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The Gaussian-distributed random coil has been the dominant
model for denatured proteins since the 1950s, and it has long been
interpreted to mean that proteins are featureless, statistical coils in
6 M guanidinium chloride. Here, we demonstrate that random-coil
statistics are not a unique signature of featureless polymers. The
random-coil model does predict the experimentally determined
coil dimensions of denatured proteins successfully. Yet, other
equally convincing experiments have shown that denatured pro-
teins are biased toward specific conformations, in apparent conflict
with the random-coil model. We seek to resolve this paradox by
introducing a contrived counterexample in which largely native
protein ensembles nevertheless exhibit random-coil characteris-
tics. Specifically, proteins of known structure were used to gener-
ate disordered conformers by varying backbone torsion angles at
random for �8% of the residues; the remaining �92% of the
residues remained fixed in their native conformation. Ensembles of
these disordered structures were generated for 33 proteins by
using a torsion-angle Monte Carlo algorithm with hard-sphere
sterics; bulk statistics were then calculated for each ensemble.
Despite this extreme degree of imposed internal structure, these
ensembles have end-to-end distances and mean radii of gyration
that agree well with random-coil expectations in all but two cases.

The protein folding reaction, unfolded (U) ^ native (N), is a
reversible disorder ^ order transition. Typically, proteins are

disordered (U) at high temperature, high pressure, extremes of pH,
or in the presence of denaturing solvents, but they fold to uniquely
ordered, biologically relevant conformers (N) under physiological
conditions. With some exceptions (1), the folded state is the
biologically relevant form, and it can be characterized to atomic
detail by using x-ray crystallography and NMR spectroscopy. In
contrast, our understanding of the unfolded state is based primarily
on a statistical model, the random-coil model, which was developed
largely by Flory (2) and corroborated by Tanford (3) in the 1950s
and 1960s.

In a random coil, the energy differences among sterically acces-
sible backbone conformers are of order �kT (where k is Boltz-
mann’s constant, and T is the absolute temperature). Consequently,
there are no strongly preferred conformations, the energy land-
scape is essentially featureless, and a Boltzmann-weighted ensemble
of such polymers would populate this landscape uniformly.

Our motivation here is to dispel the belief, which is widespread
among protein chemists, that the presence of random-coil statistics
for denatured proteins confirms the absence of residual structure in
these molecules. Indeed, it is well known to polymer chemists that
rods of any stiffness (e.g., steel I-beams) behave as Gaussian-
distributed, temperature-dependent random coils if they are long
enough. Chains in which the persistence length exceeds one physical
link can be treated effectively by rewriting them as polymers of
Kuhn segments (ref. 2, page 12). Consequently, a protein chain can
behave as a random coil even if it is comprised of nonrandom
segments.

A denatured protein is a heteropolymer in which different amino
acid residues will have differing average conformations but in which
an average backbone conformation is attained within a window of
�10 residues. For such a heteropolymer, coil dimensions can be
assessed by using the following two related measures: the radius of

gyration and the end-to-end distance. Flory showed (ref. 4, page 43)
that the radius of gyration, RG, follows a simple scaling law:

RG � R0Rv, [1]

where N is the number of residues, R0 is a constant related to
persistence length, and � is the scaling factor of interest that
depends on solvent quality. Values of � range from 0.33 for a
collapsed, spherical molecule in poor solvent, through 0.5 for an
ideal solvent, to 0.6 in good solvent. The mean-squared end-to-end
distance, �L2�, for unfolded proteins is also expected to scale linearly
with chain length:

�L2� � L0N2, [2]

with the L0 prefactor obtained from experiment.
Tanford et al. (5) corroborated these random-coil expectations

for unfolded proteins by using intrinsic viscosity measurements,
which scale with chain length in a conformation-dependent way.
From this relationship, they obtained values of � � 0.67 and L0 �
70 � 15 Å2. To a good approximation, end-to-end distances for
random coils of sufficient length are Gaussian distributed (6), and
in fact, this behavior has been observed in recent simulations (7).

Tanford and coworkers (8) emphasized that such measure-
ments are meaningful only after eliminating all residual struc-
ture, requiring denaturation in 6 M guanidinium chloride. This
issue is crucial. Structure induced by peptide hydrogen bonds is
abolished only under strongly denaturing conditions. As pointed
out by Millett et al.,

Additional evidence that chemically or thermally denatur-
ing conditions are typically good solvents for the unfolded
state stems from the observation that RG is generally fixed
over a broad range of temperatures or denaturant condi-
tions. (ref. 9, page 255)

Today, the most reliable experimental values of R0 and � in Eq. 1
are obtained from small-angle x-ray scattering (SAXS) (9). By using
this approach for a series of 28 unfolded proteins, values of R0 �
2.08 � 0.19 Å and � � 0.598 � 0.029 were obtained (10). These
results are a strong indicator of random-coil behavior. Additionally,
SAXS data can be used to construct a Kratky plot, s versus s2I(s),
where s is the small-angle scattering vector and I(s) is the corre-
sponding scattering intensity (11, 12). For random coils, the plot
increases monotonically and approaches linearity in s (13). This
behavior is observed for unfolded proteins, whereas folded proteins
plotted in this way exhibit a notable maximum (figure 1 in ref. 9).
Such plots have become the present-day standard for assessing
random-coil behavior in unfolded proteins (11, 12).

The success of the random-coil model in fitting experimentally
determined coil dimensions of unfolded proteins is undisputed.
Accordingly, researchers in this field have grown accustomed to
believing that unfolded proteins are featureless random coils. Here,
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we demonstrate that nonrandom coils can also exhibit random-coil
statistics.

Tanford knew that denatured proteins need not be entirely
random simply because they satisfy random-coil statistics, and he
warned:

A cautionary word is in order regarding the use of the
measurement of the radius of gyration of a particular
protein as the sole criterion for random-coil behavior.
Other conformations can have similar radii of gyration.
For example, an �-helical rod has a length of 1.50 Å per
residue. There is a narrow range of N where essentially
identical values of RG are predicted for �-helices and
random coils. (3)

In this article, we introduce the ‘‘rigid-segment model,’’ a highly
contrived, limiting model in which known protein structures are
partitioned alternately into rigid segments linked by individual
flexible residues. The x-ray elucidated coordinates are retained for
the rigid segments, but backbone torsion angles were allowed to
vary freely for the flexible residues. The fraction of the chain
allowed to vary (�8%) was chosen to approximate one residue per
peptide chain turn (14). If this physically unrealistic, extreme model
still exhibits random-coil statistics, it follows that a lesser degree of
preorganization in the unfolded state need not violate random-coil
expectations. In fact, we find that our limiting model still reproduces
random-coil statistics when �92% of the structure is held rigidly in
its native conformation.

The Rigid-Segment Model. Our strategy is to devise an algorithm that
operates on native protein structures and generates ensembles of
highly structured, sterically allowed conformers. We then test these

ensembles and determine the extent to which they exhibit random-
coil statistics. A largely native ensemble that nevertheless appears
to be random serves as a counterexample to the random-coil model.

The algorithm consists of several steps. First, each residue is
examined in turn, and those with the maximum possible flexibility
are identified. Flexibility is measured by evaluating the range of
sterically allowed backbone torsion angles for each residue; the
broader the range, the greater the flexibility. Next, by using a
biochemically motivated rationale, a subset of these flexible resi-
dues is selected as links, transforming the polypeptide chain into
rigid segments interconnected by flexible links. The links are then
varied at random in concerted fashion to generate clash-free
ensembles that are suitable for statistical analysis (Table 1). These
steps are described in detail below.

Identifying Individual Flexible Residues. The first step quantifies the
backbone flexibility of individual residues. For each residue, steri-
cally allowed �, �-space (15) was explored by using torsion-angle
Monte Carlo sampling with hard-sphere sterics, with the accep-
tance ratio taken as the measure of flexibility. Steric clashes were
evaluated in a window of 15 residues flanking the residue in
question (but with diminishing window size nearing chain termini).
A half-window of 15 residues was chosen to approximate the
average size of a protein secondary structure element together with
its adjoining turn (14).

To construct a flexibility profile of acceptance ratio versus
residue number, 10,000 backbone �, �-pairs were sampled for each
residue, as shown for lysozyme in Fig. 1. Generally, although not
invariably, the most flexible residues correspond to turns; glycines
also promote chain flexibility.

Selecting Sets of Flexible Residues. Individual acceptance ratios were
ranked by flexibility, and a set of suitable size was chosen based on

Table 1. Proteins used in rigid segment simulations

Protein PDB ID Chain Resolution, Å Refinement factor Chain length

Angiotensin II 1N9V A (NMR) (NMR) 8
Chicken villin headpice 1VII — (NMR) (NMR) 36
PKC � Cys2 domain 1PTQ — 1.95 0.196 50
Protein G 2GB1 — (NMR) (NMR) 56
Fyn SH3 1SHF A 1.90 0.180 59
CspB 1CSP — 2.50 0.195 67
Ubiquitin 1UBQ — 1.80 0.176 76
� Repressor 1LMB 3 1.80 0.189 87
Barstar 1A19 A 2.76 0.203 89
ctAcP 2ACY — 1.80 0.170 98
Plastocyanin 2PCY — 1.80 0.160 99
Horse cytochrome c 1HRC — 1.90 0.179 104
pI3K SH2 (rat) 1FU6 A (NMR) (NMR) 111
Myohemerythrin 2HMQ A 1.66 0.189 113
Bovine ?-lactalbumin 1F6S A 2.20 0.216 122
Bovine ribonuclease A 1XPT A 1.90 0.162 124
CheY 1EHC — 2.26 0.143 128
Lysozyme 1HEL — 1.70 0.152 129
Intestinal FA binding protein 1IFB — 1.96 0.188 131
Staphylococcal nuclease 2SNS — 1.50 N�A 141
Calmodulin 1CM1 A 2.00 0.234 143
Myoglobin 1MBO — 1.50 0.159 153
Ribonuclease H 2RN2 — 1.48 0.196 155
ASV integrase core 1ASU — 1.70 0.152 162
T4 phage lysozyme 2LZM — 1.70 0.193 164
DHFR 1AI9 A 2.76 0.203 192
MutY catalyic domain 1MUN — 1.20 N�A 225
Triosephosphate, isomerase 5TIM A 1.83 0.183 249
Human glyoxase II 1QH3 A 1.90 0.185 260
EcoRI endonuclease 1ERI A 2.70 0.170 261
UDP-galactose 4-epimerase 1NAH — 1.80 0.165 338
Creatine kinase 1QK1 A 2.70 0.195 379
Yeast PGK 3PGK — 2.50 N�A 415

ctAcP, common-type acylphosphatase; ASV, avian sarcoma virus; DHFR, dihydrofolate reductase.
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the average length of a protein �-helix, which is 12 residues (16).
Accordingly, a flexible residue set, �, of size m � N�12 residues was
chosen, having one flexible linker for every 12 residues in the
protein. The value of m was rounded to the nearest integer, with a
minimum value of 1.

The most flexible residues were chosen for inclusion in �, with
the following two minor qualifications: sites were chosen to be at
least five residues apart, and those within five residues of chain
termini were not included. These qualifications promote a uniform
distribution of flexible links along the polypeptide chain and ensure
that the chosen backbone torsion angles are independent of one
another (17).

An ensemble of structures was generated for each protein by
concerted sampling of backbone torsions, chosen at random from
all sterically allowed regions of �, �-space. Random-coil statistical
measures were then used to characterize this ensemble. Details are
described in Methods.

Methods
We selected 33 proteins of 8–415 residues in size from the Protein
Data Bank (18) based on structure quality, scientific interest, and
size distribution (Table 2). Where possible, proteins studied pre-
viously by SAXS were included. All crystallographic waters, het-
eroatoms, and nonbiological chain terminators (acetyl groups,
N-methylamide, etc.) were removed, and any disulfide bonds were
broken.

Hard-sphere, torsion-angle Monte Carlo simulations (19) were
performed by using a suite of freely available programs (http:��
roselab.jhu.edu�dist�index.html). Default van der Waals radii (20)
were used unless the experimentally reported distance between two
atoms was smaller than the sum of their hard sphere radii, in which
case the minimum interatomic distance was taken from Protein
Data Bank coordinates. At each Monte Carlo step, random values
of backbone torsions, chosen from allowed regions on the dipeptide
map, were assigned in concert to residues in �. In the event of a
steric clash, the step was rejected.

Statistics of interest for each ensemble include the average radius
of gyration and end-to-end distance. The geometric radius of
gyration for a chain is given by the following equation:

RG � � 1
M�

i�1

M

�r�i � r�C)2, [3]

where M is the number of atoms in the protein structure, r�i is the
position of atom i in three-dimensional space, and r�C is the
geometric center of the molecule. Weighting by mass or atomic
scattering factor does not change the radius of gyration significantly,

and therefore, the ensemble-averaged radius of gyration was com-
puted simply by averaging RG over all chains in the ensemble.

The mean squared end-to-end distance, �L2�, is given by the
following equation:

�L2� �
1
n �

j�2

j

Lj
2, [4]

where n is the number of conformers in the ensemble, and Lj is the
end-to-end distance of conformer j, taken from the N-terminal
nitrogen to the C-terminal oxygen. End-to-end distance histograms
were generated by using the R statistics package (21).

For each protein in the data set, an ensemble of at least 1,000
clash-free conformers was generated as described above, with
flexible residues selected from the corresponding flexibility profile
(e.g., Fig. 1). This process was repeated five times. To assure
convergence, SDs for both RG and �L2� were calculated. As a further
test, ensembles of 10,000 and 500 structures were examined; all have
similar statistics.

The program CRYSOL (22) was used to generate simulated
SAXS scattering profiles for every conformer in each ensemble.
In CRYSOL, the scattering vector s is defined as follows:

S � 4�
sin	

�
, [5]

where 	 is the scattering angle and � is the x-ray wavelength (in
angstroms). Default options were used for all values. Scattering
profiles of all conformers were averaged at every point, and errors
were reckoned as the SD of I(s) for that point over the entire
ensemble. Simulated Kratky plots were produced by plotting s
against s2I(s) for every point.

Results
Detailed results for lysozyme (1HEL) using the rigid-segment
model are described as an illustrative example. Almost all flexible

Fig. 1. Flexibility profile for lysozyme (PDB ID code 1HEL). Secondary struc-
ture is indicated by bars beneath the plot, which are color-coded as follows:
red, �-helices; blue, 
-strands; and green, turns. Secondary structure deter-
minations are based on backbone torsions, as described in ref. 23.

Table 2. Flexibility set selection in lysozyme

Residue no. SS type* Residue type Flexibility† Included in set

102 C GLY 0.694 Yes
16 C GLY 0.645 Yes

126 T GLY 0.640 No‡

86 C SER 0.635 Yes
71 T GLY 0.630 Yes

129 C LEU 0.592 No‡

4 P GLY 0.570 No‡

22 T GLY 0.546 Yes
117 T GLY 0.542 Yes
128 P ARG 0.375 No§

47 T THR 0.368 Yes
41 T GLN 0.366 Yes
1 C LYS 0.349 No‡

127 P CYS 0.327 No‡

84 T LEU 0.321 No§

123 T TRP 0.285 Yes
26 H GLY 0.282 No§

101 H ASP 0.277 No§

21 T ARG 0.264 No§

103 C ASN 0.250 No§

100 H SER 0.207 No§

79 P PRO 0.196 Yes
55 T ILE 0.191 Yes

C, coil; T, turn; P, polyproline II helix; and H, �-helix.
*Secondary structure types were determined as in ref. 23.
†Flexibility values, in rank order, correspond to those plotted in Fig. 2.
‡Not included because of its proximity to the N or C terminus.
§Not included because of its proximity to a previously selected residue.
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residues are situated in turn and coil regions (Fig. 1), as identified
from backbone torsion angles (23). The set of flexible linker
residues, �, selected by our algorithm is {16, 22, 41, 47, 55, 71, 79,
86, 102, 117, 123}, and the resultant ensemble of segmentally rigid
chains was found to be consistent with random-coil expectations
(see Table 2). In particular, the value of RG for denatured lysozyme
predicted by Eq. 1 is 35.0 � 4.3 Å, and the average RG from five
rigid-segment simulations is 37.93 � 0.14 Å (in good agreement).
The experimentally determined RG for trifluoroethanol (TFE)-
denatured lysozyme is 35.8 � 0.5 Å (24); this value may be especially
relevant for comparison with the rigid-segmental model because
TFE stabilizes helical segments (25). Similarly, the value �L2� for
denatured lysozyme predicted by Eq. 2 lies between 7,095 Å2 and
10,965 Å2, and �L2� from rigid-segment ensembles is 10,690 � 160
Å2, which is near the high end of the predicted Gaussian distribution
(Fig. 2). Thus, highly structured lysozyme chains (Fig. 3), generated
by using the rigid-segment model, exhibit random-coil statistics.

The rigid-segment model was applied to 33 proteins, as summa-
rized in Table 3. In general, values of both RG and �L2� are
consistent with random-coil expectations, and histograms of the
end-to-end distances fit well to a Gaussian curve with two excep-
tions: angiotensin II (1N9V, eight residues) and PKC �-Cys-2
domain (1PTQ, 50 residues). Both outliers are small and deviate
from the normal distribution that is expected for longer chains
(more than �100 residues), consistent with the systematic devia-
tions from Eqs. 1 and 2 that Tanford noted for short chains (figure
2 in ref. 3, and ref. 26, page 994). However, two other small proteins
in our data set (e.g., 1VII, 36 residues; 2GB1, 56 residues) behave
as expected for longer chains. The rigid-segment model, which
tends to localize chain flexibility at peptide chain turns, is expected
to be sensitive to differences in the average segment length between

consecutive turns. This expectation is borne out in the following
way: in comparison with the values predicted by Eq. 1, the rigid-
segment model underestimates RG for �-helical proteins (1VII,
1LMB, 1HRC, 2HMQ, 1CM1, 1MBO, and 1MUN) but overesti-
mates RG for 
-sheet proteins (1SHF, 1CSP, 2PCY, and 1IFB), as
shown in Table 1.

Among the RGs, one outlier warrants particular comment. The
value of RG for creatine kinase (1QK1) from rigid-segment calcu-
lations is 79.812 � 0.078 Å, but the corresponding value predicted
by Eq. 1 is only 66.5 � 8.9 Å. It is noteworthy that both values
substantially exceed the actual, experimentally determined value of
46.0 � 1.5 Å, which was observed by using SAXS. We find no
explanation for this anomalous behavior.

Data from all 33 proteins were fit to Eqs. 1 and 2 and are
displayed in Fig. 4. A nonlinear least-squares best fit (21) to Eq.
1 gives R0 � 1.98 � 0.37 Å and � � 0.602 � 0.035, which are
indistinguishable from recent experimentally determined values
(10). The corresponding fit to Eq. 2 gives L0 � 81.8 � 3.4 Å2,
similar to Tanford’s value of L0 � 70 � 15 Å2 (5). The SDs
reported here for RG and �L2� represent a convergence criterion

Fig. 4. Coil dimensions for 33 proteins using the rigid-segment model. (A)
Radius of gyration (�RG�) versus chain length in residues for 33 ensembles from
rigid-segment simulations. The curve is well fit by Eq. 2, with R0 � 1.98 � 0.37
Å and � � 0.602 � 0.035. (B) Mean-squared end-to-end distance (�L2�) versus
chain length in residues for the same 33 ensembles. The best-fit value of L0, the
slope of the line, is 81.8 � 3.4 Å2. These fitted parameters are in close
agreement with accepted random-coil values.

Fig. 2. End-to-end distance histogram for lysozyme using 5,000 chains
generated from the rigid-segment model. Chains were grouped into 10-Å bins
based on the distance from the N-terminal nitrogen to the C-terminal oxygen.
For comparison, a Gaussian curve having the same mean and SD as the actual
distribution is also shown (dashed line).

Fig. 3. Representative lysozyme struc-
tures from rigid-segment simulations. The
entire chain was held fixed in its x-ray-
determined conformation, except for 11
flexible hinge residues (shown as yellow
space-filling spheres). Ribbon diagram de-
picts elements of secondary structure, de-
fined here from the Protein Data Bank
header records and generated by using
MOLSCRIPT (49) and RASTER3D (50). Termini are
color-coded as follows: blue, N termini; red,
C termini.

12500 � www.pnas.org�cgi�doi�10.1073�pnas.0404236101 Fitzkee and Rose



and not the actual uncertainties of those values, and weights were
not used during the fits.

Values of RG derived from the rigid-segment and random-coil
models are strongly correlated (r2 � 0.916, Fig. 5). In all, charac-
teristic statistics for the random-coil model resemble those for the
rigid-segment model, despite the fact that in the latter, 92% of each
chain is fixed in its native conformation.

SAXS and Kratky Plots. SAXS profiles monitor the correlation
among interatomic distances. In our simulations, interatomic dis-

tances do not vary within each rigid segment, so it is conceivable
that a segmentally rigid ensemble could have random-coil values of
RG and �L2� but yet appear to be structured in a Kratky plot. To test
this possibility, a Kratky plot was calculated for random chains from
the lysozyme ensemble (Fig. 6A). Although the simulated plot has
a maximum at 0.275 Å�1, it lacks the pronounced hump typical of
Kratky plots for native proteins. A second test shows that side chain
rigidity is a major factor contributing to this maximum. After
removal of side-chain atoms beyond C
, the corresponding plot
resembles that of a denatured protein (Fig. 6B).

Discussion
The random-coil model has a long and impressive record of
successfully predicting the chain dimensions of denatured proteins
(3, 9, 10). However, two recent lines of evidence suggest that
denatured protein chains may be far from random. First, experi-
ments have identified native-like organization in unfolded proteins.
By using residual dipolar couplings (RDCs) from NMR, Shortle
and Ackerman (27) showed that native-like topology persists under
strongly denaturing conditions in a truncated staphylococcal nu-
clease. Contention about the origin of RDCs in unfolded proteins
notwithstanding (28), other NMR methods also detect structure in
the unfolded state. By using triple-resonance NMR, native-like
topology has been observed in protein L (29). A second line of
evidence suggests that unfolded proteins are conformationally

Table 3. Summary of simulations and comparison with the random-coil model and SAXS

PDB ID
Chain
length

Flexible
residues

Radius of gyration, Å
Mean-squared end-to-end

distance, Å2

SAXS*
Random-coil

model†
Segment

simulations‡

Random-coil
model§

Segment
simulations

1N9V 8 1 9.1 � 0.3 6.96 � 0.68 6.8790 � 0.0086 560 � 120 346.3 � 3.5
1VII 36 3 — 16.7 � 1.8 16.044 � 0.019 2,520 � 540 2,015 � 13
1PTQ 50 4 — 20.2 � 2.3 16.988 � 0.012 3,500 � 750 2,313 � 13
2GB1 56 5 23 � 1 21.6 � 2.5 25.396 � 0.039 3,920 � 840 5,407 � 57
1SHF 59 5 — 22.2 � 2.5 23.269 � 0.037 4,130 � 890 3,580 � 71
1CSP 67 6 — 23.9 � 2.8 29.047 � 0.066 4,700 � 1,000 4,261 � 77
1UBQ 76 6 25.2 � 0.2 25.8 � 3.0 25.176 � 0.048 5,300 � 1,100 4,290 � 120
1LMB 87 7 — 27.9 � 3.3 24.244 � 0.048 6,100 � 1,300 4,420 � 140
1A19 89 7 — 28.2 � 3.4 28.628 � 0.060 6,200 � 1,300 6,372 � 74
2ACY 98 8 30.5 � 0.4 29.9 � 3.6 34.945 � 0.095 6,900 � 1,500 7,430 � 270
2PCY 99 8 — 30.0 � 3.6 40.439 � 0.075 6,900 � 1,500 11,690 � 110
1HRC 104 9 — 30.9 � 3.7 28.06 � 0.10 7,300 � 1,600 5,200 � 180
1FU6 111 9 30.3 � 0.3 32.1 � 3.9 29.87 � 0.10 7,800 � 1,700 5,990 � 180
2HMQ 113 9 — 32.4 � 3.9 30.07 � 0.10 7,900 � 1,700 6,200 � 120
1F6S 122 10 — 33.9 � 4.2 36.04 � 0.17 8,500 � 1,800 8,650 � 240
1XPT 124 10 33.2 � 1.0 34.2 � 4.2 36.777 � 0.077 8,700 � 1,900 8,420 � 130
1EHC 128 11 38.0 � 1.0 34.9 � 4.3 36.613 � 0.049 9,000 � 1,900 8,270 � 200
1HEL 129 11 35.8 � 0.5 35.0 � 4.3 37.93 � 0.14 9,000 � 1,900 10,690 � 160
1IFB 131 11 — 35.3 � 4.4 47.61 � 0.15 9,200 � 2,000 15,260 � 370
2SNS 141 12 37.2 � 1.2 36.9 � 4.6 41.10 � 0.14 9,900 � 2,100 10,660 � 240
1CM1 143 12 — 37.2 � 4.6 33.76 � 0.25 10,000 � 2,100 7,920 � 320
1MBO 153 13 40 � 2 38.7 � 4.8 40.084 � 0.083 10,700 � 2,300 13,140 � 270
2RN2 155 13 — 39.0 � 4.9 39.50 � 0.21 10,900 � 2,300 11,850 � 200
1ASU 162 14 — 40.0 � 5.0 42.94 � 0.19 11,300 � 2,400 11,160 � 320
2LZM 164 14 — 40.3 � 5.1 36.83 � 0.19 11,500 � 2,500 9,730 � 300
1AI9 192 16 44 � 2 44.1 � 5.6 51.71 � 0.13 13,400 � 2,900 21,370 � 330
1MUN 225 19 — 48.4 � 6.3 47.12 � 0.21 15,800 � 3,400 16,200 � 710
5TIM 249 21 — 51.3 � 6.7 49.88 � 0.24 17,400 � 3,700 15,910 � 340
1QH3 260 22 — 52.6 � 6.9 61.34 � 0.54 18,200 � 3,900 21,240 � 810
1ERI 261 22 — 52.7 � 6.9 62.78 � 0.10 18,300 � 3,900 24,900 � 1,100
1NAH 338 28 — 61.3 � 8.3 62.67 � 0.61 23,700 � 5,100 23,700 � 680
1QK1 379 32 46.1 � 1.5 65.5 � 8.9 79.812 � 0.078 26,500 � 5,700 43,500 � 2,400
3PGK 415 35 71 � 1 69.0 � 9.5 67.58 � 0.41 29,100 � 6,200 32,200 � 1,100

*SAXS data from Millett et al. (9) and Kohn et al. (10).
†Random-coil radii of gyration calculated from Eq. 1 by using constants from refs. 9 and 10. Error is calculated by using standard
propagation of error formulae.

‡Segment simulation error was calculated as the error on the mean from five simulations.
§Random-coil mean-squared end-to-end distance values calculated from Eq. 2 (5). Error is propagated from the initial constant.

Fig. 5. Comparison between our values of RG from the rigid-segment model
and corresponding values of RG from random-coil expectations by using Eq. 1.
All data points fall near the diagonal line. To aid in visualization, a shaded
region marks the �15% boundary, ranging between y � 1.15x and y � 0.85x.
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biased toward polyproline II (PII) helical conformations. Both
theory (30–37) and experiment (38–42) have investigated the
preference for PII in unfolded peptide ensembles. If the experi-
mental results are correct and the ensemble is not random, then why
is the random-coil model so successful? This paradox has been
dubbed ‘‘the reconciliation problem’’ by Plaxco and coworkers (9).

Our contrived counterexample was designed to address the
reconciliation problem directly. Indeed, we find that the random-
coil model is insensitive to a preponderance of stiff segments in an
otherwise flexible chain.

In our simulations, chains of interest are comprised of rigid
segments of native protein structure interconnected by flexible

hinge residues. This approach is deliberately extreme in its neglect
of physical reality, and we emphasize that it is not intended as a
model of the unfolded state. With the exception of steric repulsion,
all interatomic forces and temperature-dependent effects are ig-
nored, together with resultant structural fluctuations. Yet, this
physically absurd model (in which 92% of the native structure is
retained) successfully reproduces random-coil statistics for RG and
�L2� in good solvent (e.g., 6 M guanidinium chloride). Therefore, it
is not too surprising that transient organization in denatured
proteins could also give rise to the random-coil statistics observed
in experiment (10).

The presence of preorganization in denatured proteins changes
our perspective about the disorder^ order transition that occurs
during protein folding. Despite much evidence to the contrary, a
persisting view holds that denatured proteins are random coils,
lacking in correlations beyond nearest-chain neighbors. If so, there
is a puzzling, time-dependent search problem as unfolded polypep-
tide chains negotiate self-avoiding Brownian excursions through
this featureless landscape en route to their native conformation
(43). Concepts like folding funnels, kinetic traps, and frustration
arose as attempts to rationalize this process (44). However, such
conundrums are eliminated by the presence of sufficient confor-
mational bias in the unfolded state (45, 46). In fact, significant
conformational bias is inescapable, and it originates from sterically
imposed chain organization that extends beyond nearest sequential
neighbors (47, 48), at least in part.

The random-coil model has been construed to imply that dena-
tured proteins lack organization, which is an interpretation that has
become a mainstay in protein-folding studies. Against this back-
drop, there was no motivation to seek out organizing steric inter-
actions beyond the linked alanyl dipeptide (15). Nonetheless, such
interactions do exist (48) and are easy to detect. Our rigid-segment
counterexample was developed to challenge this conventional
interpretation of the random-coil model and to remove a concep-
tual obstacle that has impeded alternative explanations.

We thank Kevin Plaxco for insights and unpublished data, and we thank
Buzz Baldwin, Patrick Fleming, Rajgopal Srinivasan, Ross Shiman, Gary
Pielak, Nicholas Panasik, Timothy Street, and Haipeng Gong for many
helpful discussions. This work was supported by the Mathers Foundation.
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Fig. 6. Kratky plots of rigid-segment simulations. (A) Calculated Kratky plot
for 1,296 structures chosen at random from the lysozyme ensemble. (B)
Calculated Kratky plot for the same structures after removal of side-chain
atoms beyond C
. The maximum in A suggests a native protein, whereas B
resembles a denatured protein, suggesting the fact that the hump in A is
caused by sidechain rigidity and not by lack of backbone flexibility.
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