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Abstract

In Electrical Impedance Tomography (EIT), we apply patterns of currents on a set of electrodes at 

the external boundary of an object, measure the resulting potentials at the electrodes, and, given 

the aggregate data set, reconstruct the complex conductivity and permittivity within the object. It is 

possible to maximize sensitivity to internal conductivity changes by simultaneously applying 

currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to 

changes in impedance at the interface. We have therefore developed algorithms to assess contact 

impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal 

conductivity/permittivity changes within the body. We use simple linear algebraic manipulations, 

the generalized SVD, and a dual-mesh finite-element-based framework to reconstruct images in 

real time. We are also able to efficiently compute the linearized reconstruction for a wide range of 

regularization parameters and to compute both the Generalized Cross-Validation (GCV) parameter 

as well as the L-curve, objective approaches to determining the optimal regularization parameter, 

in a similarly efficient manner. Results are shown using data from a normal subject and from a 

clinical ICU patient, both acquired with the GE GENESIS prototype EIT system, demonstrating 

significantly reduced boundary artifacts due to electrode drift and motion artifact.

I. Introduction

In Electrical Impedance Tomography (EIT), we can maximize sensitivity to changes in 

conductivity and permittivity deep within the body by simultaneously applying currents and 

measuring voltages on all electrodes [1], or, more specifically, by applying the eigen-

currents of the Dirichlet-to-Neumann map. By doing so, though, we tend to also maximize 

our sensitivity to changes in impedance that occur at the interface between the electrodes 

and the body. An alternate approach is to use “four-electrode” measurements by applying 
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current through adjacent electrodes and measuring on non-current-carrying electrodes [2]. In 

this case sensitivity to electrode impedance changes is reduced but the current density is 

primarily concentrated near the surface of the body, reducing the sensitivity to changes deep 

within the body. An ideal approach would give us high sensitivity to internal changes while 

also being robust to changes at the electrode-skin interface.

EIT has been proposed for a number of distinct applications from breast cancer screening 

[3], [4], [5] to monitoring of hydration [6] to lung ventilation [7], [2]. A review of the 

history, methods, and applications of EIT can be found in the text by Holder [8]. EIT can be 

performed in a number of modes: in absolute imaging, the goal is to compute a three-

dimensional model of the three-dimensional conductivity and permittivity, typically by 

comparing the measured data to some sort of numerical or analytical “forward model.” In 

contrast, for difference-imaging, we only wish to reconstruct changes in the electrical 

properties of the body, assuming for example a homogeneous background distribution of 

properties. In difference-imaging, differences between voltages (or currents) measured on 

various electrodes over time are used as the inputs to the algorithm. Since the two 

measurements are affected by the same systematic errors due to electrode position 

uncertainty, absolute contact impedance and other factors, this imaging mode tends to be 

quite robust to these sources of error, which largely cancel-out in the subtraction. While this 

imaging approach, which has been generally used for lung monitoring, is typically robust to 

mis-estimation of body shape, electrode positions, and absolute electrode contact impedance 

variations, it is less robust to changes that happen simultaneously with the imaging, for 

example changes in the quality of each electrode’s contact with the body over time. The 

subject of this paper is difference-imaging where we attempt to compensate for some of 

these time-varying electrode-contact changes.

A number of electrode models have been suggested for use in EIT [9], [10] and it appears 

that the model with the most practical utility is the “complete electrode model” (CEM), 

introduced in [10] and further studied in [11], [12], [13], [14]. However, the superiority of 

this model has been primarily demonstrated with saline tank and phantom studies. Using 

human subject data, we will show the utility of this model for estimating changes that are 

happening in some small neighborhood of the electrodes and removing their effect from the 

conductivity reconstructions. Mathematically, the existence and uniqueness of the forward 

solution to the CEM model equations has been demonstrated [14].

In the field of solid-state physics the term “contact impedance” has a specific meaning 

related to the energy potential that needs to be overcome at the interface between for 

example a metal contact and a semiconductor substrate. In the case of imaging the body with 

EIT, the physics of the problem is significantly more complicated. The charge carriers in the 

electronic circuitry are electrons and the body contains various types of ions (chloride, 

sodium, potassium, etc…). Complex electrochemistry takes place at the interface of the 

electrodes, for example silver chloride [15], and the body. Similarly the skin has a complex 

three-dimensional multi-layered structure. We have found it useful to model all of the 

phenomena at the interface of each electrode and the skin with a single complex, time-

varying parameter which we will refer to as its “contact impedance” keeping in mind that 

physically this parameter is the result of the aggregation of a number of distinct physical 

Boverman et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenomena. We thus propose to use the current patterns that maximize distinguishability due 

to internal changes [1] while estimating and compensating for changes at the interface 

between the skin and the body using the complete electrode model. Changes in what we call 

“contact impedance” may be due to ion diffusion gradients, electrode motion, perspiration, 

contact gel, double-layer boundary effects, or changes in skin temperature, all of which 

serve to modulate the quality of current transfer through the electrodes and into the skin. To 

a lesser extent we may also be compensating for imperfections in the system hardware, for 

example drift in the applied currents over time.

There has been previous work on simultaneously estimating electrode contact impedances 

using the CEM and a medium’s internal admittivity. Kolehmainen and co-workers [16] 

demonstrated the sensitivity of the static imaging reconstruction using the CEM to errors in 

the assumed value of the contact impedance. The theory underlying the problem of 

simultaneous reconstruction of images and estimation of contact impedances was described 

in a report by Vilhunen and co-workers in 2002 [17]. The results shown were for a saline 

tank test cell with metal electrodes. In a follow-up publication, the same group [18] 

formulated the inverse problem as one of Bayesian estimation, incorporating regularization 

of the estimated image. They confirmed the results in a saline tank phantom with metal 

electrodes. The methods described in our current paper are based on a linearization 

assumption. The validity of this assumption has previously been validated for EIT 

determining the support of an inclusion in a piecewise-constant medium [19] but we are not 

aware of results on unique estimation of internal admittivities and contact impedances. In 

our current work, as the focus is on difference-imaging with a reference point close-by in 

time, we believe that the linearization assumption is warranted.

In a previous article, we described an approach to compensating for electrode contact quality 

using the complete electrode model in the context of absolute imaging [20]. There we 

showed that we could simultaneously estimate the contact impedances of all electrodes 

simultaneously with the image reconstruction, including compensating for the partial 

occlusion of one or more electrodes. More recently, Nissinen [21] reported on an algorithm 

for simultaneously estimating unknown contact impedances and unknown boundary shape, 

again in the context of absolute imaging. All of the above-referenced works relate to 

absolute or “static” imaging. Here, we consider the problem of difference or dynamic 

imaging where the region being imaged and contact impedances are both changing over time 

and show results for human subjects in vivo.

In what follows, we will describe efficient algorithms for simultaneously estimating time-

varying electrode contact impedances and generating reconstructions using the complete 

electrode model. First, we will consider the case of reconstructing a single global impedance 

(or a small number of regional impedances). In this case, no regularization may be 

necessary, although it could be introduced to further constrain the solution. We then consider 

the case of reconstructing the spatial distribution of conductivity and permittivity, a problem 

requiring regularization to reduce its ill-posedness. We show that it is possible, using the 

generalized singular value decomposition (GSVD) [22], to generate explicit formulas for the 

matrices used in the linearized reconstruction for all possible values of the regularization 

parameter. Using the GSVD, it is also possible to efficiently compute the generalized cross-
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validation (GCV) metric. As for any given regularization parameter we can easily compute 

the reconstruction solution, we can also easily compute the L-curve [23] which is a heuristic 

approach to choosing the regularization parameter that simultaneously minimizes the 

residual as well as some selected image penalty function.

The structure of this paper is as follows. In section II, we outline the mathematical structure 

of the problem and describe the dual-mesh reconstruction approach used. The complete 

electrode model is described mathematically in section III and we also outline how the 

forward model can be solved and how the Jacobian matrices can be generated using the 

finite-element model. We also describe the software used to generate the finite element 

meshes used in our human subject experiments. The image reconstruction algorithms are 

described in sections IV and V. Example results for a normal subject and an intensive care 

unit patient are in Section VI.

II. Mathematical Preliminaries

At each time, we assume a measurement vector, y(t), resulting from the application of K 
patterns of current on L electrodes, where typically K = L − 1 to form a complete set of 

measurement. We denote the measurement at time 0, y(0), to be the “reference” 

measurement. Furthermore, we assume that our medium is well-described by the CEM and 

that we are able to compute the Jacobian matrices with respect to the contact impedances 

and the internal medium admittivities using previously-described methods [11], [12]. In our 

modeling, we use the finite-element method with customized meshes refined at the 

electrodes and we compute the Jacobian matrix with respect to changes in conductivity on 

the basis of tetrahedral elements.

The FEM meshes required for reasonable forward modeling accuracy typically have 

hundreds of thousands to millions of elements. Reconstructing images using this many basis 

functions would be computationally very expensive. We therefore create a “coarse” mesh 

whose basis functions are composed of disjoint unions of the forward-modeling tetrahedral 

elements. In the simplest case, this coarse-scale mesh contains only a single basis function 

representing the global admittivity of the entire medium. More generally, we consider a 

matrix P whose columns are orthogonal and represent linear combinations of tetrahedral 

basis functions. Specifically, we can write:

(1)

where x(t) is the solution for the admittivity at time t, P is a matrix of size V × M where V is 

the number of fine-scale basis functions, M is the number of coarse-scale basis functions, 

and p(t) is an M × 1 column vector representing the solution in terms of coarse-scale basis 

functions at time t. In the simplest case, P is a column vector of all ones and p(t) is a scalar 

at each point in time representing the global complex admittivity of the entire medium. If we 

have prior information that the medium is composed of different regions, for examples two 

lobes of the lungs and the heart, we can then generate basis functions defined on the support 
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of each of these regions, and solve for the admittivity within each of these regions at each 

point in time.

We use a simple agglomerative algorithm to create a coarse mesh from a fine mesh. We start 

with the original tetrahedral finite-element mesh generated by the finite-element meshing 

software and merge elements with nearest neighbors until a minimum volume threshold, Vt 

is reached. Specifically, we used Algorithm 1.

Algorithm 1

Fine-to-coarse mesh refinement

Initialize set of coarse mesh elements C with tetrahedral
elements from mesh generation

for each c ∈ C do

  compute V(c), the volume of c

  compute N(c), the list of nearest neighbors of c

  initialize L(c), the list of tetrahedral elements comprising
  c

end for

for each c ∈ C such that V (c) < Vt do

  Merge c with the member of N(c) with the largest
  volume, m

  Remove c from C

  Update N(m) to include N(c):

  Update members of N(c) to include m

  Update members of N(c) to remove c

  Update V (m) = V (c) + V (m)

  Update L(m) = L(m) ∪ L(c)

end for

We note that other merging criteria, for example based on combined element shape or extent 

can be considered and if we have a priori information about tissue boundaries then we can 

implement the constraint that we do not merge members of C, which are ultimately the basis 

functions used in the reconstruction, across tissue boundaries. We also note that the 

performance of this algorithm could be further optimized but that we achieve quite 

reasonable performance at present by first sorting the elements by volume in increasing 

order (eliminating smallest elements first.)

III. Numerical Modeling

To analyze the human subject data, we used the CEM as implemented by the EIDORS 

MATLAB software toolkit [24]. Jacobian matrices were computed using finite differences. 

However, as we shall see below, it is possible to explicitly compute the Jacobian matrices 

with respect to perturbations in either contact impedances or internal medium conductivities.
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A. Mathematical description of the CEM

In EIT, we assume that the potential in the body is described by Poisson’s equation, which is 

derived from the quasistatic approximation to Maxwell’s equations with isotropic 

conductivities:

(2)

where u(p) is the scalar potential as a function of position, p.

Cheng, Isaacson et al. [10] introduced the CEM in which the electrodes, being highly 

conductive, are specified to be at a uniform potential, but where there is assumed to be a 

potential gradient between the electrodes and the medium being probed which can be 

quantified by a “contact impedance” parameter which is defined on a per-electrode basis:

(3)

(4)

(5)

Here eℓ is the support of electrode ℓ, Iℓ is the current injected into this electrode, Uℓ is the 

measured potential on this electrode, zℓ is the electrode contact impedance, and ν is the 

vector normal to the boundary.

The following additional constraints, which require that the currents and voltages over all 

electrodes sum to zero, are needed for existence and uniqueness of the forward solution [14]:

(6)

(7)
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B. Numerical CEM Solution

The complete electrode model can be numerically solved using the Galerkin method, 

utilizing a set of test functions, υ, and representing both u(p), υ(p), and γ(p) as a linear 

combination of basis functions. The divergence theorem leads to the following relation:

(8)

Applying the boundary conditions, Eqs. 3 and 4, Eq. 8 can be rewritten as

(9)

Rewriting Eq. 5, we have

(10)

Substituting Eq. 10 into Eq. 9, we find that:

(11)

and substituting Eq. 10 into Eq. 3, we have

(12)

where ℓ = 1,2,…,L and |eℓ| is the area of ℓ-th electrode.

Finally, substituting Eq. 12 into Eq. 11, we have

(13)

This equation is discretized by approximating the potential u by a finite linear combination 

of basis functions φα and choosing test functions υ = φβ:
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(14)

(15)

where B is the number of basis functions used in the discretization. For example, B is equal 

to the number of nodes in the mesh for linear finite elements.

In the finite-element method (FEM), u, υ, and γ are discretized by linear, quadratic, or even 

potentially higher-order basis functions defined on a mesh of nodes, with each basis function 

having compact support, and Eq. 13 reduces to a sparse linear system, which can be solved 

by either direct or iterative linear algebraic methods.

C. Finite-Element Meshing

For the finite-element meshing, we use the CGAL [25] software package, using features in 

this package to increase the density of mesh elements near the electrodes. We create a finite-

element mesh from a three-dimensional segmented magnetic resonance imaging (MRI) 

volume [26] as shown in Fig. 1. In our human-subject experiments, we experimented with 

several electrode configurations, and data from each of these configurations will be 

displayed in Section VI. Specifically, we use a single ring of 32 electrodes to maximize in-

plane resolution, or two rings of 16 electrodes each to give 3-D resolution. The axes scaled 

in meters and the positions of the electrodes in the two configurations can be seen in Figs. 1 

(a) and (b). If a patient-specific labeled imaging volume were available, for example from a 

computed tomography image or MRI, we could produce a personalized EIT mesh with 

identified sub-volumes denoting for example the heart and two lung lobes, as shown in Fig. 

1 (c). Since no such images were available for our normal subjects, we used a homogeneous 

FEM mesh.

IV. Reconstruction without Regularization

If we are only reconstructing the value of a single “pixel” or a small number of basis 

function coefficients at each time point, then it is possible that the problem is sufficiently 

well-posed, even taking into account contact impedances, that we can compute the solution 

without the need for explicit regularization. In this case, we assume the following model:

(16)

where Jγ is the Jacobian matrix with respect to fine-scale FEM tetrahedra, Jz is the Jacobian 

matrix with respect to contact impedances on the electrodes (with dimension LK ×L), z(t) is 

a column vector of contact impedances at time t, n(t) is a column vector of noise 
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measurements and y(t),y(0) are the measurement vectors at times t and 0, respectively. We 

reiterate that L is the number of electrodes and K is the number of patterns applied. In what 

follows, we simplify matters by introducing the following notation: Jp = JγP, where P is the 

fine-to-coarse basis function transformation matrix.

In this case, we can show, with the assistance of some linear algebra, that the least-squares 

solution for p(t) is as follows:

(17)

where  is the Hermitian transpose of the matrix Jp and I is the identity matrix of the 

appropriate size. Specifically, we derive this equation as follows:

(18)

and, as usual for least-squares problems, multiply both sides by the transpose of the left-

hand side:

(19)

We then obtain the following expression for change in contact impedances at time t by 

solving the first equation of the system of equations 19:

(20)

We finally obtain Eq. 17 by substituting Eq. 20 into the second equation of the system of 

equations 19 and solving for p(t):

(21)

We can further simplify Eq. 17 by computing the singular value decomposition (SVD) of the 

matrix Jz: . Given the SVD, we can show the following:

(22)
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We then define: , where I is the identity matrix, as the operator projecting 

the data onto the null space of the Jacobian matrix with respect to the contact impedances. 

Finally, one can show that:

(23)

Once we have computed p(t), we then compute the changes in contact impedances at time t 
as follows:

(24)

We note that this expression can similarly be simplified using the SVD of Jz.

V. Reconstruction with Regularization

In the case where p(t) has relatively high dimension on the order of hundreds or thousands 

of basis functions, we do not choose the least-squares solution of z(t) and p(t), as it highly 

sensitive to even extremely small noise levels. Instead we find some trade-off between 

minimizing the residual and minimizing some property of the solution, for example its l2 

norm, introducing a regularization term into the equations.

In what follows, we regularize p(t) and not z(t), as it is generally the case that the condition 

number of Jz is reasonably small.

The regularized simultaneous solution of the contact impedances and medium admittivities 

are expressed as follows:

(25)

where the regularization parameter is λ and L is a regularization operator. In what follows, 

for L we use the graph Laplacian [27] with a weight of unity if two coarse-scale elements of 

p are nearest neighbors as determined by an algorithm such as Algorithm 1 and zero 

otherwise.

This equation is equivalent to the solution of the following matrix system in a least-squares 

sense:

(26)

Using an analogous approach to that described in Section IV, we can show that the least 

squares solution to this system of equations is:
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(27)

In what follows, we use the fact that NHN = N. We then compute the GSVD [22] of (NJp,L) 

as follows:

(28)

(29)

Finally, it can be shown that, for any value of the regularization parameter, the solution for 

p(t) is:

(30)

where C and S are diagonal matrices, X is a full-rank typically well-posed matrix whose 

inverse can be precomputed (for the purposes of generating the solution for any value of the 

regularization parameter) and U is an orthonormal matrix.

A number of approaches have been suggested for selection of the optimal value of the 

regularization parameter. One widely-cited and utilized method, generalized cross-validation 

(GCV) [28] generalizes the procedure of n-fold cross-validation, where data points are ”held 

out” from the solution we examine the residual between the true and predicted values of 

these held-out data points. The expression for the GCV functional is as follows:

(31)

where, in our case, y = y(t) − y(0). For the case of simultaneous imaging and contact 

impedance estimation, the matrix, A(λ) is given by the following expression:

(32)

Heuristically, the GCV functional attempts to find a tradeoff between minimizing the 

residual, ‖y(t) − y(0) − Jzz(t) − Jpp(t)‖2, given by its numerator, and mitigating the extent to 

which random noise is amplified in the reconstruction, given by its denominator.
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We can compute the numerator of V (λ) using the GSVD and Equations 30 and 24. From 

the standpoint of computation, only the numerator of V (λ), which is the norm of the 

residual, is significant and can be relatively easily computed using the GSVD. The 

denominator does not depend at all on the data, y, and so can be pre-computed for all 

possible candidate values of the regularization parameter.

VI. Results and Discussion

At GE Global Research, we have developed a prototype EIT instrument, the GE GENESIS 

system, with 32 independent high-output-inpedance current sources, presently operating at a 

single frequency, 10 kHz. A safety circuit monitors the total applied current in real-time and 

interrupts operation if the current exceeds established safe limits for this frequency. We 

simultaneously apply currents on each channel and measure voltages using matched filter 

detection and 16-bit high-precision Analog-to-Digital Converters (ADCs). The matched 

filter produces both in-phase and quadrature components for each measurement.

A. Normal Subject Study

We studied healthy, adult volunteers with the approval of an outside institutional review 

board (IRB) provided by Ethical and Independent Review Services and after obtaining 

informed consent. A single ring of 32 standard ECG electrodes (Intelesens Ltd. Belfast, 

Northern Ireland) was placed around the circumference of the chest at approximately the 

fifth intercostal space and EIT data were collected at a frame rate of approximately 19 

frames/sec. A complete set of trigonometric current patterns was applied during each data 

frame.

We first used Equations 23 and 24 to compute a single global conductivity and a set of 

contact impedances at each point in time. The results for a human subject, subject F78, 

during normal but deep breathing are shown in Fig. 2. The estimated changes in the real and 

imaginary parts of the contact impedances are shown in Figs. 2 (b) and 2 (c), respectively, 

where we note that the actual units of the contact impedance parameters are Ωm2 but we 

have divided by the electrode areas to give results in units of Ohms. This convention will be 

followed for the remainder of this article. In all of the reconstructions to follow, we 

computed the Jacobian matrices with an assumed homogeneous background conductivity of 

0.2 S/m and with all electrodes having initial absolute contact impedances of 100 Ω.

The reference frame was taken at end-expiration and we see a sharp drop in conductivity 

with each inspiration. We also see changes in electrode contact impedances correlated with 

inspiration. Specifically, we see decreases in contact impedances during inspiration and 

increases during expiration. This effect may be due to the slight stretching of the skin in 

inspiration, which may recruit or expand pores through the epidermis. Finally, we notice that 

one particular electrode, which happens to be electrode 16, experienced a relatively large 

increase in contact impedance during the data collection.

Next, we chose the data time point with the largest change in global conductivity in the first 

twenty seconds of data collection and computed the GCV functional over a wide range of 

potential regularization parameters, with the results shown in Fig. 3. We note that −log(V 
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(λ)) reaches its maximum at almost precisely the same value where the residual reaches its 

leftmost asymptote, which represents the noise floor of the instrument. This noise floor of 

approximately 2 micro-volts RMS (root mean square) is consistent with results obtained 

with measurements of resistor phantoms. In Fig. 3 we compare the two approaches 

(reconstruction assuming constant contact impedances and reconstruction allowing contact 

impedances to vary over time) looking at the GCV functional as a function of regularization 

parameter in Fig. 3 (a). We compare the achievable residuals using the two approaches in 

Fig. 3 (b). The reconstructions represented in Fig. 3 (b) show several “phase transitions.” To 

the far right, for a very high regularization parameter, the solutions are identically zero. Then 

for a wide range of regularization parameter values, the solutions are spatially constant (i.e. 

with zero Laplacian). Finally, for smaller values of the regularization parameter, the solution 

has some spatial structure. The solutions where we reconstruct both changes in contact 

impedances and changes in the medium for all values of the regularization parameter 

achieve a lower value of the residual, notably so for the region from λ = 102 to λ = 1014 

where the solutions are spatially constant.

It is also instructive to consider the “L-curve” showing the tradeoff between the achievable 

reconstruction residual and the image penalty function, ‖Lp‖2, where in the case of the 

Laplacian, we are penalizing images with low smoothness. In comparing the two 

reconstruction approaches in Fig. 3 (c), with image penalty shown on a logarithmic scale, we 

see that when including contact impedance parameters, we can achieve a smoother image 

(lower penalty) for any given residual. We can choose an optimal regularization parameter in 

each case by looking at the L-curve not including the region where the penalty “explodes” at 

the noise floor in Fig. 3 (d). We choose regularization parameters achieving residuals of 15 

micro-volts and 10 micro-volts, respectively, for the reconstructions with constant and static 

contact impedances as reasonable tradeoffs between minimizing image penalties and 

minimizing the residual. It is also interesting to look at the GCV functional vs. the residual, 

shown in Fig. 4. We find that this functional increases monotonically until we reach the 

noise floor, at approximately 1.8 micro-volts but that the optimal image quality, both by 

visual inspection and by examining the L-curve, is obtained at a higher value of the residual. 

We believe that the reason for this is that the derivation of the GCV functional is based on 

the assumption of purely independent, identically distributed Gaussian noise, whereas in 

reality we believe that the largest source of “noise” is the modeling error, for example 

computing the Jacobian matrix assuming a homogeneous background conductivity when the 

body is clearly far from being so and with all electrodes having the same initial absolute 

values of the contact impedances. The L-curve method better accounts for these realities.

Finally, we computed reconstructions of the same data point, 42.16 seconds after the start of 

the data collection, under two assumptions. In the first case, we used the algorithms 

described earlier and computed an image as well as values for the changes in the electrode 

contact impedances. In the second case, we used the “standard” approach in which only an 

image was computed and the contact impedances on the electrodes were assumed to remain 

constant. The results are shown in Fig. 5. In Fig. 5 (a), where we have simultaneously 

computed an image and varying contact impedances, the two lobes of the lungs are clearly 

evident. In Fig. 5 (b), the lungs appear less evident, there are in general electrode artifacts 
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and in particular there is a large negative artifact near electrode 16, at the top center right of 

the image.

B. Clinical Study

A total 20 adult ICU subjects (10 Male, 10 Females, age: 49.05 16.32 years (mean standard 

deviation)) were studied in the intensive care unit (ICU) at Columbia University Medical 

Center, New York, NY after obtaining approval of the Institutional Review Board of 

Columbia University. Written informed consent was obtained from the subject or a family 

member if the subject was sedated. About one hour of impedance measurements for each 

ICU subject was collected at a carrier frequency of 10 kHz.

A comprehensive summary of our research results from this study will be presented 

elsewhere. Here, we will present results from a specific patient, Patient 119, for illustrative 

purposes. Adult subject 119 was Female, age: 22, chest circumference: 75 cm, body mass 

index (BMI): 14.1, with right lower lobe pneumonia and hypoxemia. EIT measurements 

were made in a 3D configuration (2 axial rings with 16 electrodes per ring) with the subject 

receiving mechanical ventilation in a semi-recumbent position (supine in bed with elevated 

backrest). The two electrode rings were at approximately the fourth and sixth intercostal 

spaces, as shown (for a representative male subject) in Fig. 6.

A particularly useful feature of the GENESIS system is that, interleaved with the optimal 

trigonometric excitation patterns used for producing high-quality images we also applied 

“electrode check” patterns sending current through each electrode to a distant ground 

electrode. In this way, we were able to assess the quality of each electrode’s contact in real 

time. We show the variation over time of all electrode-to-ground impedances in Fig. 7, 

where the real and imaginary parts of the impedance are shown in Fig. 7 (a) and (b), 

respectively. We noted that one electrode, electrode 20, was a significant outlier in terms of 

its impedance-to-ground, with a value of approximately 1500 Ω in the real part and −4000 Ω 
in its imaginary part, as compared to approximately 600 Ω and and −1500 Ω for the real and 

imaginary impedances-to-ground for all other electrodes. The GENESIS system is equipped 

with software to automatically adjust the gain of its analog preamplifier to prevent 

measurements from saturating but one consequence of this gain adjustment is that it is 

possible that effective signal-to-noise ratio was decreased due to increased quantization error 

as a result of this adjustment. Thus, in such cases, it may be beneficial to replace or 

somehow improve the contact of poorly contacting electrodes. We note in Fig. 7 the 

existence of a number of a large “spikes” in the impedance of several electrodes, which we 

attribute to motion artifact.

We have noted that the electrode contact impedances tended to drift significantly over time 

but at a relatively slow rate and that respiration and cardiac events occur at a much faster 

rate. We have thus chosen to process the data in 20-second non-overlapping “blocks” to 

minimize the effect of electrode drift over time. However, even within such a short time 

period, electrode impedance variations occur. One particular block of data, block 65, is 

shown in Fig. 8. In Fig. 8, we display the changes in the estimated electrode contact 

impedances, with the real and imaginary parts shown in Figs. 8 (a) and (b). The 

corresponding nearly simultaneously measured changes in electrode impedances to ground 
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are shown, for the real and imaginary parts of the measurements, respectively, in Figs. 8 (c) 

and (d). We note the strong similarity between Figs. 8 (a) and (c) and also (b) and (d). In 

particular, the correlation coefficients between the real and imaginary parts of the changes in 

estimated impedances and the changes in the electrode impedances-to-ground for electrode 

20 (the electrode experiencing the greatest change) were 0.97 and 0.998, respectively. We 

believe that the electrode-to-ground impedances are dominated by contact impedance 

variations but also contain the phenomena of interest, respiration and perfusion, and thus the 

two sets of parameters (estimated changes in impedances and measured changes in electrode 

impedances to ground) should not be identical. However, the strong similarity provides 

evidence attesting to the usefulness of the estimation algorithms.

The reconstructions of block 65 of the clinical patient data, showing the evolution of all 

pixels over time are shown in Fig. 9. Fig. 9 (a) shows the reconstruction without assuming 

that contact impedances vary and thus we see that a number of pixels tend to “drift” over 

time. In contrast, for the reconstructions in Fig. 9 (b) in which the contact impedances shown 

in Fig. 8 were estimated, we see a repetitive pattern that is presumably due to respiration 

alone and where phenomena at the boundary were captured by the time-varying contact 

impedance parameters. Note that, as different regularization parameters were used for the 

two cases, the dynamic range of the estimated changes in conductivity due to respiration 

were different in the two cases, with larger changes estimated when we included contact 

impedances in the reconstruction.

The images for the two cases are shown in Fig. 10. We show the estimated global 

conductivity for two ventilatory cycles in Fig. 10 (a) and the reconstructions at 1295.81 and 

1296.57 seconds, respectively, with reference at 1282.4 seconds, assuming constant contact 

impedances, are shown in Fig. 10 (b) and (c). Vertical lines were added to Fig. 10 (a) to 

indicate the time points at which the reconstruction was computed. The corresponding case 

where we simultaneously estimate time-varying contact impedances for the same time points 

and the same reference point is shown in Figs. 10 (d) and (e). We point out that the 

reconstruction for each time point is composed of two rows with each row corresponding to 

an electrode ring. The z = 0.06 m electrode ring probes mainly the upper lobes of the lungs. 

We note that the images assuming constant contact impedances are completely dominated by 

a single poor electrode artifact. The time point at 1295.81 seconds, shown in Figs. 10 (b) and 

(d) corresponds to end-inspiration, with minimal global conductivity, while the time point at 

1296.57, shown in Figs. 10 (c) and (e) corresponds to endexpiration, with maximal global 

conductivity. The reference was taken at approximately end-expiration, so the images for 

time point 1295.81 should and does show the largest changes in conductivity. As the 

respiration rate was greater than 40 breaths per minute, with correspondingly low tidal 

volume, the images are not quite as appealing as for the normal subject, but when we 

compute the reconstruction taking into account changes in contact impedances, we do see 

large regions of decreased conductivity for the end-inspiration time point primarily in the 

upper lung ring of electrodes (z = 0.06 m), consistent with mainly shallow breathing. In 

contrast, the reconstruction assuming constant contact impedances mainly shows the outlier 

electrode.
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We finally note that for this particular block of data electrode 20 was the outlier with a 

change of 6.33 Ohms in the real part of its impedance over 20 seconds whereas the median 

change for all other electrodes was 0.57 Ohms. In the previous normal subject example, 

electrode 16 was the outlier and so there was not a systematic problem with one particular 

data channel. We have also found that the situation is highly variable: an electrode that is 

stable at one point in time may begin to vary at another point in time due to patient motion, 

perspiration, and other factors.

In order to examine this phenomenon more carefully, we chose a change in estimated 

contact impedance of greater than five Ohms in either the real or imaginary part of the 

measurement to be indicative of poor electrode quality. For subject 119, we counted the 

number of 20-second data blocks with varying numbers of poor-contact electrodes. There 

was a reasonable number of data blocks with no outlier electrodes (65/151 or 43%) but 

86/151 or approximately 57% of the data blocks would need to be discarded if we did not 

employ an algorithm capable of dealing with one or more outliers. More realistically, the 

number of data blocks with a single outlier electrode was 40/151 or 26%, so based on the 

examples shown in this paper, we can reasonably conclude that many of these blocks could 

be recovered whereas they would possibly need to be discarded if we did not use the 

methods described here. It will be a subject of future research exactly how many poor-

contact electrodes can be tolerated but relatively few data blocks (15/151 or 9.9%) contained 

more than three poorcontact electrodes.

Finally, we examined the issue of electrode quality for all of our clinical ICU subjects, 

excluding subject 102, for whom we were not able to reconstruct images or detect 

ventilatory activity, due to instrument noise problems. The results are shown in Table I, 

where, for each subject, we report the number of 20-second data blocks that passed our 

initial quality assessment mainly relating to saturation of analog-to-digital converters. For 

each subject we then report the numbers of 20-second blocks with 0,1,2,3, and more than 3 

poorly contacting electrodes, where a poorly contacting electrode is defined as one where 

either the real part or imaginary part of the estimated contact impedance varied by greater 

than 5 Ohms. In total, we collected 3126 20-second data blocks that passed our initial 

quality assessment, corresponding to 17.37 hours of data. Of these, 1760 blocks (9.78 hours) 

had all electrodes varying by less than the specified 5-Ohm threshold. There were 364 data 

blocks (11.6% of the data) with one poorly contacting electrode but as we saw previously for 

subject 119, certain subjects had a much greater proportion of measurements with one 

poorly contacting electrode.

C. Discussion

Both the normal subject and clinical ICU subject data sets contained an “outlier” electrode. 

When placing 16 or 32 electrodes, it is very difficult to ensure that all electrodes maintain 

equally good contact with the body. It is unfortunately difficult to manipulate and position 

ICU patients, who are quite fragile and who often are sedated, in order to attach the 

electrodes. Therefore, even if it is noticed that one electrode has problems with contact, from 

the standpoint of the time that we have to conduct the experiment in the clinic, it may not be 

feasible to remove and reattach this electrode. Also, for reasons that are not well-understood, 
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electrodes impedances may “drift” in different ways, with some electrodes experiencing 

more drift than others even if their initial contact impedances are reasonable. It is then 

advantageous to use algorithms that are immune to this drift or that at a minimum mitigate 

its effects and it was the goal of this paper to present such algorithms and validate their 

usefulness with real clinical data.

Although in our two examples we have shown the proposed method correcting for the 

variation in the impedance of a single outlier electrode, there is nothing inherent in the 

algorithm limiting it to only being able to correct single-electrode problems and to a certain 

extent we believe that it may be possible to compensate for the variation of multiple 

electrodes up to and including all electrodes.

VII. Conclusion

We have shown how to estimate contact impedances at the skin-electrode interface in EIT. 

These estimates are obtained simultaneously with reconstructing the internal conductivity 

and permittivity of the medium. We give explicit formulas for both solutions, with and 

without regularization. When regularization is used, we have also shown how to select an 

optimal value of the regularization parameter in a computationally efficient manner. Results 

of applying these methods were shown for a study two adults, a normal subject and an 

Intensive Care Unit patient. The results demonstrate the utility of these methods to reduce 

electrode-related artifacts in the reconstructed images.

For a small number of human subjects, several approaches to selecting the optimal 

regularization parameter were compared, with the L-curve giving a more appealing result 

than that obtained for the GCV metric. Over an extremely wide range of regularization 

parameters, the images where we simultaneously estimate changes in contact impedances 

are uniformly smoother than those where the contact impedances are assumed to remain 

constant.
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Fig. 1. 
Finite element meshes used showing positions of electrodes and refinement of mesh near 

electrodes for two electrode configurations: (a) Two rings of 16 electrodes each (b) Single 

ring of 32 electrodes (c) Mesh with transparency showing capability of developing a patient-

specific mesh given a labeled volume.
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Fig. 2. 
Estimation of a single global time-varying conductivity (a) and time-varying electrode 

contact impedances (b) and (c).
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Fig. 3. 
GCV functional vs. regularization parameter (a) and residual standard deviation vs. 

regularization parameter (b) and L-curve analysis (c) over a wide range including “blow-up” 

at noise floor and (d) over a smaller range away from “blow-up” point
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Fig. 4. 
Close examination of the GCV function vs. the residual
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Fig. 5. 
Reconstruction assuming (a) Time-varying contact impedances and (b) Constant contact 

impedances
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Fig. 6. 
Electrode configuration for adult ICU subjects
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Fig. 7. 
Electrode-to-distant-ground impedances measured nearly simultaneously with 

reconstruction data (a) Real part (b) Imaginary part
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Fig. 8. 
Estimated changes in contact impedances estimated by the simultaneous reconstruction 

algorithm for block 65 of data collection: (a) Real part and (b) Imaginary part and measured 

changes in electrode-ground impedances: (c) Real part and (d) Imaginary part.
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Fig. 9. 
Reconstructions of time courses for a given 20-second block of data (block 65) (a) 

Reconstructions of all pixels without simultaneous estimation of changing contact 

impedances (b) Utilizing simultaneous estimation of time-varying electrode-skin 

impedances.
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Fig. 10. 
Global change in impedance (a) and (b),(c): Reconstructions at 1295.81 and 1296.57 

seconds, respectively, with reference at 1282.4 seconds assuming constant contact 

impedances. (d),(e): Reconstructions at 1295.81 and 1296.57 seconds, respectively, with 

reference at 1282.4 seconds with simultaneous estimation of changes in contact impedances.
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