2015).

cDCs express the integrin CD11c and MHC class II (Steinman et al., 1979; Metlay et al., 

1990), and each subset can be distinguished by additional markers. Resident cDC1s in the 

spleen and lymph nodes (LNs) express CD8α, CD24, and XCR1, while cDC2s express CD4 

and Sirpα (Mildner and Jung, 2014; Murphy et al., 2016). In nonlymphoid tissues, all cDCs 

express CD24, which distinguishes them from macrophages that instead express CD64 

(Schlitzer et al., 2013; Plantinga et al., 2013; Langlet et al., 2012). Nonlymphoid tissue 

cDC1s also express XCR1 and CD103, while cDC2s express CD11b and Sirpα. Migratory 

cDCs that traffic from nonlymphoid tissues to LNs express these same markers they 

expressed in the periphery. There are several exceptions to these rules, however, such as 

CD11b+ cDC2s in the small intestine that comprise both CD103+ and CD103− fractions 

(Bogunovic et al., 2009; Satpathy et al., 2013). While these varied markers have historically 

been used to identify cDC subsets, a recent analysis suggests that a more simple and 

consistent identification of these cells across most tissues is possible by gating cDCs as 

CD11c+MHCII+CD26+CD64−F4/80−, and within this population cDC1s as XCR1+ and 

cDC2s as Sirpα+ (Guilliams et al., 2016). pDCs also express CD11c and MHCII, but can be 

segregated by their additional expression of B220, Siglec-H, and Bst2 (Blasius et al., 2006; 

Zhang et al., 2006).

While cDCs were discovered for their ability to serve as potent antigen-presenting cells 

(APCs), it is now clear that they also have non-redundant roles in innate immune responses 

(Mashayekhi et al., 2011; Satpathy et al., 2013). Their early recognition of pathogens and 

rapid cytokine production activates innate immune cells such as innate lymphoid cells 

(ILCs) and natural killer (NK) cells to limit pathogen spread until adaptive immunity can be 

initiated. Indeed, the heterogeneity of cDCs can itself be viewed as an evolutionary 

adaptation for the coordinated activation of the specific innate and adaptive effector 

responses best suited to control various forms of pathogens (Briseno et al., 2014). cDC1s, 

for example, recognize intracellular pathogens and initiate type 1 immune responses that 

require the early activation of ILC1s and NK cells as well as eventual Th1 polarization 

(Mashayekhi et al., 2011). Some cDC2s, on the other hand, govern type 2 immune responses 
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against parasites in which they activate ILC2s and Th2 cells (Tussiwand et al., 2015). Other 

cDC2s sense extracellular bacteria and initiate type 3 immune responses by activating ILC3s 

and Th17 cells (Lewis et al., 2011; Satpathy et al., 2013). In this way, each cDC subset acts 

as the gatekeeper for a specific module of the immune response, recognizing a particular 

type of threat and activating both the innate and adaptive defenses best suited for 

overcoming it.

Since the time of their discovery, there has been considerable debate over whether DCs 

possess unique functions or whether they are redundant with macrophages and other 

mononuclear cells (Hume, 2008). Fortunately, increasingly sophisticated mouse models for 

the specific ablation of DCs or for the conditional deletion of genes in these cells have 

helped resolve some of these controversies, revealing how immune responses are 

compromised in the absence of DCs and thus the roles these cells play in the normal 

response. These mouse models have been critical for elucidating the unique functions of 

DCs and resolving previously ambiguous conclusions. This review will provide an overview 

of the mouse models that have been developed to interrogate DC function and how these 

models have progressively clarified the role of DCs in various types of immune responses. 

As recent reviews have discussed DC development (Murphy et al., 2016; Mildner and Jung, 

2014), this review will focus primarily on how DCs function in immune responses to 

pathogens, autoimmunity, and cancer.

Mouse models for studying dendritic cells

Numerous models of constitutive and inducible DC depletion have been generated and used 

to identify the specific functions of DC subsets. In this section, we will first describe the 

different strains developed, their specificity, and their limitations. We will organize this by 

categories of DTR/DTA based models, Cre strains, and transcription factor knockout mice. 

In the next section we will discuss the discoveries made with these models regarding the 

functions of DCs in various immune responses.

Depletion of dendritic cells by DTR/DTA systems

The first models of genetic ablation of cell lineages were transgenic mice in which cell type-

specific promoters drove expression of the diphtheria toxin (DT) A-chain (Palmiter et al., 

1987; Breitman et al., 1987). This toxin disrupts protein translation by catalyzing the ADP-

ribosylation of polypeptide chain elongation factor 2 and eventually leads to cell death 

(Honjo et al., 1968; Robinson et al., 1974; Van Ness et al., 1980). While DT efficiently 

ablates the cells in which it is expressed, it can be problematic as even low levels of off-

target expression can lead to death of unintended cells or even to effects on embryogenesis 

or morphogenesis (Breitman et al., 1990). Later mouse models overcame this problem by 

expressing the human or simian DT receptor (DTR) under the control of a cell type-specific 

promoter, with subsequent administration of DT to these mice (Saito et al., 2001). As the 

mouse ortholog of the DTR is orders of magnitude less sensitive to DT (Mitamura et al., 

1995; Pappenheimer, Jr. et al., 1982), this allows for the efficient depletion of only DTR-

expressing cells and has the added benefit of allowing for inducible depletion of these target 

cells rather than constitutive ablation.

Durai and Murphy Page 3

Immunity. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first DTR based model used for DCs was the Itgax-DTR strain, a transgenic line 

expressing a DTR-GFP fusion protein under the control of the murine promoter for the gene 

Itgax, which codes for the integrin CD11c (Jung et al., 2002). DT administration completely 

depleted CD11c+ DCs within 24 hours, with no observable depletion of splenic B cells or 

F4/80+ macrophages. DCs began to reappear 3 days after DT treatment. While this strain 

was vital for early work confirming the functions of DCs in T cell priming and pathogen 

responses, several limitations have emerged. First, repeated administration of DT led to 

death in these mice, restricting the duration through which depletion could be studied (Jung 

et al., 2002). This lethality was likely due to off-target expression of the Itgax-DTR 

transgene in radioresistant or non-hematopoietic tissues, since BM chimeras of WT BM into 

Itgax-DTR recipients also died after repeated DT treatment. This limitation can be overcome 

by generating chimeras of Itgax-DTR BM into WT recipients, which tolerate repeated DT 

treatment (Zaft et al., 2005). Another caveat derives from CD11c expression by non-DCs 

and the depletion by DT of such cells, which include splenic metallophilic and marginal 

zone macrophages, LN sinusoidal macrophages (Probst et al., 2005), alveolar macrophages 

(van Rijt et al., 2005), activated CD8 T cells (Jung et al., 2002), and plasma cells (Hebel et 

al., 2006). Ablation of these cells complicates analysis with this strain, since phenotypes 

observed may result from their depletion rather than that of DCs. Some CD11c+ cells, 

notably pDCs, are not depleted in this model, indicating that the level of CD11c expressed 

by cells influences whether they are depleted (Sapoznikov et al., 2007).

A similar DTR strain, Itgax-DOG (Hochweller et al., 2008), is a BAC transgenic line in 

which the Itgax promoter drives expression of a fusion protein composed of DTR, a portion 

of ovalbumin, and GFP (DOG). Continuous DT treatment in these mice does not cause 

lethality, perhaps due to more faithful expression of the BAC compared with the promoter-

based transgene. Depletion of splenic macrophages was also observed after DT treatment in 

these mice, but whether CD8 T cells and plasma cells were similarly affected has not been 

evaluated.

The recently developed Zbtb46-DTR mouse allows for more specific depletion of cDCs 

(Meredith et al., 2012). This strain has sequences for an internal ribosome entry site (IRES) 

and a DTR-mCherry fusion protein inserted into the 3′ untranslated region (UTR) of the 

endogenous Zbtb46 gene, which codes for the zinc finger transcription factor Zbtb46 (also 

known as zDC) whose expression in hematopoietic lineages is restricted to cDCs. However, 

a single administration of DT into Zbtb46-DTR mice or into chimeras of WT BM into 

Zbtb46-DTR recipients proved lethal, indicating zDC expression in vital radioresistant or 

non-hematopoietic cells. Further work indicated these vital cells may be endothelial cells 

(Satpathy et al., 2012). DT treatment of Zbtb46-DTR BM into WT recipient chimeras 

depleted cDCs alone without ablation of B cells, T cells, neutrophils, natural killer cells, 

pDCs, or monocytes. This strain therefore allows for the specific and complete deletion of 

cDCs, with the caveat that BM chimeras must be used. To circumvent this need, the Zbtb46-

LSL-DTR mouse was generated (Loschko et al., 2016a), in which the IRES-mCherry-DTR 

is preceded by a loxP flanked transcriptional Stop cassette (LSL) that terminates 

transcription of the locus before the DTR. Transcription of the DTR proceeds only after Cre-

mediated excision of the Stop cassette. After crossing the Zbtb46-LSL-DTR strain to a 

Csf1r-cre strain (Loschko et al., 2016a), DT administration specifically depleted cDCs and 
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did not lead to lethality. This model allows for the continuous depletion of cDCs for at least 

4 weeks without the need for BM chimeras.

Several DTR strains allow for depletion of specific DC subsets. The first were two strains 

that expressed DTR from the endogenous Cd207 gene that codes for langerin, a C-type 

lectin expressed on epidermal Langerhans cells and dermal cDC1s. One strain was generated 

by inserting an IRES DTR-egfp into the 3′ UTR of the Cd207 gene (Kissenpfennig et al., 

2005), while in the second strain the first Cd207 coding exon was replaced with a DTR-egfp 
cassette (Bennett et al., 2005). In both strains, DT treatment depletes Langerhans cells as 

well as cDC1s in skin-draining LNs. Additionally, a BAC transgenic CD207-DTA mouse 

strain was generated using a BAC in which an IRES DTA was inserted into the 3′ UTR of 

the human CD207 gene that codes for langerin (Kaplan et al., 2005). This strain has 

constitutive ablation of Langerhans cells but not of cDC1s in skin-draining LNs, suggesting 

that the human CD207 promoter is controlled differently from its murine equivalent. It was 

later demonstrated that these mice also lack CD103+CD11b+ cDC2s in the intestinal lamina 

propria (Welty et al., 2013).

The Ly75-DTR strain was generated by inserting an IRES DTR-eGFP into the 3′ UTR of 

the Ly75 gene that codes for CD205, an endocytic type I C-type lectin-like receptor also 

known as DEC-205 (Fukaya et al., 2012). DT administration to this mouse also resulted in 

lethality, necessitating the use of Ly75-DTR into WT recipient BM chimeras. DT treatment 

of such chimeras depleted CD205+ cDCs, the majority of which were CD8α+ cDC1s. 

CD205 is also expressed on B cells at 10–50 fold lower levels than on BM derived DCs 

(Inaba et al., 1995) and accordingly a minor decrease in splenic B cells was observed upon 

DT treatment to Ly75-DTR mice. However, CD205 is also expressed at much higher levels 

in germinal center (GC) B cells (Victora et al., 2010) as well as all migratory cDCs and 

Langerhans cells (Idoyaga et al., 2013), but it was not determined whether DT treatment also 

depleted these cells.

The Clec9a-DTR BAC transgenic mouse, in which the first Clec9a coding exon in the BAC 

was replaced with DTR, also allows for depletion of cDC1s (Piva et al., 2012). DT treatment 

completely ablates cDC1s, but also causes a ~50% decrease in pDCs, which may be due to 

the lower expression of Clec9a in mature pDCs (Sancho et al., 2008; Caminschi et al., 

2008). Clec9a is expressed in the common dendritic cell progenitor (CDP) (Schraml et al., 

2013), so continuous DT treatment may deplete this progenitor and therefore all DCs over 

prolonged periods. Though this issue was not examined in the original study, at least one 

report indicated that cDC2s were unaffected after 15 days of DT treatment (Muzaki et al., 

2016).

Two more recent DTR strains specifically deplete cDC1s. In the Xcr1-DTRvenus strain, the 

first Xcr1 coding exon was replaced by a cassette encoding a DTR-venus fusion protein 

(Yamazaki et al., 2013). XCR1 is a chemokine receptor uniquely expressed by cDC1s in 

humans, mice, and sheep (Crozat et al., 2010; Crozat et al., 2011). DT treatment to this 

strain completely depleted cDC1s with no decrease in T cells, B cells, NK cells, 

granulocytes, monocytes, cDC2s, or pDCs. Expression of the Venus fluorescent protein was 

likewise restricted to cDC1s. This subset was depleted by 24 hours after DT treatment and 
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began to recover on day 4 after treatment. A similar mouse strain, referred to as Karma, has 

an IRES tdTomato-2A-DTR inserted into the 3′ UTR of the endogenous a530099j19rik 
gene (Alexandre et al., 2016), which like XCR1 is highly specific for cDC1s. Both tdTomato 

expression and cell ablation after DT treatment were specific to cDC1s.

The Clec4a4-DTR strain, a BAC transgenic line in which an IRES DTR was inserted into 

the 3′ UTR of the Clec4a4 gene on the BAC, allows for ablation of cDC2s (Muzaki et al., 

2016). Clec4a4 (also known as DCIR2) is a C-type lectin expressed by cDC2s and 

recognized by the 33D1 antibody first used to define this subset (Nussenzweig et al., 1982; 

Dudziak et al., 2007). DT treatment in this strain severely reduces CD103+CD11b+ cDC2s 

in the colonic lamina propria and CD11b+ cDC2s in the mesenteric LNs, and partially 

depletes CD103−CD11b+ cDC2s and CD64+CX3CR1+ macrophages in the colonic lamina 

propria. Whether depletion of other cells occurs and whether cDC2s in other organs are 

similarly depleted remains to be determined. A second strain thought to deplete a subset of 

cDC2s is the Mgl2-DTR strain, in which the first coding exon of the endogenous Mgl2 gene 

was replaced by a DTR-gfp cassette (Kumamoto et al., 2013). DT treatment in this strain 

depletes the Mgl2+ population of dermal cDC2s, but whether DCs in other tissues are also 

depleted remains to be analyzed.

Several DTR strains have been generated for pDC depletion. The first was the CLEC4C-

DTR BAC transgenic strain, which replaced the exons of the human gene CLEC4C in the 

BAC with the sequence for DTR (Swiecki et al., 2010). CLEC4C codes for BDCA-2, a C-

type lectin uniquely expressed by human pDCs with no equivalent in mouse pDCs, but its 

human promoter remains active in mouse pDCs as DT treatment in CLEC4C-DTR mice 

specifically and completely depleted pDCs. No reduction was observed in B cells, cDCs, T 

cells, NK cells, macrophages, monocytes, or neutrophils. Second, a Siglech-DTR strain was 

generated by knocking an IRES DTR-egfp sequence into the 3′ UTR of the endogenous 

murine Siglech gene (Takagi et al., 2011). Homozygous Siglech-DTR mice lacked 

expression of Siglec-H on pDCs, implying that the IRES DTR cassette somehow altered 

native Siglec-H expression. In this strain, DT administration completely depletes pDCs in 

the spleen, mesenteric LNs, and BM, with no apparent effect on cDCs. However, Siglec-H 

deficiency has been associated with altered cytokine responses (Swiecki et al., 2014) and 

perhaps abnormal kidney and testes function (Orr et al., 2013), which may influence the 

phenotypes of this strain. Third, a Siglech-DTR BAC transgenic strain was generated on the 

Balb/c background by replacing the coding exons of Siglech in a BAC with the sequence for 

DTR (Piva et al., 2012). DT treatment in these mice completely depleted pDCs with no 

effect on cDCs. A separate BAC transgenic Siglech-DTR line on the C57BL/6 background 

was later generated, and analysis of both Siglech-DTR lines found that Siglec-H was also 

expressed by marginal zone macrophages and DT treatment ablated these cells as well as 

pDCs (Swiecki et al., 2014). This indicates that cell ablation in Siglech-DTR strains may not 

be limited to pDCs, complicating analysis with these lines.

Finally, several DTR based systems for the depletion of monocytes and macrophages 

(reviewed in (Lauvau et al., 2015)), have been generated that are driven by genes such as 

CCR2 and CX3CR1. These have helped segregate the independent functions of monocytes 

and cDCs. One useful model for this purpose is the Cx3cr1-LSL-DTR strain (Diehl et al., 
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2013), in which an LSL-DTR was inserted into the endogenous Cx3cr1 locus. This strain 

was crossed to Itgax-cre so that DT treatment specifically depletes CD11c+CX3CR1+ cells, 

which include CD103−CD11b+ cDC2s and monocyte-derived CD11b+ macrophages in the 

intestinal lamina propria (Bogunovic et al., 2009). Another useful model is the MM-DTR 

strain, which was a cross between the Csf1r-LSL-DTR and LysM-cre strains, and in which 

DTR expression is limited to monocytes and monocyte-derived macrophages (Schreiber et 

al., 2013). Table 1 provides a summary of DTR strains useful for the study of DC function.

An important caveat for some DTR strains is the reduced LN cellularity seen even without 

DT treatment (van Blijswijk et al., 2015). In a cross between the Clec9a-cre strain and a 

Rosa26-LSL-DTR strain (Buch et al., 2005), reduced cellularity was observed in skin-

draining and mesenteric LNs even without DT treatment. There was also reduced cellularity 

in skin-draining LNs of Itgax-DTR mice, Cd207-DTR mice, and a cross between Itgax-cre 
and Rosa26-LSL-DTR mice. There was no decrease observed in Itgax-DOG mice, so this 

phenomenon must be evaluated in each individual strain. The basis for this effect is unclear.

Cre strains for conditional deletion of genes in dendritic cells

The Cre-loxP system allows for conditional deletion of genes in specific cell lineages 

(Sharma and Zhu, 2014). In this system, two 34-bp loxP sites are inserted on either side of a 

gene or exon, which is then said to be “floxed”. Cell type-specific promoters are then used to 

express the bacteriophage P1 cre gene, which encodes an integrase that mediates 

recombination between two adjacent loxP sites, leading to deletion of the intervening DNA 

and inactivation of the floxed gene in Cre+ cells.

The earliest Cre strains developed for cDCs were based on CD11c expression. First was an 

Itgax-cre BAC transgenic line in which the first coding exon of Itgax was replaced with cre 
(Caton et al., 2007). When crossed to the Rosa26-LSL-yfp strain (Srinivas et al., 2001), in 

which Cre-mediated excision of a STOP cassette allows YFP expression, splenic DCs were 

>95% labeled and pDCs were ~86% labeled. However, background deletion of 5–12% was 

seen in splenic T, B, and NK cells. A later study also found deletion in 20–40% of blood 

monocytes, nearly ~100% of alveolar macrophages, 70% of splenic red pulp macrophages, 

35% of marginal zone macrophages, and 20% of peritoneal macrophages (Abram et al., 

2014). Therefore, as with Itgax-DTR strains, Itgax-cre is active in non-DC populations. The 

second Itgax-cre strain is a transgenic line expressing cre-IRES-gfp under the control of the 

Itgax promoter (Stranges et al., 2007). GFP expression in this line was found to be uniformly 

high in cDC1s and cDC2s as well as in pDCs, but no expression was seen in T cells or B 

cells. Whether deletion of genes occurred in cell types other than DCs, especially other 

CD11c+ populations such as macrophages, was not evaluated and remains to be resolved.

The Clec9a-cre strain was generated by replacing the first two exons of the endogenous 

Clec9a gene with cre (Schraml et al., 2013). Clec9a is first expressed at the CDP stage and is 

maintained in cDC1s and pDCs, but not in cDC2s (Schraml et al., 2013; Sancho et al., 2008; 

Caminschi et al., 2008). The Clec9a-cre strain achieved deletion in ~100% of cDC1s, ~50% 

of cDC2s, and ~20% of pDCs, suggesting that the transient expression of Cre at the CDP 

stage is insufficient for full deletion in cDC2 precursors and that pDCs do not express high 
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enough levels of Cre for complete deletion. Deletion was not observed in any other cell 

types.

Recently a Zbtb46-cre line was produced by inserting an IRES-cre cassette into the 3′ UTR 

of the endogenous Zbtb46 gene, allowing for more specific deletion of genes in cDCs 

(Loschko et al., 2016b). When crossed to Rosa26-LSL-yfp mice, the Zbtb46-cre achieved 

deletion in ~65% of cDCs, which was lower than the ~100% deletion with Itgax-cre, but 

also demonstrated <10% deletion in T cells, B cells, and monocytes, which was also 

consistently lower than the deletion seen with Itgax-cre. Also <10% deletion was seen in red 

pulp macrophages, pDCs, and small intestinal macrophages, in contrast to the Itgax-cre 
strain where ~70% of red pulp macrophages and pDCs and ~100% of small intestinal lamina 

propria macrophages showed deletion. Zbtb46-cre also induced ~95% deletion of a floxed 

MHCII allele in cDCs, indicating that deletion of some alleles may be more complete than 

others. It was not evaluated whether Zbtb46-cre is as active in endothelial cells as the 

Zbtb46-DTR strain is.

The first Cre strain for targeting specific DC subsets was the Cd207-cre, in which a cre 
cassette was inserted into the second exon of the endogenous Cd207 gene (Zahner et al., 

2011). This strain achieved nearly complete deletion in Langerhans cells and langerin+ 

cDC1s in the dermis, skin-draining LNs, and lung. A second Cre line useful for targeting 

particular DC subsets is the Xcr1-cre strain, in which the first exon of the endogenous Xcr1 
gene was replaced by cre (Ohta et al., 2016). This was crossed to Rosa26-lacZbpAfloxDTA 

mice (Brockschnieder et al., 2006), in which Cre excises a loxP flanked lacZ-

polyadenylation (bpA) sequence and allows for DTA expression and cell ablation. This cross 

resulted in nearly complete ablation of cDC1s in the spleen, MLN, and intestinal lamina 

propria, but no reduction in cDC2s in these organs. There was no reduction in CD4 or CD8 

T cells in the spleen or MLN, but T cells and intraepithelial lymphocytes in the intestinal 

lamina propria were reduced, which was attributed to the absence of cDC1s. Finally, in the 

BAC transgenic Siglech-cre strain, the first exon of Siglech was replaced with a cre IRES 

mCherry cassette (Puttur et al., 2013). However, this strain only achieved deletion in ~30% 

of pDCs and ~2% of all lymphoid cells, and so is better suited for lineage tracing than 

functional analysis.

Transcription factor based depletion of dendritic cells

Several transcription factors have been identified whose deletion selectively depletes specific 

subsets of DCs, and these knockout mice provide useful models for studying DC function. 

One of the earliest identified was the Irf8−/− strain, which lacks cDC1s (Schiavoni et al., 

2002; Aliberti et al., 2003), but also has impairments in B cells (Wang et al., 2008), 

monocytes (Kurotaki et al., 2013), eosinophils (Milanovic et al., 2008), and basophils 

(Sasaki et al., 2015). Irf8−/− mice were also thought to lack pDCs (Schiavoni et al., 2002), 

but more recently it was determined that pDCs do not require IRF8 for their development 

but instead that loss of this factor affects their expression of cell-surface markers and their 

ability to produce interferon (Sichien et al., 2016). Irf8−/− mice therefore do not serve as a 

model of specific cDC1 depletion, but this can be overcome by crossing a floxed Irf8 allele 

to the Itgax-cre strain (Luda et al., 2016), which depletes cDC1s and CD64+CD11b+ 
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macrophages in the intestinal lamina propria, or to the Zbtb46-cre strain (Esterhazy et al., 

2016), which specifically depletes cDC1s.

Id2−/− mice lack cDC1s (Hacker et al., 2003), but also have defects in NK cells (Yokota et 

al., 1999) and ILCs (Serafini et al., 2015). Nfil3−/− mice similarly lack cDC1s (Kashiwada et 

al., 2011), NK cells (Gascoyne et al., 2009), and ILCs (Geiger et al., 2014; Seillet et al., 

2014). The similarity of Id2−/− and Nfil3−/− mice may result from an epistatic action of Nfil3 

on the expression of Id2 during DC development, as has been suggested for NK cell 

development (Male et al., 2014).

Batf3−/− mice are selectively deficient in cDC1s (Hildner et al., 2008). Batf3 and the AP-1 

transcription factor Jun form a heterodimer that interacts with IRF8 to bind AP-1/IRF 

consensus elements (AICEs) (Tussiwand et al., 2012; Glasmacher et al., 2012). Batf3 acts to 

maintain the expression of IRF8 by autoactivation during development of cDC1s, without 

which cDC1s divert to cDC2 fate (Grajales-Reyes et al., 2015). Batf3−/− mice on the 

129SvEv and Balb/C backgrounds have an almost complete lack of cDC1s in lymphoid and 

nonlymphoid tissues (Edelson et al., 2010), but interestingly in the C57BL/6 background 

they retain cells resembling cDC1s in skin-draining LNs (Tussiwand et al., 2012).

Few known transcription factors selectively control cDC2 development. Relb−/− mice have 

DCs with reduced immunogenicity (Burkly et al., 1995), and reportedly a partial cell-

intrinsic defect in cDC2 development (Wu et al., 1998). RelB acts in the noncanonical NFκB 

signaling pathway activated by lymphotoxin-β receptor (LTβR) signaling, and Ltbr−/− mice 

also have a cell-intrinsic but partial reduction in CD4+ cDC2s (Kabashima et al., 2005). It 

has not been tested whether the impact of RelB deficiency on DCs is secondary to deficient 

LTβR signaling. As Relb−/− mice develop severe multiorgan inflammation and 

hematopoietic abnormalities (Weih et al., 1995), and Ltbr−/− mice lack lymph nodes 

(Futterer et al., 1998), neither strain is a convenient model for testing DC function. 

Conditional deletion of Ltbr with Itgax-cre has been used to overcome this limitation 

(Tumanov et al., 2011).

Other factors that influence cDC2 development include Notch2 and Klf4. Conditional 

deletion of the Notch cofactor Rbpj (Caton et al., 2007) or Notch2 (Lewis et al., 2011; 

Satpathy et al., 2013) using Itgax-cre demonstrated a specific depletion of CD11b+ESAM+ 

cDC2s in the spleen and CD103+CD11b+ cDC2s in the intestinal lamina propria and MLNs, 

without apparent loss of other cell types. Notch2f/f Itgax-cre mice did exhibit gene 

expression changes in remaining cDC1s and cDC2s, however, indicating possible effects of 

Notch2 in these lineages (Satpathy et al., 2013). Conditional deletion of the transcription 

factor Klf4 with Itgax-cre also led to the depletion of subsets of cDC2s (Tussiwand et al., 

2015) similar to migratory CD24− CD11b− cDC2s in skin-draining LNs (Ochiai et al., 

2014).

Irf4−/− mice do not lack cDC2s, but instead have partial impairments in the number or 

functioning of these cells. CD11b+ cDC2s are present in the skin of Irf4−/− mice, but fail to 

migrate to LNs (Bajana et al., 2012; Bajana et al., 2016). Similarly, conditional deletion of 

Irf4 with Itgax-cre resulted in a partial reduction in CD11b+ cDC2s in the lung but an almost 
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complete absence of CD11b+ cDC2s in the lung draining LNs (Schlitzer et al., 2013), as 

well as a partial reduction in CD103+CD11b+ cDC2s in the intestinal lamina propria and a 

more complete reduction in mesenteric LNs (Schlitzer et al., 2013; Persson et al., 2013). 

Finally, conditional deletion of Irf4 with Itgax-cre depletes a PDL2+Mgl2+ population of 

cDC2s in skin-draining LNs but not the dermis (Gao et al., 2013). But although Irf4f/f Itgax-
cre mice can serve as a useful model for cDC2 deficiency, IRF4 also plays a role in other 

CD11c+ cells such as M2 macrophages (Satoh et al., 2010) and GM-CSF activated 

monocytes (Briseno et al., 2016), and these may also be affected in this strain.

Several transcription factors have been identified that regulate pDC development. The first 

model of specific pDC deficiency was conditional deletion of Tcf4, which encodes the factor 

E2-2, with Itgax-cre (Cisse et al., 2008). Recently, conditional deletion of the transcription 

factor Zeb2 using Itgax-cre also demonstrated selective pDC deficiency (Scott et al., 2016). 

Table 3 provides a summary of the transcription factor knockout mice useful for the study of 

DCs.

Functions of Dendritic Cells

Since their discovery, cDCs were recognized as possessing a remarkable capacity to 

stimulate naïve T cells and to initiate adaptive immune responses (Steinman and Witmer, 

1978; Nussenzweig et al., 1980). Subsequent work, based in large part on the models 

described above, has shown that DCs are also critical for - not just participants in - early 

innate immune responses, activating innate lymphoid cells (ILCs) and other cells involved in 

the immediate response to pathogens. Additionally, subsets of cDCs play varied roles in 

autoimmunity and responses to tumors. Below we discuss the studies that identified these 

functional aspects of DCs, what tools were used to arrive at these conclusions, and 

confounding factors that may require further resolution.

General Adaptive Immune Responses

The first study to use Itgax-DTR mice showed that the absence of CD11c+ cells led to the 

loss of CD8 T cell priming to cell-associated antigens and to the intracellular pathogens 

Listeria monocytogenes and malaria (Jung et al., 2002). This provided the first direct in vivo 
evidence for the role of CD11c+ cells in T cell priming. Subsequent use of the Itgax-DTR 

strain showed a requirement for CD11c+ cells in priming CD8 T cells against lymphocytic 

choriomeningitis virus (LCMV) (Probst and Van Den, 2005), herpes simplex virus (HSV) 

(Kassim et al., 2006), vesicular stomatitis virus (VSV) (Ciavarra et al., 2006), and influenza 

(GeurtsvanKessel et al., 2008; Kim et al., 2010), as well as in CD4 T cell priming against 

HSV (Kassim et al., 2006), Mycobacterium tuberculosis (Mtb) (Tian et al., 2005), and 

immune complexes (de Jong et al., 2006). Depletion of CD11c+ cells in Itgax-DTR mice 

also impaired the expansion of antigen-specific memory CD8 T cells during rechallenge 

with Listeria, VSV, or influenza (Zammit et al., 2005) or with LCMV (Lauterbach et al., 

2006).

Later studies used additional models to validate the specific role of cDCs and not other 

CD11c+ cells in T cell priming. Specific ablation of cDCs with the Zbtb46-DTR strain 

resulted in a complete inability to prime CD8 or CD4 T cells against soluble antigen 
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(Meredith et al., 2012), and also a failure to prime CD4 T cells against Mtb (Samstein et al., 

2013). Finally, cDC specific deletion of MHCII using Zbtb46-cre led to a complete 

reduction in CD4 T cell priming to soluble antigen (Loschko et al., 2016b).

Targeting antigen to specific DC subsets has indicated that there may be a specialization of 

roles between subsets, with cDC1s preferentially priming CD8 T cells and cDC2s priming 

CD4 T cells (Dudziak et al., 2007). cDC1s have also been recognized as the cells most 

efficient in cross-presentation of exogenous antigens on MHC class I (den Haan et al., 

2000). Studies using mouse models with selective depletion of one subset have provided 

evidence to support this dichotomy. Batf3−/− mice failed to prime CD8 T cells against cell-

associated antigen or West Nile virus (WNV), but still had intact priming of CD4 T cells 

(Hildner et al., 2008). Batf3−/− mice also mounted reduced CD8 T cell responses to 

cytomegalovirus (CMV) (Torti et al., 2011), influenza (Helft et al., 2012; Waithman et al., 

2013), cowpox virus (Gainey et al., 2012), HSV (Nopora et al., 2012; Zelenay et al., 2012), 

and malaria (Lau et al., 2014). Depleting cDC1s using the Xcr1-DTRvenus strain also 

abrogated CD8 T cell priming against soluble and cell-associated antigen as well as against 

Listeria infection (Yamazaki et al., 2013). CD4 T cells could still be primed against soluble 

antigen in these mice. A study using Karma mice similarly showed that depletion of cDC1s 

led to deficient CD8 T cell priming to soluble protein as well as failure to reactivate memory 

CD8 T cells in response to Listeria, vaccinia virus, and VSV (Alexandre et al., 2016). Taken 

together these studies suggest that cDCs alone are responsible for priming T cells, with a 

specific role for cDC1s in priming naïve CD8 T cells and activating memory CD8 T cells 

during recall responses. Future work with specific depletion of cDC2s is needed to confirm 

their unique role in priming CD4 T cells.

Recent work has also indicated that CD4 T cell help in CD8 T cell responses might be 

mediated through “licensing” of cDC1s. Analysis of immune responses suggests that CD4 T 

cells are primed by DCs earlier than CD8 T cells, and that later in the response clusters of 

these three cell types form during which CD4 T cells may “license” cDC1s in order to 

enhance priming of CD8 T cells (Hor et al., 2015; Eickhoff et al., 2015). In agreement with 

this model, one study found that mixed bone marrow chimeric mice made of Xcr1-DTR:H2-
Ab1−/− BM, in which following DT treatment all remaining cDC1s lack MHCII expression, 

generated fewer antigen-specific CD8 T cells upon vaccinia virus infection (Eickhoff et al., 

2015). MHCII expression in cDC1s may therefore serve as a mechanism by which they 

receive CD4 T cell help rather than for their direct priming of naïve CD4 T cells.

Several studies have implicated DCs in the induction of Tfh cells and the initiation of the 

germinal center (GC) response. Depletion of all CD11c+ cells by Itgax-DTR was found to 

diminish the number of Tfh cells induced in response to Toxoplasma infection (Goenka et 

al., 2011). Specific cDC depletion with Zbtb46-DTR mice also abolished GC responses and 

antibody production against allogeneic red blood cells (RBCs) (Calabro et al., 2016). This 

was attributed to the function of cDC2s, as Batf3−/− mice had intact antibody responses but 

Irf4f/f Itgax-cre mice did not (Calabro et al., 2016). Another study found that CD25 

expression by cDCs was crucial for Tfh induction (Li et al., 2016). In this study, mixed BM 

chimera mice reconstituted with Zbtb46-DTR:Il2ra−/− BM, in which after DT treatment all 

remaining cDCs lack the IL-2 receptor alpha chain (CD25), failed to generate antibodies or 
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GC B cells upon sheep RBC immunization. cDC2s in the spleen can induce expression of 

CD25, suggesting these may be the specific cells involved in this process (Li et al., 2016). 

Finally, IgA class switching in Peyer’s patches was also found to be regulated by DCs 

(Reboldi et al., 2016). This study utilized mixed BM chimeras made from Itgax-
DTR:Ltbr−/− BM, in which following DT treatment all remaining DCs lack the LTβ receptor 

and thus certain cDC2s fail to develop. After DT treatment, these chimeras had fewer IgA 

class-switched GC B cells in Peyer’s patches. This appears to involve the activation of latent 

TGF-β by the integrin chains Itgβ8 and Itgαv on DCs and presentation of the active 

cytokine by DCs to B cells, as Itgax-cre mediated deletion of Itgb8 also resulted in reduced 

IgA+ GC B cells (Reboldi et al., 2016).

Type 1 Immune Responses

Type 1 immune responses are mounted against intracellular pathogens that require IFN-γ 
activated macrophages and cytotoxic CD8 T cells for their clearance. Early nonspecific 

sources of IFN-γ are NK cells and ILC1s, while antigen-specific Th1 and CD8 T cells are 

responsible for producing this cytokine later in the immune response. IL-12 is critical for the 

activation of type 1 responses, as it induces NK cells and ILC1s to secrete IFN-γ 
(Sonnenberg and Artis, 2015), and is also responsible for the polarization of naïve T cells to 

Th1 cells (Hsieh et al., 1993). Several studies have established that cDC1s are vital for 

mounting type 1 responses because of their non-redundant production of IL-12 and their 

ability to prime CD8 T cells.

The first indication that cDC1s are important in these responses was a study demonstrating 

that Irf8−/− mice had increased susceptibility to Toxoplamsa gondii infection and reduced 

serum IL-12 levels (Scharton-Kersten et al., 1997), though given the myriad defects in this 

mouse this could not be attributed specifically to cDC1s. Later, Itgax-DTR mice were used 

to show that CD11c+ cells were required for IL-12 and IFN-γ production and protection 

against Toxoplasma infection (Liu et al., 2006). Finally, Batf3−/− mice that specifically lack 

cDC1s were found to be susceptible to Toxoplasma, demonstrating that these cells were 

indeed critical for resistance (Mashayekhi et al., 2011). Mixed chimeras made from 

Batf3−/−:Il12a−/− BM, in which all cDC1s that develop are deficient in IL-12 production, 

were susceptible to Toxoplasma infection, indicating that cDC1s are the non-redundant 

source of IL-12 necessary for resistance to infection (Mashayekhi et al., 2011). Additionally, 

depletion of cDC1s using the Karma strain abolished IL-12 production in response to 

soluble Toxoplasma antigen (Alexandre et al., 2016). Batf3−/− mice also have reduced IFN-

γ production from NK cells during Toxoplasma infection, suggesting that IL-12 from cDC1s 

is critical for NK cell activation in this response (Askenase et al., 2015).

The role of cDCs in type 1 responses to several other intracellular pathogens has also been 

documented. During infection by Listeria, Itgax-DTR (Neuenhahn et al., 2006), Batf3−/− 

(Edelson et al., 2011), Ly75-DTR (Fukaya et al., 2012), and Xcr1-DTRvenus (Yamazaki et 

al., 2013) mice all had reduced CD8 T cell responses. However, many of these strains also 

exhibited a reduced splenic Listeria burden and Batf3−/− mice actually demonstrated 

increased resistance to infection. This is because Listeria must infect cDC1s in the splenic 

marginal zone in order to spread to and proliferate in the lymphoid areas of the spleen 
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(Neuenhahn et al., 2006), so Batf3−/− mice lacking these cells show reduced susceptibility to 

infection. Finally, constitutive deletion of CD11c+ cells, achieved by crossing Itgax-cre mice 

to Rosa26-LSL-DTA mice (Voehringer et al., 2008), diminished IFN-γ production from NK 

cells, NKT cells, and T cells during Listeria infection (Kang et al., 2008).

Leishmania major, another intracellular pathogen, similarly requires cDC1s for its clearance, 

as Batf3−/− mice exhibit greater disease burden from infection (Ashok et al., 2014) and 

generate fewer Th1 cells (Martinez-Lopez et al., 2015). Another study used Batf3−/− and 

Cd207-DTR mice to demonstrate that cDC1s are required for the priming of CD8 T cells 

and Th1 cells against skin infection by the fungus Candida albicans (Igyarto et al., 2011).

Several studies have implicated DCs in NK cell homeostasis. Depletion of CD11c+ cells in 

Itgax-DTR mice diminished steady-state numbers of NK cells (Guimond et al., 2010) and 

reduced their cytotoxicity and IFN-γ production in several infection models (Lucas et al., 

2007; Schleicher et al., 2007; Kassim et al., 2006). NK cell survival and activation requires 

trans-presentation of IL-15, whereby a non-NK cell that expresses the non-signaling receptor 

chain IL-15Rα binds IL-15 and presents to the full IL-15αβγ receptor on NK cells (Burkett 

et al., 2004). One study implicated a CD11c+ cell as the trans-presenting cell by using mixed 

BM chimera mice made from Itgax-DTR:Il15−/− BM or from Itgax-DTR:Il15rα−/− BM 

(Mortier et al., 2008). In these chimeras, DT treatment causes all remaining CD11c+ cells to 

lack IL-15 or IL-15Rα, respectively, and after DT treatment these chimeras show severely 

reduced NK cell activation in vivo. Future studies are needed to clarify whether cDCs are 

involved in this activity, and if so which subsets.

Type 2 Immune Responses

Type 2 responses are carried out against multicellular parasites at barrier surfaces in order to 

aid in their expulsion. Many cytokines play key roles in this response. These include IL-25 

and IL-33, which activate ILC2s to produce effector cytokines such as IL-4, IL-5, and IL-13 

(Sonnenberg and Artis, 2015), and IL-4, which polarizes naïve T cells to Th2 cells (Le Gros 

et al., 1990). Much remains unknown about the initiation of type 2 immune responses, and it 

has been controversial whether DCs are even involved directly.

An early study found that depletion of CD11c+ cells in Itgax-DTR mice did not impair Th2 

cell polarization in response to immunization with papain (Sokol et al., 2009), although 

another study using the same strain found that it did (Tang et al., 2010). A later study also 

found that depletion of CD11c+ cells in Itgax-DTR mice abrogated type 2 responses, this 

time to inhaled house dust mite (HDM) allergen (Hammad et al., 2010). This study 

implicated an FcεRI expressing CD11c+MHCII+ cell population as being the principal APC 

responsible. Subsequent studies also found that CD11c+ cell depletion by Itgax-DTR 

reduced numbers of Th2 cells after infections with the helminthes Schistosoma mansoni 
(Phythian-Adams et al., 2010), Heligmosomoides polygyrus (Smith et al., 2011), and 

Nippostrongylus brasiliensis (Smith et al., 2012).

Other models have suggested putative Th2 inducing DC subsets. Two groups demonstrated 

that depletion of an Mgl2+ subset of cDC2s, either with the Mgl2-DTR strain (Kumamoto et 

al., 2013) or by conditional deletion of Irf4 with Itgax-cre (Gao et al., 2013), diminished Th2 
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priming in response to papain and Nippostrongylus infection. Irf4f/f Itgax-cre mice also had 

reduced Th2 responses after HDM allergen challenge (Williams et al., 2013). Another study 

found that depletion of a subset of cDC2s in the Klf4f/f Itgax-cre strain increased 

susceptibility to Schistosoma mansoni infection and diminished allergic inflammation after 

intransal HDM challenge (Tussiwand et al., 2015). Also, a subset of CXCR5+ DCs, which 

was depleted by using Itgax-DTR:Cxcr5−/− BM chimeras, appeared to be required for Th2 

responses to Heligmosomoides infection (Leon et al., 2012). Finally, Batf3−/− mice develop 

somewhat stronger Th2 responses to helminth infection, suggesting that the IL-12 produced 

by cDC1s regulates Th2 polarization carried out by other DCs (Everts et al., 2016).

Cytokine production by DCs has not been established in any of these models, so whether 

they control type 2 responses by this mechanism or some other remains to be determined. 

Recent studies have suggested that ILC2s may be the critical source of cytokines acting to 

induce type 2 responses (Halim et al., 2014; Halim et al., 2016). Conceivably, ILC2s and 

DCs may cooperate in Th2 priming, but this area awaits further studies.

Type 3 Immune Responses

Type 3 immune responses at barrier surfaces such as the lungs and intestines control 

infections by extracellular bacteria and fungi and require several cytokines, including IL-23 

and IL-6. IL-6 and TGF-β initiate Th17 cell polarization (Bettelli et al., 2006), and IL-23 

increases the survival and expansion of committed Th17 cells (Veldhoen et al., 2006). IL-23 

is also crucial in innate responses for activating ILC3s to produce IL-22, which in turn 

promotes production of bactericidal lectins such as RegIIIγ from small intestinal epithelial 

cells (Sonnenberg and Artis, 2015; Kinnebrew et al., 2012).

Citrobacter rodentium, a mouse pathogen used to study type 3 immune responses, requires 

IL-23 and IL-22 for its clearance (Zheng et al., 2008; Basu et al., 2012; Mundy et al., 2005). 

An early study that implicated cDCs in response to oral Citrobacter infection found that 

conditional deletion of Ltbr by Itgax-cre, which depleted a subset of cDC2s, reduced colonic 

IL-22 production and increased pathogen burden (Tumanov et al., 2011). Later studies 

demonstrated that depletion of all cDCs in Zbtb46-DTR mice (Satpathy et al., 2013; 

Schreiber et al., 2013) led to severe susceptibility to Citrobacter infection, as did depletion 

of cDC2s with Notch2f/f Itgax-cre mice (Satpathy et al., 2013). Mixed BM chimeras 

reconstituted with Notch2f/f Itgax-cre:Il23a−/− BM were also severely susceptible to 

Citrobacter infection, indicating that Notch2-dependent cDC2s are the critical source of 

IL-23 in defense against this pathogen (Satpathy et al., 2013). NFκB signaling in CD11c+ 

cells is also critical, as mice with conditional deletion of Myd88 with Itgax-cre also showed 

susceptibility to Citrobacter (Longman et al., 2014). Importantly, mice depleted of all cDCs 

or Notch2-dependent cDC2s die at ~day 10 after Citrobacter infection, while Rag2−/− mice 

lacking B and T cells die at ~day 30 after infection (Zheng et al., 2008). This suggests that 

cDC2s are critical for activating innate defenses during Citrobacter infection and not just for 

initiating adaptive immunity.

Several recent studies have suggested contributions from multiple cDC2 subsets in defense 

against Citrobacter. First, CD207-DTA mice, which lack intestinal CD103+CD11b+ cDC2s, 

were not found to be susceptible to Citrobacter infection (Welty et al., 2013). Thus, the 
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lethality seen with Notch2 deficiency may be due to an impact on the function of CD103-

CD11b+ cDC2s, rather than the depletion of CD103+CD11b+ cDC2s. In accordance with 

this possibility, Cx3cr1-LSL-DTR mice crossed to Itgax-cre, in which DT treatment depletes 

CD103−CD11b+CX3CR1+ cDC2s and CD11b+ macrophages, also showed susceptibility to 

Citrobacter and reduced IL-22 production (Longman et al., 2014). Finally, MM-DTR mice, 

which lack monocytes and monocyte-derived macrophages, did not display susceptibility to 

Citrobacter, suggesting that CD103−CD11b+ cDC2s and not CD11b+ macrophages are the 

critical cells for defense against this pathogen (Schreiber et al., 2013). However, direct 

comparison of these different models may be required to eliminate confounding effects such 

as variable microbiota in the strains used in each study.

Studies have also implicated cDC2s in various other type 3 responses, but the reported 

mechanisms by which they act have varied. Several groups found that depletion of intestinal 

CD103+CD11b+ cDC2s, using Notch2f/f Itgax-cre, Irf4f/f Itgax-cre, or CD207-DTA mice, 

resulted in fewer small intestinal Th17 cells at steady state (Lewis et al., 2011; Schlitzer et 

al., 2013; Welty et al., 2013). Another study using the Irf4f/f Itgax-cre strain similarly found 

reduced numbers of Th17 cells at steady state in the small intestine lamina propria and 

mesenteric lymph nodes, and also reduced Th17 polarization after immunization with 

antigen plus αCD40 and LPS (Persson et al., 2013). This study observed reduced levels of 

IL-6 in Irf4−/− DCs, which might explain the reduced Th17 priming. A second group found 

deficient Th17 priming in Irf4f/f Itgax-cre mice after lung infection by the fungal pathogen 

Aspergillus fumigatus, which was attributed to the loss of CD11b+ cDC2s that normally 

express high levels of IL-23, IL-6, and TGF-β (Schlitzer et al., 2013).

In agreement, another study used BM chimeras to show that CD11c+ cells must produce 

IL-6 and TGF-β to induce Th17 responses to Streptococcus pyogenes (Linehan et al., 2015). 

They found that BM chimeras of Itgax-DTR:Il6−/− or Itgax-DTR:Tgfb1f/f BM, in which DT 

treatment causes all remaining DCs to be deficient in either IL-6 or TGF-β respectively, had 

reduced Th17 responses to this pathogen. This was confirmed in Tgfb1f/f Itgax-cre mice and 

specifically found to involve Mgl2+ cDC2s, as DT treated Mgl2-DTR:Il6−/− mixed BM 

chimeric mice also had reduced Th17 induction upon Streptococcus pyogenes infection 

(Linehan et al., 2015). A separate study used Mgl2-DTR:Il23a−/− mixed BM chimeras to 

determine that Mgl2+ cDC2s must produce IL-23 in order to activate IL-17 secretion from 

dermal γδ T cells during cutaneous Candida albicans infection (Kashem et al., 2015). 

Finally, a study using the Il23af/f Itgax-cre strain concluded that IL-23 from CD11c+ cells 

was important for Th17 and Th1 induction in response to Helicobacter hepaticus infection 

(Arnold et al., 2016), although the relative contributions of cDCs and macrophages in this 

infection remains to be defined with more specific methods. While depletion of cDC2s has 

revealed defects in type 3 responses to several pathogens, responses to many of these 

infections, specifically Citrobacter (Satpathy et al., 2013), Streptococcus (Linehan et al., 

2015), and Candida (Kashem et al., 2015; Trautwein-Weidner et al., 2015), are intact in mice 

lacking cDC1s. This again underscores the functional specialization of different cDC subsets 

and the non-redundant roles they play in host defense.

Control of type 3 responses against segmented filamentous bacteria (SFB) may differ from 

those described above. SFB are a commensal organism present in some mice microbiota that 
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induce an antigen-specific Th17 response in colonized mice (Ivanov et al., 2009). 

Conditional deletion of MHCII with Itgax-cre reduced Th17 induction after inoculation with 

SFB, which was interpreted to mean cDCs were responsible for priming against this 

organism. But Batf3−/−CD207-DTA mice, which lack cDC1s and CD103+CD11b+ cDC2s, 

and Flt3l−/− mice, which have substantially reduced numbers of all cDCs (McKenna et al., 

2000), had no impairment in Th17 priming (Goto et al., 2014; Geem et al., 2014). Instead, 

depletion of monocytes with the Ccr2-DTR strain abrogated Th17 induction against SFB, 

and this could be restored by transfer of wildtype monocytes, suggesting that monocyte-

derived intestinal macrophages prime this response (Panea et al., 2015). This example 

illustrates how some conclusions regarding cDC function drawn from CD11c-based systems 

may need re-interpretation with follow-up studies using more precise genetic models.

Dendritic cells in autoimmunity

DCs are important for the induction of tolerance to self-antigens and for the pathogenicity of 

several autoimmune syndromes. Early studies found a relationship between DC and Treg 

numbers, and that depletion of Tregs with a Foxp3-DTR strain greatly expanded cDCs (Kim 

et al., 2007). This expansion was due to increased numbers of cDC progenitors and was 

dependent on Flt3L, a crucial growth factor for cDCs (Liu et al., 2009). Conversely, 

depletion of DCs in Itgax-DTR mice or in Flt3l−/− mice reduced splenic Treg numbers, 

while expansion of DCs by exogenous Flt3L increased Treg numbers (Darrasse-Jeze et al., 

2009). This phenomenon held for certain antigen-specific Treg clones as well (Leventhal et 

al., 2016).

DCs primarily control Treg numbers by regulating their proliferation rather than their 

induction, as Tregs transferred into Itgax-DTR mice treated with DT divided less than when 

transferred into WT mice (Darrasse-Jeze et al., 2009). This control of proliferation required 

MHCII expression by DCs, as both Itgax-DTR:H2-Ab1−/− mixed BM chimeric mice treated 

with DT and H2-Ab1f/− Itgax-cre mice also showed a decrease in Treg numbers and 

proliferation (Darrasse-Jeze et al., 2009). Later work also concluded that DCs do not play a 

primary role in Treg induction in the thymus, as neither constitutive depletion of DCs in 

mice with Itgax-cre crossed to Rosa26-LSL-DTA nor H2-Ab1 f/f Itgax-cre mice had 

differences in the absolute number of Foxp3+ cells that develop in the thymus (Birnberg et 

al., 2008; Liston et al., 2008).

However, several recent studies have demonstrated that at least some Treg clones are 

induced in the thymus by DCs, especially clones that recognize self-antigens expressed by 

the transcription factor AIRE. One group identified certain T cell clones that convert to 

Tregs in the thymus in response to AIRE-dependent antigens in wildtype mice, but not in 

mice that were depleted of CD11c+ cells by crossing the Itgax-cre to the Rosa26-LSL-DTA 

strain (Perry et al., 2014). These same T cells also did not convert in Batf3−/− mice, 

suggesting that cDC1s controlled their induction. A subsequent study reported that both 

polyclonal Tregs and a specific AIRE-dependent Treg were reduced in number in mice with 

conditional deletion of MHCII by Itgax-cre, but in contrast to the previous study found that 

this AIRE-dependent Treg still developed in Batf3−/− mice (Leventhal et al., 2016). This 
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suggests that the specific Treg clone or the nature of the antigen it recognizes may determine 

which cDC subset is responsible for its induction.

DCs also play a role in several models of autoimmunity. Studies using Itgax-DTR mice 

show that CD11c+ cells are required for pathogenesis in ovalbumin-driven asthma (van Rijt 

et al., 2005) and in Th2-mediated peanut food allergy (Chu et al., 2014). Conditional 

deletion of Myd88 with Itgax-cre also diminished colitis in Il10−/− mice (Hoshi et al., 2012) 

and decreased lupus-like symptoms in Lyn−/− mice (Hua et al., 2014), suggesting that NFκB 

signaling in CD11c+ cells contributes to autoimmunity. Constitutively depleting CD11c+ 

cells in a model of lupus, achieved by crossing the Rosa26-LSL-DTA and Itgax-cre alleles 

onto the lupus-prone MRL.Faslpr background, reduced disease severity, in part by decreasing 

T and B cell activation (Teichmann et al., 2010). Disease incidence partly involved MyD88 

signaling in CD11c+ cells, since Myd88f/f Itgax-cre mice on this background also had 

reduced dermatitis and T cell activation, but not reduced nephritis (Teichmann et al., 2013). 

In the nonobese diabetic (NOD) model of murine diabetes, cDC1s are required for disease 

initiation, as Batf3−/− NOD mice are completely free of lymphocyte infiltration into and 

destruction of pancreatic islets (Ferris et al., 2014). Conversely, increased activity of DCs 

can lead to autoimmunity, often from aberrant cytokine production or inappropriate 

activation of autoreactive T cells. This was seen when Itgax-cre was used to delete inhibitory 

signaling molecules such as Fas (Stranges et al., 2007) β-catenin (Manicassamy et al., 

2010), FADD (Young et al., 2013), A20 (Hammer et al., 2011), TRAF6 (Han et al., 2013), 

Lyn (Lamagna et al., 2013), and Caspase-8 (Cuda et al., 2014).

Recent work has also implicated cDCs in establishing oral tolerance to ingested antigens. 

Using Zbtb46-DTR mice, one study demonstrated a loss of oral tolerance in mice lacking all 

cDCs (Esterhazy et al., 2016). These mice failed to induce Tregs against orally fed antigen 

and generated an immune response to subsequent peripheral antigen challenge. Oral 

tolerance was intact in Irf8f/f Zbtb46-cre mice that lack cDC1s, although antigen-specific 

Treg conversion was partially impaired. This suggests cDC1s are important in establishing 

oral tolerance but that other cDCs can compensate for their loss. A separate study found that 

for orally fed antigen to be tolerized it is phagocytosed by CX3CR1+ macrophages in the 

intestinal lamina propria and subsequently transferred to CD103+CD11b+ cDC2s through 

gap junctions made up of connexin-43 (Mazzini et al., 2014). Conditional deletion of Gja1, 

which encodes connexin-43, with Itgax-cre reduced the number of Tregs induced to orally 

fed antigen and also diminished oral tolerance established to this same antigen. Also, 

conditional deletion of Itgb8, which encodes the integrin Itgβ8 that activates latent TGF-β, 

with Itgax-cre resulted in autoimmune inflammatory bowel disease and reduced numbers of 

colonic Tregs, suggesting that CD11c+ cells are critical sources of active TGF-β for the 

induction of Tregs in response to gut antigens (Travis et al., 2007).

Dendritic cells in tumor immunity

Recent work has expanded our understanding of the roles of DCs in antitumor immune 

responses. Studies using Itgax-DTR mice demonstrated that depletion of CD11c+ cells 

reduced CD8 T cell responses against transferred tumor cells (Casares et al., 2005; Shimizu 

et al., 2007) and reduced survival in oncogene-driven tumor models (Scarlett et al., 2012). 

Durai and Murphy Page 17

Immunity. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cDC1s in particular were critical for antitumor responses, as Batf3−/− mice failed to reject 

transplanted immunogenic fibrosarcomas (Hildner et al., 2008) and failed to induce T cell 

infiltration into autochthonous oncogene-driven melanoma (Spranger et al., 2015). cDC1s 

are also required for the antitumor effects of many cancer therapies, as Batf3−/− mice have 

reduced responses to therapeutic PD-L1 blockade, Flt3L injection, or polyI:C injection 

(Salmon et al., 2016) as well as to anti-CD137 or anti-PD1 therapy (Sanchez-Paulete et al., 

2016). cDC1s must migrate to LNs to activate tumor-specific CD8 T cells, as mixed BM 

chimeras made with Xcr1-DTR:Ccr7−/− BM, in which DT treatment causes all remaining 

cDC1s to lack CCR7, are not able to reject tumors (Roberts et al., 2016). Finally, cDCs play 

a role in opposing the establishment of metastatic foci, as Zbtb46-DTR mice depleted of 

cDCs mice had increased numbers of melanoma metastases to the lung (Headley et al., 

2016).

Two studies have demonstrated that interferon signaling in DCs is necessary for the 

initiation of antitumor immune responses. In the first, conditional deletion of the type 1 

interferon receptor Ifnar1 with Itgax-cre prevented rejection of transplanted fibrosarcomas 

(Diamond et al., 2011). IFNAR deficient cDC1s also displayed deficient cross-presentation 

of antigens to CD8 T cells, suggesting that an inability to cross-present tumor antigens and 

activate CD8 T cells underlies the inability to reject tumors in this strain (Diamond et al., 

2011). In the second, Ifnar1−/−:Batf3−/− mixed BM chimeras failed to prime CD8 T cells to 

tumor antigens, suggesting that interferon signaling is specifically necessary in cDC1s 

(Fuertes et al., 2011).

Comparison of Zbtb46-DTR and Itgax-DTR mice reveals a partial redundancy between 

cDCs and other CD11c+ cells in some aspects of the antitumor response. When immunized 

with tumor antigens and challenged with melanoma, DT treatment in either strain led to a 

failure to reject tumors (Meredith et al., 2012). But mice depleted of CD11c+ cells 

succumbed to tumors faster than mice depleted of cDCs, suggesting that CD11c+ non-cDCs 

can compensate in driving antitumor responses. Others studies have distinguished various 

macrophage and DC populations present within the tumor microenvironment (Franklin et 

al., 2014; Broz et al., 2014), and future studies may provide a better understanding of the 

roles of each in tumor immunity. Figure 1 summarizes the many known roles of cDCs in 

immune responses.

Concluding Remarks

The increasing precision by which cDC subsets can be ablated in mouse models has greatly 

expanded our understanding of their functions. It is now clear that cDCs are a unique lineage 

comprised of distinct functional subsets critical for both innate and adaptive immunity. 

Further work is needed to resolve the apparent heterogeneity in cDC2s (Jaitin et al., 2014), 

and to test for their potential activities. In particular, how cDC2s control type 2 immune 

responses is unclear, including whether they provide instructive signals themselves, whether 

they are the primary APCs, and whether they, or other cells such as epithelial tuft cells, 

directly sense the pathogen. While these and other questions remain, it is now clear that DCs 

are the critical regulators of the entire immune response and that to understand the immune 

system we must fully analyze these remarkable cells.
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Fig. 1. Functions of dendritic cell subsets in the immune response
Classical dendritic cells (cDCs) play critical roles in both innate and adaptive immunity. 

Furthermore, each subset of cDC appears to possess unique functions and to control the 

immune response against specific forms of pathogens. cDC1s control type 1 immune 

responses against viruses and intracellular pathogens (left panel). In these responses they 

prime naïve CD8 T cells, reactivate memory CD8 T cells, activate ILC1s, and induce Th1 

cells. Their production of the cytokine IL-12 is vital for many of these functions. cDC1s also 

play a role in inducing Tregs against orally fed antigens and AIRE-dependent self-antigens 

expressed in the thymus, though it appears that in some cases cDC2s can also mediate Treg 

conversion to these antigens. Some cDC2s, on the other hand, regulate type 2 immune 

responses against parasites in which they induce Th2 cells (right panel). The exact 

mechanism by which they do this is unclear. Other cDC2s control type 3 immune responses 

against extracellular bacteria and fungi (right panel). In these responses, cDC2s produce 

IL-23 in order to activate ILC3s and to induce Th17 cells. Their production of IL-6 and 

TGF-β also contributes to the polarization of Th17 cells. Finally, cDC2s are also responsible 

for the induction of T follicular helper (Tfh) cells that regulate the germinal center response. 

DTR, diphtheria toxin receptor; VSV, vesicular stomatitis virus; LCMV, lymphocytic 

choriomeningitis virus; WNV, west nile virus; HSV, herpes simplex virus; CMV, 

cytomegalovirus; AIRE, autoimmune regulator; Ag, antigen.

Durai and Murphy Page 34

Immunity. Author manuscript; available in PMC 2017 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Durai and Murphy Page 35

Table 1

Comparison of DTA/DTR based mouse models for dendritic cell depletion

Strain Cells Depleted Caveats

Itgax-DTR (Jung et al., 2002) cDCs, metallophilic, marginal zone, 
sinusoidal, and alveolar macrophages, 
activated CD8 T cells, plasma cells

Repeated DT treatment leads to death, 
requires CD11c-DTR into WT BM 
chimeras
No depletion of pDCs

Itgax-DOG (Hochweller et al., 2008) cDCs, splenic macrophages Depletion of other cell types not 
evaluated

Zbtb46-DTR (Meredith et al., 2012) cDCs DT treatment leads to death, requires 
zDC-DTR into WT BM chimeras

Zbtb46-LSL-DTR (Loschko et al., 2016a) cDCs Requires crossing to Cre strain active in 
cDC lineage

Cd207-DTR (Knockin) (Kissenpfennig et al., 2005) Langerhans cells, cDC1s

Cd207-DTR (BAC) (Bennett et al., 2005) Langerhans cells, cDC1s

CD207-DTA (Kaplan et al., 2005) Langerhans cells, CD103+CD11b+ cDC2s 
in small intestine

Ly75-DTR (Fukaya et al., 2012) cDC1s, ~15% splenic B cells DT treatment leads to death, requires 
CD205-DTR into WT BM chimeras
Depletion of germinal center B cells, 
migratory cDCs, and Langerhans cells 
untested but possible

Clec9a-DTR (Piva et al., 2012) cDC1s, ~50% pDCs

Xcr1-DTRvenus (Yamazaki et al., 2013) cDC1s

Karma (a530099j19rik-DTR) (Alexandre et al., 
2016)

cDC1s

Clec4a4-DTR (Muzaki et al., 2016) cDC2s and CD64+CX3CR1+ macrophages 
in intestinal lamina propria and MLNs

DC depletion in other organs not 
analyzed

Mgl2-DTR (Kumamoto et al., 2013) Mgl2+ dermal cDC2s

CLEC4C-DTR (Swiecki et al., 2010) pDCs

Siglech-DTR (Knockin) (Takagi et al., 2011) pDCs Loss of SiglecH expression in 
homozygous knockin mice
Depletion of marginal zone 
macrophages untested but possible

Siglech-DTR (BAC) (Piva et al., 2012) pDCs, marginal zone macrophages

Cx3cr1-LSL-DTR Itgax-cre (Diehl et al., 2013) CD103−CD11b+CX3CR1+ cDC2s, 
CD11b+CX3CR1+ macrophages

Requires crossing to Cre strain active in 
cDCs

MM-DTR (Schreiber et al., 2013) Monocytes and monocyte-derived 
macrophages
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Table 2

Comparison of Cre strains for conditional deletion of genes in dendritic cells

Strain Cells Affected Caveats

Itgax-cre (BAC) (Caton et al., 2007) ~100% of cDCs, pDCs, alveolar 
macrophages, ~70% red pulp macrophages, 
20–40% monocytes, marginal zone 
macrophages, peritoneal macrophages, ~5–
12% T, B, NK cells

Germline deletion possible

Itgax-cre (Transgene) (Stranges et 
al., 2007)

cDCs, pDCs Deletion in other cell types was not analyzed, most 
likely similar to other Itgax- cre strain

Clec9a-cre (Schraml et al., 2013) ~100% of cDC1s, ~50% of cDC2s, ~20% of 
pDCs

Begins deletion at CDP stage, low or transient 
expression may affect deletion efficiency in cDC2s 
and pDCs

Zbtb46-cre (Loschko et al., 2016b) 65–95% cDCs, <10% in all other cell types Deletion efficiency variable depending on floxed 
allele

Cd207-cre (Zahner et al., 2011) Langerhans cells, Langerin+ cDC1s in 
dermis, skin-draining LNs, and lung

Xcr1-cre (Ohta et al., 2016) cDC1s

Siglech-cre (Puttur et al., 2013) ~30% of pDCs, ~2% of other lymphoid cells Incomplete deletion in pDCs
Deletion in marginal zone macrophages untested but 
possible
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Table 3

Comparison of transcription factor knockout mice that affect dendritic cell development

Strain Cells Depleted Caveats

Irf8−/− (Schiavoni et al., 2002; Aliberti 
et al., 2003)

cDC1s, B cells, monocytes, 
eosinophils, basophils

Myeloid neoplasia eventually results with age
Conditional deletion with Itgax-cre or Zbtb46-cre can 
prevent depletion of other cell types seen in Irf8−/− mice

Id2−/− (Hacker et al., 2003) cDC1s, NK cells, ILCs

Nfil3−/− (Kashiwada et al., 2011) cDC1s, NK cells, ILCs

Batf3−/− (Hildner et al., 2008) cDC1s In certain genetic backgrounds residual cDC1-like cells 
remain in skin-draining LNs

Relb−/− (Burkly et al., 1995) CD11b+ESAM+ cDC2s in spleen Fatal multiorgan inflammation

Ltbr−/− (Weih et al., 1995) CD11b+ESAM+ cDC2s in spleen Loss of lymph nodes, can overcome with conditional 
deletion with Itgax-cre

Notch2f/f Itgax-cre (Lewis et al., 2011; 
Satpathy et al., 2013)

CD11b+ESAM+ cDC2s in spleen, 
CD103+CD11b+ cDC2s in small 
intestine lamina propria

Transcriptional changes also evident in cDC1s and 
CD11b+ cDC2s

Klf4f/f Itgax-cre (Tussiwand et al., 2015) Subset of cDC2s similar to 
CD24−CD11b− cDC2s in skin-
draining LNs

Irf4f/f Itgax-cre (Bajana et al., 2012) 
(Schlitzer et al., 2013) (Persson et al., 
2013) (Gao et al., 2013)

~50% CD11b+ cDC2s in lung, ~50%
CD103+CD11b+ cDC2s in small 
intestine lamina propria, complete 
absence of cDC2s in lymph nodes

cDC2s cannot migrate, failure to migrate may explain 
many observed phenotypes
May also affect M2 macrophages or GM-CSF activated 
monocytes

Tcf4f/f Itgax-cre (Cisse et al., 2008) pDCs

Zeb2f/f Itgax-cre (Scott et al., 2016) pDCs
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