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Abstract

To achieve sample sizes necessary for effectively conducting genome-wide associ-
ation studies (GWASs), researchers often combine data from samples possessing
multiple potential sources of heterogeneity. This is particularly relevant for psychi-
atric disorders, where symptom self-report, differing assessment instruments, and
diagnostic comorbidity complicates the phenotypes and contribute to difficulties
with detecting and replicating genetic association signals. We investigated sources
of heterogeneity of anxiety disorders (ADs) across five large cohorts used in a
GWAS meta-analysis project using a dimensional structural modeling approach
including confirmatory factor analyses (CFAs) and measurement invariance
(MI) testing. CFA indicated a single-factor model provided the best fit in each
sample with the same pattern of factor loadings. MI testing indicated degrees of
failure of metric and scalar invariance which depended on the inclusion of the ef-
fects of sex and age in the model. This is the first study to examine the phenotypic
structure of psychiatric disorder phenotypes simultaneously across multiple, large
cohorts used for GWAS. The analyses provide evidence for higher order invariance
but possible break-down at more detailed levels that can be subtly influenced by
included covariates, suggesting caution when combining such data. These
methods have significance for large-scale collaborative studies that draw on multi-
ple, potentially heterogeneous datasets. Copyright © 2016 John Wiley & Sons, Ltd.
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Introduction

Over the past decade, genome-wide association studies
(GWASs) have become the standard approach for investi-
gating and identifying common variants underlying indi-
vidual differences in complex genetic phenotypes. Due to
the strong polygenicity and related small effect sizes of in-
dividual variants, enormous sample sizes are required to
obtain adequate statistical power to detect their association
signals with the phenotypes (Visscher et al., 2012). This,
together with the effort and expense associated with sub-
ject recruitment and assessment, makes the required sam-
ple size often unattainable within a single study designed
for this purpose. This situation often leads to the compro-
mise of having to combine data from multiple studies that
used disparate designs. Modern approaches that make use
of large-scale imputation to standard human reference
genotypic datasets such as the 1000 Genomes project
(Auton et al., 2015) can largely overcome previous limita-
tions imposed by differences in genotyping platforms.
However, analogous issues arising with phenotypes are
not as readily addressed. There are non-trivial differences
between combining data across studies of more straight-
forwardly assessed phenotypes such as height and those
of the more complex and often heterogeneous phenotypes
encountered in medical and psychiatric disorder research.
Phenotypic heterogeneity is often cited as a potential con-
tribution to loss of power for genetic studies of complex
disease (Manchia et al., 2013) but rarely investigated
empirically. One exception is a recent large meta-analysis
of personality that applied item response theory in an at-
tempt to place items that served as indicators of the latent
personality constructs from different surveys on the same
liability scale (van den Berg et al., 2014) before including
them in GWASs (de Moor et al., 2015).

In the Anxiety Neurogenetics Study (ANGST) consor-
tium, we seek to collate and combine data from multiple,
large datasets that are phenotypically and genetically infor-
mative for studying the five primary anxiety disorders
(ADs) as recognized in the Diagnostic and Statistical
Manual of Mental Disorders, fifth edition (DSM-5;
American Psychiatric Association, 2013): generalized anx-
iety disorder (GAD), panic disorder (PD), agoraphobia
(AG), social phobia (SOC), and specific phobia (SP). This
strategy of studying clinically related disorders in concert
rather than one-by-one draws on the findings from genetic
epidemiologic literature that suggest that, although com-
plex, a common phenotypic liability structure including
both shared and disorder-specific risk factors can account
for the high lifetime comorbidity across ADs (Hettema
et al., 2005). In prior genetic association studies, we

applied phenotypic and twin biometric factor analyses to
individual datasets to identify a single latent liability factor
and used it as the dependent outcome for association anal-
ysis (Hettema et al., 2008). For ANGST, we applied similar
factor analyses within each individual dataset prior to
GWASs and meta-analysis (Otowa et al., 2016). However,
this makes the assumption that the same dimensional
structure accounts for the covariation among these five
clinical disorder phenotypes equally well in each of the
samples (homogeneity). If not, it is possible that tests of
genetic variants may produce inconsistent association
signals, in part, due to differences in how the phenotype
is defined across samples, which in turn may contribute
to misleading conclusions about association findings in
the meta-analysis. We note that this becomes an even
greater issue for mega-analyses that directly combine
phenotypic data prior to GWASs.

In the present study, we investigated the consistency
and equivalence of the covariance structure of lifetime
ADs across multiple, independently collected and charac-
terized cohorts of European background. These samples
come from different countries, have different age ranges,
and use different instruments for psychiatric assessment.
This serves as an example study for applying extant statis-
tical approaches in a novel manner in order to address
issues of heterogeneity for large genetic studies that re-
quire the combination of such diverse data. We sought
to answer the following questions:

(1) Does the same phenotypic pattern and structure exist
across the ADs in each study?

(2) If not, what are the sources of heterogeneity, and how
can they be characterized statistically?

(3) How do the effects of other phenotypic predictors
such as age and sex vary between studies and impact
these findings?

Material and methods

Samples and phenotypes

For the ANGST GWAS meta-analysis, seven independent
cohort samples of Caucasian subjects of European back-
ground were included, each containing the five AD pheno-
types and genotypic information. Two cohort samples
were excluded from the current analysis due to major
differences in their ascertainment designs compared to
the others: QIMR (Jardine et al., 1984), an Australian
twin-family sample which required the selection of one
member from each family for the GWAS and also did
not assess each of the five ADs in each ascertainment wave;
NESDA/NTR, a hybrid case/control sample combined
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from two independent Dutch studies initially to investi-
gate the genetics of major depressive disorder (Boomsma
et al., 2008). The five samples examined herein are
described in Table 1 with details in the references cited
there. Data from human subjects in each study was
obtained in accordance with the Declaration of Helsinki
after informed consent in a manner approved by the
respective local institutional review board.

Each cohort contained symptom criteria level informa-
tion on the five primary AD phenotypes (GAD, PD, AG,

SOC, and SP). These were assessed using standardized
DSM-based instruments from which we developed a
scheme for each sample to assign a classification score
for each individual based on the extent of symptomatic
criteria endorsed for each disorder. Scores were assigned
as follows: for each of the ADs, subjects meeting full symp-
tomatic criteria were denoted as “full cases” (score = 2);
subjects who were highly symptomatic but did not meet
full criteria were labeled as “sub-syndromal” (score = 1);
and finally those with few or no prior symptoms were

Table 1. Sample characteristics and prevalence of anxiety disorders in each sample

Sample

MGS PsyCoLaus RS SHIP TRAILS

Sample size (N) 3775 3575 9718 2291 1584
Country USA Switzerland Netherlands Germany Netherlands
Female (%) 54.5 53.3 58.3 52.3 50.8
Age (years)
Mean age (SD) 49.5 (16.3) 51.0 (8.8) 66.5 (10.8) 55.4 (14.0) 18.7 (0.6)
Age group (%) <20 1.6 — — — 89.7

20–29 12.2 — — — 10.3
30–39 15.3 10.1 — 16.0 —
40–49 22.4 37.2 5.1 21.7 —
50–59 19.6 30.4 22.2 21.7 —
≥60 28.9 22.3 72.8 40.6 —

Diagnostic Instrument
Frequency1 (%) Score CIDI-SF DIGS, SADS-LA M-CIDI M-CIDI CIDI

GAD 0 2783 (0.74) 3442 (0.96) 9201 (0.96) 2078 (0.92) 1480 (0.94)
1 270 (0.07) 75 (0.02) 146 (0.02) 137 (0.06) 35 (0.02)
2 690 (0.18) 58 (0.02) 242 (0.03) 54 (0.02) 62 (0.04)

SP 0 2264 (0.60) 2806 (0.79) 6805 (0.71) 1423 (0.63) 792 (0.50)
1 1066 (0.28) 203 (0.06) 2626 (0.27) 447 (0.20) 602 (0.38)
2 442 (0.12) 566 (0.16) 160 (0.02) 398 (0.18) 183 (0.12)

SOC 0 2362 (0.63) 3027 (0.85) 9148 (0.96) 1908 (0.84) 1029 (0.65)
1 874 (0.23) 110 (0.03) 289 (0.03) 217 (0.10) 352 (0.22)
2 538 (0.14) 438 (0.12) 120 (0.01) 153 (0.07) 196 (0.12)

AG 0 3224 (0.85) 3337 (0.93) 8789 (0.92) 2049 (0.90) 1423 (0.90)
1 303 (0.08) 89 (0.03) 361 (0.04) 93 (0.04) 107 (0.07)
2 246 (0.07) 149 (0.04) 433 (0.05) 136 (0.06) 47 (0.03)

PD 0 3648 (0.97) 3254 (0.91) 9046 (0.94) 2110 (0.93) 1312 (0.83)
1 41 (0.01) 164 (0.05) 125 (0.01) 56 (0.03) 240 (0.15)
2 78 (0.02) 157 (0.04) 450 (0.05) 111 (0.05) 25 (0.02)

Abbreviations: CIDI-SF, Composite International Diagnostic Interview, Short Form; DIGS, Diagnostic Interview for Genetic
Studies; SADS-LA, Schedule for Affective Disorders and Schizophrenia – Lifetime and Anxiety disorder version (French
version); M-CIDI, Munich version of the Composite International Diagnostic Interview; MGS, Molecular Genetics of
Schizophrenia; RS, Rotterdam Study; SHIP, Study of Health in Pomerania; TRAILS, Tracking Adolescents’ Individual Lives
Survey; GAD, generalized anxiety disorder; SP, specific phobia; SOC, social phobia; AG, agoraphobia; PD, panic disorder.
1Not including missing values.
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classified as “unaffected/controls” (score = 0). A score of
one was operationalized by either (i) keeping the full
symptomatic criteria and removing the diagnostic
requirements of distress/impairment or (ii) reducing the
symptomatic severity or duration. This scoring strategy
resulted in an ordered categorical (ordinal) variable for
each of the ADs rather than the more typical minimal
information binary “unaffected” versus “affected” vari-
able. These five ordinal AD variables were input to the
dimensional latent factor analyses to be described later.
These factor analyses were used to estimate quantitative
factor scores for each subject as input to the GWAS
(Otowa et al., 2016). This coding strategy was also used
to identify more extreme comparison groups used in a
separate case-control GWAS, since diagnostic thresholds
are defined for clinical purposes and may not sufficiently
differentiate subjects by the risk alleles they carry.
Demographic characteristics and the prevalence of these
ADs in each sample are presented in Table 1.

Within-sample factor analysis

Exploratory factor analysis (EFA) was used to determine
the number of continuous latent factors required to
explain the covariance structure across the five ADs.
Confirmatory factor analysis (CFA) was conducted using
the robust weighted least squares mean and variance ad-
justed estimator (WLSMV) to verify the factor structure.
EFA and CFA were performed separately for each sample
in Mplus 7.1 (Muthen & Muthen, 2012). In each study,
(i) unidimensionality of the five AD indicators was tested,
and (ii) the effects of exogenous covariates sex and age on
the latent factor were also investigated. Identification was
achieved by fixing one of the disorder indicator variables
to 1.0 and freely estimating the factor variance. Age was
rescaled to centuries by dividing age in years by 100 to
establish a common metric across all samples. Model fit
was assessed following the recommended cutoffs for
several fit indexes: the comparative fit index (CFI), the
Tucker–Lewis Index (TLI), and the root mean square
error of approximation (RMSEA). Current recommenda-
tions suggest TLI and CFI values ≥ 0.95 indicate good fit
whereas values> 0.90 indicate acceptable model fit.
RMSEA values ≤ 0.05 are considered good approximating
model fits whereas values of 0.08 are considered acceptable
(Hu and Bentler, 1999).

Assessing measurement invariance

Measurement invariance (MI) across the samples was
investigated using a multi-group CFA framework. Differ-
ent forms of invariance can be tested by comparing nested

models with increasing levels of restrictions on the mea-
surement parameters across groups. Nested models were
organized in a hierarchical fashion starting from a baseline
model (Meredith, 1993;Vandenberg and Lance, 2000;
Cheung and Rensvold, 2002). Since the AD indicators
were constructed as ordered categorical variables, the
model specification and fitting strategy for MI testing with
categorical variables was as described in Millsap and
Yun-Tein (2004) and implemented in the Mplus software.
The initial step to evaluating factorial invariance is to test
for configural invariance. In this model, factor loadings
and thresholds are freely estimated in each of the samples
(except for the fixed parameters necessary for model
identification). Configural invariance examines whether
the overall factor structure as defined by the patterning
of factor loadings is invariant across samples. For example,
is a single common factor model adequate to account for
the associations among the ordinal disorder variables in
all samples? Next, metric invariance is imposed by adding
constraints forcing all factor loadings to be equal across
samples except for a referent indicator fixed to one for
identification and thus equal across samples. Thresholds
are allowed to vary across samples except for those indica-
tor thresholds constrained for model identification
purposes. More specifically, the first threshold of each in-
dicator is constrained to be equal across samples and the
second threshold of the reference indicator is also held
equal across samples. Also referred to as “weak” invari-
ance, this model tests whether the expected change in
the inferred unobserved liability for each AD indicator
variable per unit change on the latent common factor
(i.e. the slope) is the same across samples. The most strin-
gent level of the invariance tested here, scalar invariance,
evaluates the impact of constraining both factor loadings
and thresholds to be equal across all samples. This restric-
tion on the measurement parameters implies that individ-
uals who have the same score on the latent factor should
have the same expected observed score on the disorder
indicator variable in each sample (Mellenbergh, 1989).
Scalar invariance is required for meaningfully interpreting
comparisons of latent construct means across samples.1

This series of measurement invariance testing was
further extended by examining models with and without
the covariate effects of sex and age on the latent factor

1 Strict invariance, which places the additional restriction that in-
dicator residual variances be equal across samples, is the most
stringent form of invariance that can be tested. However, this
level of invariance is deemed beyond the requirements necessary
to adequately establish a basis for determining equivalence across
samples in the present context and, therefore, was not examined.
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within each sample. In MI tests with covariates, age
effects were allowed to vary across samples, while the
sex effect was constrained to be equal in order for a
metric invariance model to be identified (sex and age
invariance across samples is tested later). The chi-square
difference test was utilized to evaluate the statistical
significance of nested model fit comparisons. However,
since the chi-square difference is known to be sensitive
to increasing sample size, we also examined changes in
omnibus model fit indices based on recommendations
proposed by Chen (2007). Change in CFI≥ 0.01 or
RMSEA≥ 0.015 are evidence for the presence of significant
non-invariance.

For the exogenous covariate analyses, the invariant
effects of sex and age on the latent anxiety liability factor
across samples were investigated under the configural
and scalar invariance models, respectively. We note that
we could not test the effect of the binary sex variable on
the latent AD factor under the metric invariance condition
due to convergence problems possibly due to issues related
to model identification.

Results

Before reviewing the analytical results, it is informative to
compare the characteristics of each sample (Table 1).
These come from four different countries, with sample
sizes ranging from around 1500 in TRAILS (Tracking
Adolescents’ Individual Lives Survey) to almost 10,000 in
RS (Rotterdam Study). Age at assessment also varied
appreciably, with the youngest participants within a
narrow range in TRAILS (late teens to early twenties)

and the oldest in RS (primarily an elderly sample, with
72% above the age of 60). The proportions of males to
females were more consistent. Some version of the
Composite International Diagnostic Interview (CIDI)
was used for psychiatric assessment in all studies except
for PsyCoLaus. The prevalence of each AD ordinal cate-
gory varied somewhat, with particular differences seen
for GAD=2 (18%) in MGS (Molecular Genetics of
Schizophrenia) study, SP= 1 in PsyCoLaus (6%) and
TRAILS (38%), SP= 2 (2%) and SOC=2 (1%) in RS,
PD=1 (15%) in TRAILS, and overall greater variation in
SOC=1 across all the cohorts.

Factor structure within samples

Results from the EFA and CFA for each sample supported
the hypothesis that a single-common factor model
adequately accounted for the association among the five
ordinal AD indicator variables (see Figure 1). Table 2
presents the estimated factor loadings and model fit
indices for each single-group, single-factor model.
Allowing separate covariate effects of sex and age on the
common factor in each sample, the mean effect of sex
was positive (i.e. higher for females) and statistically
significant in each sample. This reflects the expected sex
differences between males and females on the common
latent anxiety factor while taking into account sampling
variation and controlling for age. Significant linear age
effects on the latent factor were detected in all samples
except for PsyCoLaus and TRAILS. Overall, the inclusion
of these exogenous covariates did not alter the estimated
pattern of factor loadings.

Figure 1. Diagram of factor structure in each sample for measurement invariance testing based on the single-factor model.
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Measurement invariance testing across samples

Model fitting results for MI testing are shown in Table 3.
Configural invariance testing supported the hypothesis
that a single-factor structure adequately accounted for
the associations among the five ADs in each of the samples
(CFI = 0.989, TLI = 0.978, RMSEA=0.029). Imposing the
additional restrictive constraint of metric invariance
(equal factor loadings) across samples resulted in poorer
goodness-of-fit indices (CFI = 0.887, TLI = 0.862,
RMSEA=0.072). The metric invariance chi-square
difference test was significant when compared with the
fit of the configural invariance model (Δχ2=726.7, df=16,
ΔCFI= 0.102, ΔRMSEA=0.043). The test of scalar invari-
ance, in which all remaining free within-sample thresholds
are forced to be equal across samples, also produced
significantly poorer model goodness-of-fit indexes
(CFI = 0.837, TLI = 0.857, RMSEA=0.074) as well as an
increase in misfit based on the chi-square difference test
when compared to the configural (Δχ2 = 1154.2, df = 32,
ΔCFI= 0.152, ΔRMSEA=0.045) and metric invariance

(Δχ2 = 452.8, df = 16, ΔCFI= 0.05, ΔRMSEA=0.002)
models. Given the large sample sizes, all of these tests were
significant at p< 0.0001.

The sequence of invariance testing was repeated, but
this time taking into account the effects of sex and age
on the latent common AD factor (bottom half of Table 3).
Due to convergence issues in metric invariance, models
were fit allowing age effects to vary across samples, but sex
effects were constrained to be equal in all samples. The
metric and scalar invariance model tests, when including
covariate effects on the latent anxiety factor, showed im-
provement in fit compared to the MI model fitting results
without covariates (CFI> 0.9, TLI> 0.9, RMSEA< 0.05).
The chi-square difference misfit test statistics were notice-
ably reduced, now with ΔCFI but not ΔRMSEA above
their suggested cutoffs, respectively, for MI.

Sex and age invariance

Having established the baseline invariance models
(configural and scalar invariance) in which the covariate

Table 2. Within sample standardized factor loadings, model fit indices, and covariate effects for one-factor confirmatory
factor analysis (CFA), by sample

Factor loading Fit indices Covariate effects

Sample GAD SP SOC AG PD CFI RMSEA Age1 Sex1

Unadjusted2

MGS 0.674 0.589 0.730 0.880 0.600 0.997 0.023
PsyCoLaus 0.397 0.395 0.379 0.774 0.787 0.970 0.034
RS 0.515 0.476 0.636 0.809 0.548 0.989 0.020 NA
SHIP 0.601 0.529 0.636 0.820 0.743 0.978 0.047
TRAILS 0.604 0.514 0.544 0.726 0.598 0.983 0.035

Adjusted2

MGS 0.682 0.594 0.728 0.877 0.600 0.985 0.033 �0.092 0.223
PsyCoLaus 0.394 0.431 0.381 0.775 0.773 0.937 0.033 �0.050 0.291
RS 0.520 0.525 0.620 0.775 0.588 0.904 0.041 �0.110 0.340
SHIP 0.603 0.553 0.633 0.813 0.743 0.969 0.035 �0.137 0.303
TRAILS 0.612 0.528 0.530 0.721 0.599 0.979 0.025 0.021 0.284

Abbreviations: MGS, Molecular Genetics of Schizophrenia; RS, Rotterdam Study; SHIP, Study of Health in Pomerania;
TRAILS, Tracking Adolescents’ Individual Lives Survey; GAD, generalized anxiety disorder; SP, specific phobia; SOC, social
phobia; AG, agoraphobia; PD, panic disorder; CFI, comparative fit index; RMSEA, root mean square error of approximation;
CI, confidence interval; NA, not applicable.
1Age was rescaled by dividing by 100; sex was coded one for female and zero for male.
2Indicating whether or not the covariate effects (sex and age) on the latent factor were included in the models;
Unadjusted = the models not including covariates; Adjusted = the models including covariates.
Note: All factor loadings were statistically significant, and the covariate effects in italic typeface were significant. Each sep-
arate common factor model was identified by fixing the same anxiety disorder (AD) variable (GAD) to one. Standardized
loadings were obtained for each sample separately making these factor loading estimates more difficult to compare across
samples but more interpretable within samples.
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effects are freely estimated in each of the samples, the
effects of sex and age on the common factor were
constrained to be equal across samples. The configural
and scalar measurement invariance model fits served as
reference comparisons for assessing the fit of the
invariance model including the sex and age covariates.
Table 4 gives the results of the invariance testing for the
covariates. It shows that both the configural and scalar
invariance models including sex and age effects on the
common AD factor had better fits than the baseline
models (non-significant chi-square differences, decrease
in CFI, and increase in RMSEA).

Discussion

In this study, we investigated the question of phenotypic
heterogeneity among five clinically distinct lifetime ADs
across five independently collected and characterized
cohorts of European background. We will address our find-
ings in turn for the three questions we posed for the study.

(1) Does the same phenotypic pattern and structure
exist across the ADs in each study?

We examined this question via MI testing within a
dimensional structural modeling approach for the five
ADs. We treated the ordinal coded AD variables as
indicators of a single latent AD liability across the five
cohorts, fitting common factor models separately in each
sample. Consistent results across each of the samples
indicated that the five AD variables adequately functioned
as indicators of a single anxiety factor (Table 2). This
added support that a single common factor structure, as
applied to our recent GWAS meta-analysis (Otowa et al.,
2016), was an appropriate representation of the covaria-
tion among the five AD indicators in each of the samples.
In general, AG tended to have the highest loading on the
AD common factor across samples, indicating that this
indicator discriminated most strongly in the calibration
of individual differences on the common factor.

(2) If not, what are the sources of heterogeneity, and
how can they be characterized statistically?

We investigated more subtle sources of heterogeneity by
applying increasing levels of restrictions on the AD item
factor loadings and thresholds across the samples. Models
specifying configural invariance fit the data well. However,
metric and scalar MI testing results called into question the
assumption that the AD indicator factor loadings and
thresholds are invariant (i.e. function equivalently) in the
different cohort samples (Table 3). This is evidence

suggesting that individual differences on the unidimen-
sional common liability underlying the AD variables may
not be calibrated in exactly the same way due to some form
of differential item functioning among the five AD variables
across the different cohorts. These findings statistically
quantify the various differences seen in the disorder cate-
gory frequencies (Table 1) and sample loadings (Table 2).

(3) How do the effects of other phenotypic predictors
such as age and sex vary between studies and
impact these findings?

Similar sex effects were seen across the samples during
the common factor analyses, showing that, on average,
females had higher AD liability scores compared to males
across the samples. Higher female AD risk is consistent
with extant research findings. Age effects were more vari-
able, with the TRAILS sample and its younger, narrower
age range as a non-significant outlier. A noteworthy find-
ing is that accounting for relevant demographic covariates
such as sex and age at the level of the common AD liability
factor can impact the item level MI testing results.
Although the covariate effects in the present study were
limited to the latent factor, it appears that some of the
non-invariance operative at the individual AD item factor
loading and threshold levels can be accounted for by
simply allowing linear sex and age effects on the common
AD factor. Importantly, this resulted in more nominal
and mixed evidence for the failure of MI based on the
global item model testing misfit levels. Sex and age
were included as regressors in the genetic association
analyses conducted in each sample rather than at the level
of the latent factor, as the former is a more standard
practice in GWASs.

Several benefits of the MI testing procedure described
and applied here can be highlighted in situations where of-
ten diverse samples gathered under different sampling and
data collection protocols are to be combined to increase
power for GWAS analysis. First, if symptoms are simply
“counted up” to create aggregate sum scores or algorith-
mically collapsed to form an affected versus unaffected
diagnosis, it is not possible to evaluate whether the “same”
phenotype is defined in different samples by the items.
These strategies tacitly assume this to be true. However,
without empirically evaluating whether phenotypes are
equivalent across samples, it leaves open questions about
whether differences in how the phenotype is defined in
different samples contribute to discrepancies or inconsis-
tencies that emerge in GWAS findings when samples are
analyzed separately and compared. Meta-analysis would
not be of much help in that case.
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Second, detecting the presence of measurement
non-invariance across samples opens the possibility of
identifying the sources of the failure of MI. For the data
examined herein, MI was partially recovered after allowing
for effects of sex and age on the common factor. If that
were not the case, one may employ more detailed strate-
gies that can identify which item characteristics are the
major sources contributing to the non-invariance across
samples. If a subset of items can be found that are
invariant in their measuring properties, it may be possible
to impose partial measurement invariance (Byrne et al.,
1989) in an attempt to establish equivalent phenotypes
across samples. Future research into establishing
equivalent phenotypes and the degree to which attention
to measurement issues raised here can impact the outcome
of GWAS analyses, especially in the context of applications
using multiple data sources, seems worthwhile.

Limitations

There are several potential limiting aspects of the current
research that should be considered when interpreting
these findings. MI testing is typically applied to the most
basic level of data information — the individual items.
Although we had access to symptom level data, this finer
grain information was not necessary for identifying a
latent AD common liability phenotype that closely
paralleled the DSM diagnostic classification system for
the purpose of genetic association testing. Also, because
the constraints for the metric invariance testing specifica-
tion are not satisfied in the case of binary variables, the
ordered three-category classification coding was necessary
for examining this aspect of MI. However, given these
heuristic justifications for the strategy used, it should be
pointed out that a full item level MI analysis may
produce a different perspective on the nature of
invariance/equivalence of the common AD phenotype
across the five cohorts.2

A second more technical point to note is that extending
multiple group CFA MI model testing to include demo-
graphic covariate effects on the common AD liability factor

is not conventionally done. However, the results we ob-
tained using this approach suggest potential advantages. As
noted previously, allowing binary sex effects to vary across
cohort samples resulted in convergence problems when test-
ing for metric (i.e. factor loading) invariance across cohorts,
preventing us from testing these effects.

Third, we note that we used an atypical three-level
ordinal scoring system for each AD due to the aforemen-
tioned advantages for a genetics study over the usual case-
control design. For comparison, we reanalyzed these
invariance models using standard case-control assignments
(in our scheme, full cases= subjects scored as two and
controls= subjects scored as zero or one). However, only
the configural invariance model is identified for binary indi-
cators, preventing us from testing for metric and scalar in-
variance. Configural invariance fit the data well (CFI/
TLI> 0.98 and RMSEA=0.02), providing reassurance that
these results are generally applicable to both coding schemes.

This is the first study to examine the phenotypic struc-
ture of psychiatric disorder phenotypes simultaneously
across multiple, large cohorts used for GWASs. The anal-
yses provide evidence for higher-level invariance for the
ADs but possible break-down at more detailed levels that
can be subtly influenced by included covariates, suggesting
caution when combining such data. Thus, formal invari-
ance testing has practical value for identifying and charac-
terizing phenotypic heterogeneity with significance for
large-scale collaborative efforts such as genetic association
studies that draw on multiple, potentially heterogeneous
sources of data. In particular, these results have specific
utility for studies that combine multi-factor phenotypes
across different cohorts. This could apply to (a) single
disorders for which symptom item-level data might be
analyzed to assess cryptic heterogeneity across samples
(e.g. major depression [Kendler et al., 2013]); (b) disor-
ders considered to consist of multiple inherent factors
(e.g. post-traumatic stress disorder (Friedman et al., 2011),
obsessive-compulsive disorder (Bloch et al., 2008)); or
(c) multiple disorders jointly analyzed due to their a priori
genetic covariance (e.g. polysubstance abuse [Kendler et al.,
2003]) similar to what we have done for ADs.
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Appendix

Molecular Genetics of Schizophrenia (MGS)

Samples and associated phenotype data for the
Molecular Genetics of Schizophrenia (MGS) study were
collected under the following grants: National Institute
of Mental Health (NIMH) Schizophrenia Genetics
Initiative U01s: MH046276 (CR Cloninger), MH46289
(C Kaufmann), and MH46318 (MT Tsuang); and MGS
Part 1 (MGS1) and Part 2 (MGS2) R01s: MH67257
(NG Buccola), MH59588 (BJ Mowry), MH59571
(PV Gejman), MH59565(Robert Freedman), MH59587
(F Amin), MH60870 (WF Byerley), MH59566
(DW Black), MH59586 (JM Silverman), MH61675
(DF Levinson), and MH60879 (CR Cloninger).

Rotterdam Study (RS)

The Rotterdam Study (RS) is supported by the Research
Institute for Diseases in the Elderly (014-93-015; RIDE2),
the Netherlands Genomics Initiative (NGI)/Netherlands
Consortium for Healthy Ageing (NCHA) project No.
050-060-810. The work of Henning Tiemeier is supported
by Vidi (grant 017.106.370). The RS is funded by Erasmus
Medical Center, Rotterdam, the Netherlands Organization
for the Health Research and Development (ZonMw), the
Ministry of Education, Culture and Science, and the
Ministry for Health, Welfare and Sports.

Study of Health in Pomerania (SHIP)

Study of Health in Pomerania (SHIP) is part of the
Community Medicine Research net of the University of
Greifswald, Germany, which is funded by the Federal
Ministry of Education and Research (grants no.
01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of
Cultural Affairs and the Social Ministry of the Federal

State of Mecklenburg-West Pomerania. This work was
also funded by the German Research Foundation (DFG:
GR 1912/5-1).

PsyCoLaus

The CoLaus|PsyCoLaus study was and is supported by
research grants from GlaxoSmithKline, the Faculty of
Biology and Medicine of Lausanne, and the Swiss National
Science Foundation (grants 3200B0–105993, 3200B0-
118308, 33CSCO-122661, 33CS30-139468 and 33CS30-
148401).

Tracking Adolescents’ Individual Lives Survey
(TRAILS)

Tracking Adolescents’ Individual Lives Survey (TRAILS)
has been financially supported by grants from the Nether-
lands Organization for Scientific Research NWO (Medical
Research Council program grant GB-MW 940-38-011;
ZonMW Brainpower grant 100-001-004; ZonMw Risk
Behavior and Dependence grants 60-60600-97-118;
ZonMw Culture and Health grant 261-98-710; Social
Sciences Council medium-sized investment grants
GB-MaGW 480-01-006 and GB-MaGW 480-07-001;
Social Sciences Council project grants GB-MaGW 452-
04-314 and GB-MaGW 452-06-004; NWO large-sized
investment grant 175.010.2003.005; NWO Longitudinal
Survey and Panel Funding 481-08-013 and 481-11-001),
the Dutch Ministry of Justice (WODC), the European
Science Foundation (EuroSTRESS project FP-006),
Biobanking and Biomolecular Resources Research
Infrastructure BBMRI-NL (CP 32), and the participating
centers (University Medical Center and University of
Groningen, Erasmus University Medical Center
Rotterdam, University of Utrecht, Radboud Medical
Center Nijmegen, and Parnassia Bavo group).
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