
1Scientific Reports | 6:37313 | DOI: 10.1038/srep37313

www.nature.com/scientificreports

Towards peptide vaccines against 
Zika virus: Immunoinformatics 
combined with molecular dynamics 
simulations to predict antigenic 
epitopes of Zika viral proteins
Muhammad Usman Mirza1, Shazia Rafique2, Amjad Ali2, Mobeen Munir3, Nazia Ikram4, 
Abdul Manan4, Outi M. H. Salo-Ahen5,6 & Muhammad Idrees2,7

The recent outbreak of Zika virus (ZIKV) infection in Brazil has developed to a global health concern 
due to its likely association with birth defects (primary microcephaly) and neurological complications. 
Consequently, there is an urgent need to develop a vaccine to prevent or a medicine to treat the 
infection. In this study, immunoinformatics approach was employed to predict antigenic epitopes 
of Zika viral proteins to aid in development of a peptide vaccine against ZIKV. Both linear and 
conformational B-cell epitopes as well as cytotoxic T-lymphocyte (CTL) epitopes were predicted for ZIKV 
Envelope (E), NS3 and NS5 proteins. We further investigated the binding interactions of altogether 
15 antigenic CTL epitopes with three class I major histocompatibility complex (MHC I) proteins 
after docking the peptides to the binding groove of the MHC I proteins. The stability of the resulting 
peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation 
results highlight the limits of rigid-body docking methods. Some of the antigenic epitopes predicted 
and analyzed in this work might present a preliminary set of peptides for future vaccine development 
against ZIKV.

Zika virus (ZIKV) is a positive-sense single-stranded RNA virus that belongs to the family of Flaviviridae. 
Its 10.7 kb genome encodes a single polyprotein. Viral and host proteases cleave this polyprotein into seven 
non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) and three structural proteins (capsid – C,  
premembrane/membrane protein – prM/M, and the envelope – E)1.

Since its outbreak in 2015 in Brazil, ZIKV infection has spread rapidly in the tropical Americas. Its emer-
gence dates seventy years back in Uganda’s Zika forest, when ZIKV was known to cause mild feverish infection2. 
Changes in the medical signs and symptoms of ZIKV were noted subsequent to its emergence in French Polynesia 
and an entrance in Latin America. Today Zika viral infection is seen to be followed by Guillian-Barré Syndrome 
(GBS)3 and adult ZIKV infection is linked with other sensory neurologic complications as well4. Due to Zika viral 
infection primary microcephaly and spontaneous abortion during first two pregnancy trimesters has been widely 
noted5,6. Ocular lesions in surviving infants have been noted7,8. Zika fetal disorder accounts for the aforemen-
tioned complexities along with the neonatal neurological impairment during pregnancy. GBS has been observed 
to sporadically follow dengue viral infection9,10 but is apparently more severe in the case of ZIKV due to the 
incidence of teratogenic lesions11. ZIKV has been identified by PCR in fetuses, and Zika virus particles have been 
detected by electron microscopy in the fetal central nervous system in high concentrations5. The fact that GBS 
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and Zika fetal syndrome occur simultaneously, suggests that these syndromes might share a common etiology 
such as an autoimmune response that targets neurologic functions, raising the possibility of epitope mimicry12,13. 
Furthermore, high viral loads of ZIKV identified in the semen of infected patients, have indicated the possibility 
of its transmission by sexual means14. Lack of therapeutics or approved vaccines against ZIKV, till date, makes it 
difficult to control and prevent the infection. As a matter of fact, considerable endeavors are in focus to enhance 
comprehension of the vulnerability and pathogenesis of ZIKV. Envelope protein (E), NS3 and NS5 have been 
identified as potential targets for therapeutics and vaccines development. These targets have been recognized 
to have a major role in viral entry into the cell and in viral replication15,16. The risk associated with autoimmune 
responses to potential epitope mimics must be addressed in the development of vaccines and therapeutics for 
Zika virus infections13. Availability of genomic and immunological data and computer algorithms has brought 
about a more efficient process in vaccine development that allows for identification of possible epitopes which can 
assist the production of effective subunit vaccines17–19.

One of the indispensable and significant steps of vaccine development is the recognition of exceedingly 
competent B-cell linear (continuous) or conformational (discontinuous) and Cytotoxic T-lymphocyte (CTL) 
epitopes. It has been reported that approximately >​90% of B-cell epitopes are discontinuous20,21. The target 
vaccine has been reported to elicit competent immune responses where T cells act as mediators. The progress 
in vaccine-designing research recently, has been facilitated by the development of refined assays designed to 
measure the T-cell responses against various vaccine candidates22. In order to explore T-cell epitopes in peptide 
sequences, aforementioned reports have accelerated research leading to the development of immunoinformatics 
methods23. With the help of immunoinformatics approach, we tried to make it possible to precisely narrow down 
potential B-cell and T-cell epitopes that can be characterized as effective vaccine candidates. Identifying which 
peptide of the virulent bacterial pathogen’s proteome binds to the major histocompatibility complex (MHC) mol-
ecules is considered as the first step to vaccine design. T-cell immunogenicity is correlated to the strength with 
which epitopes bind to MHC molecule24. With the help of appropriate molecular modeling tools, peptide-MHC 
complexes were modeled and their post-docking interaction studies helped further towards the selection of 
potential candidates for the development of peptide vaccines.

Results
For designing peptide vaccines, this study aimed at identifying potential B cell and T cell epitopes with the help 
of an immunoinformatics approach. The identification of new vaccines by in silico approach can be carried out 
through the analysis of pathogenomics on a genome-wide scale25. There exist several limitations with respect to 
the conventional experimental approaches. With the help of immuno informatics, analysis of the complete spec-
trum of potential antigens is possible. Furthermore, the non-feasibility of pathogen culturing and the problems in 
the expression of antigens in vitro can also be circumvented26. and several in silico vaccine candidates reported by 
immune research groups have been known to produce promising preclinical results26.

In the current study, potential B-cell epitopes (continuous and discontinuous) and T-cell epitopes have been 
identified for the designing of peptide vaccines against ZIKV E, NS3, and NS5 proteins. With the help of immu-
noinformatics approach as well as docking tools for predicting peptide-protein complexes, the analysis was per-
formed because these tools are very helpful for the identification of new vaccines25. Numerous researchers have 
documented in silico approach to design vaccines with promising clinical trials27. In silico process helps in reduc-
ing the number of in vitro experiments, hence, prediction of B-cell epitopes and CTL epitopes by various immu-
noinformatics approaches serves as an essential tool in vaccine design28,29.

Prediction of Antigenic B-Cell Epitopes.  Based upon the physicochemical characteristics of amino acids 
that have been observed in experimentally determined antigenic epitopes, Kolaskar and Tongaonkar’s method30  
was employed to predict antigenic epitopes of a given sequence. It has been reported that this method provides 
75% experimental accuracy30. This procedure predicted that the ZIKV E protein sequence of 403 amino acids has 
21 antigenic peptides that fall in the range of 7–18 amino acids with 6 heptapeptides (Table 1). Similarly, it was 
predicted that the sequence of NS3 of 151 amino acids contains 6 antigenic peptides. The length of the antigenic 
peptides was 7–21 amino acids with 2 hendeca-peptides for NS3 (Table 2). Moreover, the sequence of NS5 of 641 
amino acids has 22 antigenic peptides. The length of the antigenic peptides was 6–25 with 6 nonapeptides for NS5 
(Table 3). Furthermore, Kolaskar and Tongaonkar’s method also predicted the maximum residual score for each 
amino acid in E, NS3, and NS5. 252 out of 403 amino acids of ZIKV E protein has a residual score greater than 
1.000. Leucine at the 258th position, found in the antigenic peptide from position 252 to 260 (RQTVVVLGS), was 
identified as having the maximum residual score of 1.184.

Likewise, 100 out of 151 amino acids of ZIKV NS3 protein were predicted to have a residual score >​1.000. 
Leucine at the 81st position, in the antigenic peptide from position 76 to 86 (SEVQLLAVPPG), was identified 
as having the maximum residual score of 1.201. It should be noted that the leucines at positions 80 and 81 from 
this ZIKV NS3 antigenic site were also predicted as comprising a CTL epitope, thus significantly enhancing the 
scope of amino acid leucine at positions 80 and 81 to be treated as potential peptide vaccine candidates. In ZIKV 
NS5,322 out of 641 amino acids were predicted to have  a residual score >​1.000 and serine at 533rd position of 
the antigenic peptide from position 528 to 539 (NAICSSVPVDWV), had the maximum residual score of 1.203.

Graphical representation of the predicted peptides of B-cell E, NS3 and NS5 proteins on the basis of 
their sequence position (along the x-axis) and antigenic propensity (along the y-axis) are shown in Fig. S1 
(Supporting Information). The variation of antigenic propensity is associated with sequence length. The min-
imum antigenic propensity score for the ZIKV E protein was 0.861 while the maximum score was 1.186 (A). 
Moreover, the average antigenic propensity score came out to be 1.026 (A). On the other hand, minimum and 
maximum (B,C) value for NS3 and NS5 (0.911 and 0.851) and (1.202 and1.203) was observed respectively. The 
average antigenic propensity score for NS3 and NS5 came out to be 1.035 (B) and 1.008 (C) respectively.
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Surface accessibility for E protein, NS3, and NS5.  The surface probability of a hexapeptide more than 1.0 
(threshold) predicts that the sequence has an increased probability to be found on the surface31. The graphical 
representation of the predicted peptides for E protein, NS3 and NS5 depending upon the sequence position (along 
the x-axis) and surface probability (along the y-axis) is shown in Fig. S2. The minimum surface probability score 
calculated by the program was 0.067 for the E protein from amino acid position 387 to 392 (387IVIGVG392), 
while the maximum surface probability score calculated was 5.725 for the E protein from amino acid position 
159 to 164 with the sequence of hexapeptide 159ETDENR164, where E159 is a surface residue (one with a greater 
than 20 Å2 of water-accessible surface).

Moreover, the minimum surface probability score calculated by the program was 0.123 and 0.067 for NS3 and 
NS5 from the amino acid position 19 to 24 and 314 to 319, respectively. The maximum surface probability score 
calculated was 4.935 and 9.228 for NS3 and NS5 from the amino acid position 100 to 105 and 207 to 212 with the 
sequences of hexapeptides 100KTKDGD105 and 207KREKKQ212, where K100 and K207 are surface residues 
as shown in Fig. S2.

Surface flexibility for E protein, NS3, and NS5.  The vibrational motion of atoms within a structure 
indicated by temperature or B factors is calculated by Karplus and Schulz flexibility method32. In well-ordered, 
that is, organized structure, the atoms have a low B-factor value; on the other hand, the higher the B factor32. The 
graphical representation of the surface flexibility results for E, NS3, and NS5 proteins are shown in the Fig. S3. The 
minimum flexibility score 0.894 was predicted by the program showing a more ordered structure with a sequence 
of heptapeptide 137YRIMLSV143 while the maximum score was 1.112 (367ESTENSK373 amino acid sequence) 
for E protein. On the other hand, the minimum flexibility score for NS3 and NS5 were predicted to be 0.887 
and 0.839 respectively, showing a more ordered structure with a sequence of heptapeptides 29FHTMWHV35 

No.
Start 

position
End 

position Peptide
Peptide 
length

1 20 34 WVDVVLEHGGCVTVM 15

2 38 49 KPTVDIELVTTT 12

3 56 64 VRSYCYEAS 9

4 71 77 DSRCPTQ 7

5 88 99 TQYVCKRTLVDR 12

6 110 123 KGSLVTCAKFACSK 14

7 138 147 RIMLSVHGSQ 10

8 185 191 SLGLDCE 7

9 198 204 FSDLYYL 7

10 210 216 HWLVHKE 7

11 219 226 HDIPLPWH 8

12 240 246 EALVEFK 7

13 252 260 RQTVVVLGS 9

14 262 273 EGAVHTALAGAL 12

15 285 294 SSGHLKCRLK 10

16 300 317 LKGVSYSLCTAAFTFTKI 18

17 323 333 HGTVTVEVQYA 11

18 338 346 PCKVPAQMA 9

19 352 358 LTPVGRL 7

20 360 367 TANPVITE 8

21 383 391 GDSYIVIGV 9

Table 1.   Predicted antigenic B-cell epitopes of ZIKV E protein*. *21 antigenic sites were identified from the 
ZIKV E protein. Residues (in bold) were also predicted as CTL epitopes.

No. Start position End position Peptide
Peptide 
length

1 13 33 LLGSTQVGVGVMQEGVFHTMW 21

2 56 66 KQDLVSYCGPW 11

3 76 86 SEVQLLAVPPG 11

4 92 98 IQTLPGI 7

5 106 114 IGAVALDYP 9

6 120 132 SPILDKCGRVIGL 13

Table 2.   Predicted antigenic B-cell epitopes of ZIKV NS3 protein*. *6 antigenic sites were identified from 
the ZIKV NS3 protein. Residues (in bold) were also predicted as CTL epitopes.
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and 223AIWYMWL229 respectively, while the maximum score was 1.117 and 1.125 (115AGTSGSP121 and 
250RENSGGG256 amino acid sequences) respectively.

Parker Hydrophilicity Prediction for E protein, NS3, and NS5.  Based upon the peptide retention 
times during HPLC on reversed phase column, the Parker hydrophilicity scale method is employed for the pre-
diction of hydrophilicity of peptides33. The depicted surface hydrophilic regions are associated with the known 
antigenic sites in immunological studies33.

The graphical representation of the predicted peptides for E protein, NS3 and NS5 on the basis of the sequence 
position (along the x-axis) and hydrophilicity (along the y-axis) is shown in Fig. S4. The minimum hydrophilicity 
score calculated by the software was −​3.171 for E protein from amino acid position 217 to 223. According to the 
Parker Surface Hydrophilicity Prediction result is 217WFHDIPL223, the sequence of a heptapeptide. The maxi-
mum hydrophilicity score calculated was 7.057 for E protein from amino acid position 83 to 89 with the sequence 
of a heptapeptide 83DKQSDTQ89.

Moreover, the minimum hydrophilicity score calculated by the program was −​2.529 and −​5.886 for NS3 and 
NS5 from amino acid position 28 to 34 as well as 29 to 35 (NS3) and 223 to 229 (NS5), respectively. According 
to the Parker Surface Hydrophilicity Prediction result are 28VFHTMWH34 as well as 29FHTMWHV35 and 
223AIWYMWL229 sequences of heptapeptides. The maximum hydrophilicity score calculated was 4.914 and 
6.300 for NS3 and NS5 from amino acid position 73 to 79 and 347 to 353 as well as 348 to 354 with the sequences 
of heptapeptides 73DGHSEVQ79 and 347QDQRGSG353 as well as 348DQRGSGQ354, respectively.

CTL epitope prediction.  Cytotoxic T-lymphocyte (CTL) epitopes were investigated from the ZIKV. 
The infected cell with antigen-presentation activates T-cell to become effector cell to kill any infected cell. 
Self-destruction or cell death is observed after the CTLs attack on infected cells. The peptide fragment of the path-
ogen and the MHC molecule bind together and appear on the cell surface of infected cells. The peptide-protein 
complex is recognized by CTLs, and, as a result, infected cells are killed. Peptide fragment (antigen) processing, 
as well as its presentation to the T-cell, is accomplished by various steps. Peptides are processed in the cytosol 
by the proteasome and later transported to the endoplasmic reticulum (ER) where MHC is synthesized. Here, 
transporter associated with antigen processing (TAP) moves the peptide into the MHC I molecule. After that 
peptide-MHC I complex is transported to the cell surface. A diverse range of peptides is bound to each allelic 
form of MHC I protein. The MHC molecule has the ability to bind with peptides tightly as the pathogens try to 
mutate the epitope of the MHC molecule. Hence, MHC molecule exhibits high binding affinity with a variety of 
peptides34.

In the scope of in silico vaccine designing, T-cell epitope prediction is rendered as a milestone28. CTL epitopes 
are proved to be potential candidates for peptide vaccine design for various diseases. By using in silico epitope 
prediction methods, numberless research groups have reported excellent results. In the development of different 

No.
Start 

position End position Peptide
Peptide 
length

1 13 21 RAVVSCAEA 9

2 67 91 ASSLINGVVRLLSKPWDVVTGVTGI 25

3 101 107 QQRVFKE 7

4 140 147 RPRVCTKE 8

5 181 186 FWALVD 6

6 194 203 RGECQSCVYN 10

7 231 241 ARFLEFEALGF 11

8 262 270 LQRLGYVLE 9

9 312 322 RALALAIIKYT 11

10 324 333 QNKVVKVLRP 10

11 353 361 GQVVTYALN 9

12 364 371 TNLVVQLI 8

13 413 421 GDDCVVKPI 9

14 426 431 AHALRF 6

15 457 470 VPFCSHHFNKLHLK 14

16 473 484 RSIVVPCRHQDE 12

17 488 494 RARVSPG 7

18 501 509 ETACLAKSY 9

19 512 520 MWQLLYFHR 9

20 528 539 NAICSSVPVDWV 12

21 560 566 MLVVWNR 7

22 597 604 WCGSLIGH 8

Table 3.   Predicted antigenic B-cell epitopes of ZIKV’ NS5 protein*. *22 antigenic sites were identified from 
the ZIKV NS5 protein. Residues (in bold) were also predicted as CTL epitopes.
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vaccines against various infectious diseases, including autoimmune disease and cancer, these research groups 
have been found to have played a key role35.

CTL epitope prediction is an important in silico tool in the vaccine designas it reduces the need for in vitro 
experiments. NetCTL 1.2 server36 was employed for the CTL epitope prediction. Peptide sequences from ZIKV-E, 
NS3 and NS5 were predicted as CTL epitopes on the basis of their specific MHC binding affinity, proteasomal 
C-terminal cleavage, TAP transport affinity and potential MHC ligands were identified, whose prediction scores 
were >​0.75000 threshold. Ten peptide sequences from ZIKV-E were predicted as CTL epitopes whose prediction 
score were >​0.75000 (Table 4). For ZIKV-NS3, five peptide sequences were predicted as CTL epitopes with pre-
dicted score above threshold (Table 5). As mentioned above, the leucine residues at positions 80 and 81 were also 
predicted as antigenic sites. Hence, 75HSEVQLLAV83, one of the CTL epitopes predicted from ZIKV-NS3, can 
be considered a potential vaccine candidate. Correspondingly, fifteen peptide sequences from ZIKV-NS5 were 
predicted as CTL epitopes whose prediction score were >​0.75000 (Table 6).

Homology modeling and structure validation.  To perform structure-based epitope prediction of ZIKV 
proteins (E, NS3 and NS5), homology modeling of proteins E, NS3 and NS5 was performed (Fig. S5). It was 
observed that the 3D crystal structures of dengue virus type 1 and type 3 envelope proteins (3G7T chain A and 
1UZG chain A), West Nile virus NS2b-NS3 protease in complex with 3, 4-dichlorophenylacetyl-Lys-Lys-GCMA 
(2YOL chain A) and RNA-dependent RNA polymerase domain from the West Nile virus (2HFZ chain A) were 
found to be the best hits based on E-value, query coverage and identity. Hence, these were considered the best 
templates to perform homology modeling (Table 7).

HHpred server37 identified 57% maximum identity of glycoprotein E for ZIKV (403 amino acids) with the 
Protein Data Bank (PDB) structures: 3G7T chain A (crystal structure of dengue virus type 1 envelope protein) 
and 1UZG chain A (crystal structure of dengue virus type 3 envelope protein). The program employed PDB codes 
(3G7T chain A and 1UZG chain A) as a template and built the homology model with “100%” confidence. Greater 
than 90% confidence reflects that core model is very much precise and correct deviating 2–4 Ǻ in rmsd from the 
native protein structure. Moreover, the percentage identity between the template and the query sequence being 
more than 30–40% reflects good accuracy in the model.

As far as NS3 and NS5 proteins are concerned, 70% (NS3) and 72% (NS5) maximum sequence identity 
for ZIKV were found with the PDB structures 2YOL chain A (crystal structure of West Nile virus NS2b-NS3 
protease in complex with 3, 4-dichlorophenylacetyl-Lys-Lys-GCMA) and 2HFZ chain A (crystal structure of 
RNA-dependent RNA polymerase domain from West Nile virus). Stereochemical quality of the models was also 
comparable with the template structures (see Methods).

Structure-based Epitope Prediction for ZIKV E, NS3 and NS5 proteins.  For the epitope predic-
tion in 3D structures, ElliPro38 was employed. This web-based advanced program helps studying the correlation 

Residue 
number

Peptide 
sequence

Predicted 
MHC binding 

affinity

Rescale 
binding 
affinity

C-terminal 
cleavage 
affinity

Transport 
affinity

Prediction 
score*

MHC 
ligand

53 MAEVRSYCY 0.4403 1.8696 0.9649 3.021 2.1654 Yes

85 QSDTQYVCK 0.2076 0.8813 0.5921 0.443 0.9922 Yes

129 SIQPENLEY 0.4389 1.8634 0.9329 3.175 2.1621 Yes

159 ETDENRAKV 0.1722 0.7311 0.9755 −​0.11 0.872 Yes

195 GLDFSDLYY 0.6604 2.8041 0.7805 2.599 3.0511 Yes

198 FSDLYYLTM 0.5872 2.4933 0.9307 −​0.065 2.6297 Yes

205 TMNNKHWLV 0.2026 0.8603 0.9214 0.369 1.0169 Yes

308 CTAAFTFTK 0.1876 0.7964 0.6855 0.467 0.9226 Yes

324 GTVTVEVQY 0.1984 0.8423 0.9769 2.779 1.1278 Yes

368 STENSKMML 0.2251 0.9558 0.9741 0.675 1.1357 Yes

Table 4.   Predicted CTL epitopes from the ZIKV E protein. *Prediction score threshold was set at >​0.75000. 
Bold indicates amino acids that were also predicted as antigenic sites.

Residue 
number

Peptide 
sequence

Predicted 
MHC binding 

affinity

Rescale 
binding 
affinity

C-terminal 
cleavage 
affinity

Transport 
affinity

Prediction 
score*

MHC 
ligand

1 TTDGVYRVM 0.1514 0.643 0.9115 0.084 0.7839 Yes

47 RLDPYWGDV 0.1625 0.6897 0.9687 0.372 0.8536 Yes

75 HSEVQLLAV 0.277 1.176 0.2538 0.09 1.2186 Yes

105 DIGAVALDY 0.2072 0.8797 0.9491 2.544 1.1492 Yes

136 GVVIKNGSY 0.1489 0.6321 0.9462 3.103 0.9292 Yes

Table 5.   Predicted CTL epitopes from the ZIKV NS3 protein. *Prediction score threshold was set at >​0.75000. 
Bold indicates amino acids that were also predicted as antigenic sites.
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between solvent accessibility, flexibility, and antigenicity of a protein structure. Moreover, an important feature is 
that the predicted epitopes are differentiated on the basis of protein-antibody interactions. For E-protein of ZIKV 
three-discontinuous peptides with a score value of 0.7 or more were selected. The score (Protrusion Index, PI) 
reflects the percentage of protein atoms that extend beyond the molecular bulk and are responsible for antibody 
binding38.

The highest probability for the E protein was computed as 74.4% (PI score: 0.744). Moreover, the highest prob-
ability for both NS3 and NS5 was computed as 87.1% and 73.6% (PI score: 0.871 and 0.736), respectively. Amino 
acid residues, the number of residues, sequence location as well as their scores are tabulated in the Tables 8, 9 and 10.  
The graphical representation of the discontinuous epitopes is displayed in Fig. 1.

Molecular Docking of ZIKV-E protein with HLA-A0201.  Out of 10 epitopes predicted, five CTL epitopes 
predicted from ZIKV-E protein were docked to MHC class I HLA-A0201. All five CTL peptides exhibited strong 
binding affinities in terms of global energy and attractive van der Waals energy (vdW) ranging from −​52.10 to  
−​59.59 kcal/mol and −​19.87 to−​29.58 kcal/mol as tabulated in Table 11. Among the five peptides, post-docking 
analysis of three CTL predicted epitopes (MAEVRSYCY, FSDLYYLTM, and TMNNKHWLV) revealed good inter-
actions with HLA-A0201 (Fig. 2). In MAEVRSYCY-MHC HLA-A0201 complex, three hydrogen bonds within a 
distance of 3.5 Å, suggested the stability to the docked complex. Significant hydrogen bond interactions were seen 
between the residues Cys8 and Tyr9 of the peptide and Asp77 of the MHC protein. It was further predicted that 

Residue 
number

Peptide 
sequence

Predicted 
MHC 

binding 
affinity

Rescale 
binding 
affinity

C-terminal 
cleavage 
affinity

Transport 
affinity

Prediction 
score*

MHC 
ligand

51 RTWAYHGSY 0.3114 1.3221 0.9789 3.267 1.6323 Yes

67 ASSLINGVV 0.1418 0.6019 0.8948 0.549 0.7636 Yes

91 IAMTDTTPY 0.1612 0.6844 0.8903 3.035 0.9697 Yes

93 MTDTTPYGQ 0.2728 1.1583 0.1576 −​0.102 1.1769 Yes

124 MSMVSSWLW 0.2011 0.8539 0.8448 1.084 1.0349 Yes

233 FLEFEALGF 0.1492 0.6333 0.3368 2.447 0.8062 Yes

313 ALALAIIKY 0.216 0.9172 0.9296 3.237 1.2185 Yes

315 ALAIIKYTY 0.2376 1.0088 0.9516 3.153 1.3092 Yes

363 FTNLVVQLI 0.1698 0.7208 0.4951 0.334 0.8118 Yes

501 ETACLAKSY 0.3732 1.5844 0.3155 2.848 1.7742 Yes

509 YAQMWQLLY 0.6788 2.8819 0.8387 2.979 3.1567 Yes

555 MTTEDMLVV 0.1969 0.8361 0.2914 0.248 0.8922 Yes

581 VTKWTDIPY 0.2405 1.0211 0.8992 2.818 1.2969 Yes

584 WTDIPYLGK 0.3037 1.2893 0.9376 0.341 1.447 Yes

631 YMDYLSTQV 0.288 1.223 0.9517 0.341 1.3828 Yes

Table 6.   Predicted CTL epitopes fromthe ZIKV NS5 protein. *Prediction score threshold was set at >​0.75000. 
Bold indicates amino acids that were also predicted as antigenic sites.

ZIKV target 
proteins

Template PDB 
ID (chain) Description

Query 
Cover E-Value Positives

Maximum 
Identity

E 3G7T (A) Crystal structure of dengue virus type 1 
envelope protein 99% 1.00E-167 72% 57%

1UZG (A) Crystal structure of dengue virus type 3 virus 
envelope protein 99% 2.00E-164 72% 57%

4GSX (A) Crystal structure of Japanese Encephalitis virus 
envelope protein 100% 3.00E-164 72% 52%

2I69 (A) Crystal structure of West Nile virus envelope 
glycoprotein 100% 3.00E-167 72% 52%

NS3 2YOL (A) West Nile virus NS2B-NS3 protease in complex 
with 3,4-dichloro-phenylacetyl-Lys-Lys-GCMA 100% 1.00E-73 81% 70%

2WV9 (A) Crystal structure of the NS3 protease-helicase 
from Murray Valley encephalitis virus 100% 8.00E-65 80% 66%

4R8T (B) Structure of JEV protease 90% 1.00E-60 78% 63%

NS5 2HFZ (A) Crystal structure of RNA dependent RNA 
polymerase domain from West Nile virus 95% 0.00E +​ 00 84% 72%

4K6M (A) Crystal structure of the full-length Japanese 
encephalitis virus NS5 100% 0.00E +​ 00 82% 70%

4V0Q (A) Dengue virus full length NS5 complexed  
with SAH 99% 0.00E +​ 00 80% 68%

Table 7.   Homology modeling parameters.
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three amino acids (Ser6, Cys8, and Tyr9) were antigenic. Similarly, four hydrogen bonds were formed between 
FSDLYYLTM and HLA-A0201 (Table 11). Tyr6 formed hydrogen bond interactions through backbone oxygen 
atom with hydroxyl oxygen atom of Thr73 of the MHC protein. Tyr6 has been predicted to be antigenic. The 
docked complex of TMNNKHWLV-MHC HLA-A0201 showed five hydrogen bond formations within a distance 
of 3.5 Å. Overall stability of the docked complex seems to be well-preserved by the formation of hydrogen bonds. 
Residues Thr1, Met2, His6 and Val9 showed significant hydrogen bond interactions with Ala150, Gln155, Thr73, 
And Tyr99 of the MHC protein (Table 11). His6, Trp7, and Val9 of the peptide have been predicted to be antigenic. 
Molecular interactions of the specific peptides and their respective docked poses are represented in Fig. 2.

Molecular Docking of ZIKV-NS3 protein with HLA-B2705.  Two CTL epitopes predicted from 
ZIKV-NS3 protein, out of five peptides, were docked to class I MHC-HLA-B2705. Docked complexes of 
HSEVQLLAV and DIGAVALDY peptides can be seen in Fig. 3. Four hydrogen bonds were formed between 

No Residues No. of residues Score

1
I65, S66, D67, M68, A69, S70, D71, S72, R73, C74, P75, T76, Q77, G78, E79, A80, Y81, L82, D83, K84, Q85, 
S86, D87, T88, Q89, Y90, C92, K93, R94, T95, L96, V97, D98, R99, G100, W101, G102, N103, G104, C105, 
G106, L107, F108, G109, K110, G111, S112, L113, V114, T115, C116, A117, K118, D230, T231, T233, P234, 

H235, E244, F245, K246, D247, A248, H249, A250, K251, R252, Q253, T254, V255, V256
71 0.744

2
D10, F11, V12, E13, G14, M15, S16, G17, G18, T19, W20, M34, A35, Q36, D37, K38, P39, T40, V143, H144, 

G145, S146, Q147, H148, S149, G150, M151, I152, V153, N154, D155, T156, G157, H158, E159, T160, 
D161, E162, N163, R164, A165, T170, P171, N172, S173, P174, R175, A176, E177, A178, T179, L180, G181, 

G182, F183, G184, S185, L186, G187, D189, R292, K294, M295, D296, K297, L298, R299, L300, K301
69 0.728

3

I1, S306, L307, C308, T309, A310, A311, F312, T313, F314, T315, K316, I317, P318, V330, Q331, Y332, 
A333, G334, T335, D336, G337, P338, C339, K340, V341, P342, A343, Q344, M345, A346, V347, D348, 

M349, Q350, T351, L352, T353, P354, V355, G356, R357, L358, V364, I365, T366, E367, S368, T369, E370, 
N371, S372, M374, L378, D379, P380, P381, F382, G383, D384, S385, Y386, I387, V388, I389, G390, V391, 

G392, E393, K394, K395, I396, T397, H398, H399, W400, H401, R402, S403

79 0.697

Table 8.   Conformational epitopes of ZIKV-E protein as predicted by ElliPro.

No Residues No. of residues Score

1 T10, R11, R12, L13, L14, G15, S16, T17 8 0.871

2 V137, V138, I139, K140, N141, G142, S143 7 0.855

3 W72, D73, G74, H75, S76, E77, Q93, L95, P96, G97, I98, F99, 
K100, T101, K102, D103, G104, D105 18 0.727

4 R88, A89, R90, N91 4 0.707

5 T1, T2, D3, E26, G27, G38, S39, A40, R42, S43, G44, E45, G46, 
R47, L48, D49, P50, Y51, C63, G64, P65, W66, K67, L68 24 0.662

6 P84, P85, G86, E87 4 0.629

Table 9.   Conformational epitopes of ZIKV-NS3 protein as predicted by ElliPro.

No Residues No. of residues Score

1

N72, G73, V74, R76, L77, L78, S79, K80, P81, D83, V84, V85, T86, K466, L467, H468, L469, K470, D471, 
G472, R473, S474, R490, R500, F518, R521, L525, N528, A529, C531, S532, S533, V534, P535, V536, D537, 

W538, T556, T557, E558, D559, L561, V562, N565, R566, I569, E570, E571, N572, D573, H574, M575, 
E576, D577, K578, T579, P580, V581, T582, K583, W584, T585, D586, I587, P588, Y589, L596, G599, S600, 
L601, I602, G603, H604, P606, R607, T608, T609, W610, A611, E612, N613, I614, K615, N616, T617, V618, 
N619, M620, V621, R622, I624, I625, G626, D627, E628, E629, K630, Y631, M632, D633, Y634, L635, S636, 

T637, Q638, V639, R640, Y641

108 0.736

2

E3, E4, D5, V6, N7, L8, G9, S10, G11, T12, R13, A14, V15, V16, S17, C18, A19, E20, A21, P22, N23, M24, 
I26, I27, G28, N29, I31, E32, R33, I34, R35, S36, E37, H38, A39, E40, T41, W42, F43, F44, D45, E46, N47, 

H48, P49, Y50, R51, Y55, H56, G57, S58, Y59, E60, A61, P62, T63, Q64, T97, Y99, D110, R140, P141, R142, 
V143, C144, T145, K146, E147, I150, R154, E165, E166, K167, E168, W169, T171, V173, E174, A175, V176, 

N177, D178, P179, R180, F181, W182, A183, L184, V185, D186, K187, E188, R189, E190, H191, H192, 
L193, R194, G195, E196, C197, Q198, S199, C200, E237, T304, N305, Q306, M307, E308, K309, G310, 
H311, R312, A313, L314, L316, Y321, N325, R332, P333, A334, E335, K336, G337, K338, T339, V340

128 0.715

3

P116, Q117, E118, G119, T120, R121, Q122, V123, S125, M126, S129, W130, K133, E134, G136, K137, 
H138, K139, W247, S273, R274, I275, P276, G277, G278, R279, M280, Y281, N373, M374, E375, A376, 

E377, E378, V379, L380, E381, M382, Q383, D384, L385, W386, L387, L388, R389, R390, S391, E392, K393, 
V394, T395, N396, W397, L398, Q399, S400, N401, G402, W403, D404, R405, R408, K419, P420, I421, 
D422, D423, R424, A426, H427, A428, L429, R430, F431, D434, M435, T442, Q443, E444, W445, K446, 

P447, S448, T449, G450, W451, D452, N453

88 0.703

4 L590, G591, K592, R593, E594, W597 6 0.621

5 G494, A495, G496, W497, S498, I499 6 0.52

Table 10.   Conformational epitopes of ZIKV-NS5 protein as predicted by ElliPro.
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HSEVQLLAV peptide and the MHC protein with the interatomic distance within 3.5 Å. Residues Gln5 
and His1 from the peptide and Tyr116, Arg97 and Gln155 were involved in hydrogen bonding (Table 12). 
On the other hand, the second peptide (DIGAVALDY) from NS3 protein formed four hydrogen bonds with 
MHC-HLA-B2705. Oxygen (OD1) of Asp8 from peptide formed one hydrogen bond with nitrogen (NH1) of 
Arg97 from the MHC protein. Moreover, Asp1 of the peptide formed three hydrogen bonds with Thr163 from 
the MHC protein. Backbone nitrogen and oxygen (OD1 and OD2) of Asp1 formed hydrogen bonds with the side 
chain oxygen (OG1) of Thr163. Residues Glu3, Gln5 and Ala8 from peptide HSEVQLLAV and Ala6 and Asp8 
from DIGAVALDY were also predicted to be antigenic (Table 12). Molecular interactions of the specific peptides 
and their respective poses have been represented in Fig. 3.

Molecular Docking of ZIKV-NS5 protein with HLA-C0801.  Eight CTL epitopes predicted from 
ZIKV-NS5 protein, out of 15 peptides, were docked against class I MHC-HLA-C0801. The docked complexes 
are shown in Fig. 4. The overall stability of the complex structures seems to be well preserved by the formation of 
hydrogen bonds (Table 13). It can be noted that common residues including Arg97, Tyr99, Tyr116 and Gln155 
from MHC-HLA-C0801 were involved in the formation of hydrogen bonding with various CTL predicted 

Figure 1.  3D Representation of  the predicted discontinuous epitopes (A to C) of Zika-E protein, (E to H) of 
Zika-NS3 protein and (I to K) of Zika-NS5 protein.



www.nature.com/scientificreports/

9Scientific Reports | 6:37313 | DOI: 10.1038/srep37313

Peptide
Global energy 

(kcal/mol)a
Attractive vdW 

energy (kcal/mol)
H-Bond energy 

(kcal/mol)
H-Bond interaction

Peptide-MHC atom pair dinit
b (Å) dmin

c (Å) dMD
c (Å)

MAEVRSYCY −​53.43 −​29.58 −​1.29 Tyr7 OH – Arg97 NH2 4.85 3.0 ndd

Steric clashes before energy minimization between the following residue 
pairs: Tyr7 – Arg97, Tyr9 – Leu81, Tyr9 – Thr143 

Cys8 SG - Thr73 O 3.94 nd nd
Cys8 O – Thr143 OG1 4.11 nd nd
Cys8 SG - Asp77 OD2 2.57 nd nd

Tyr9 OH - Asp77 O 2.14 nd nd
Tyr9 OH – Leu81 N 3.0 nd nd

Tyr9 OXT – Lys146 NZ nd 2.7 nd
Arg5 O – Lys146 NZ nd 2.8 nd
Met1 N – Gln72 OE1 nd nd 2.7

Tyr9 OH – Asp77 OD2 nd nd 2.7

QSDTQYVCK −​55.32 −​28.61 −​6.05 Gln1 O - Arg97 NH2 2.97 nd nd

Steric clashes before energy minimization between the following residue 
pairs: Tyr6 – Thr73, Val7 – Ala69

Tyr6 O - Thr73 OG1 4.15 nd nd
Ser2 OG - Gln155 OE1 2.86 2.6 nd
Gln1 O –His114 NE2 nd 2.9 nd

Asp3 OD1 – Arg97 NH1 nd 2.8 nd
Asp3 OD1 – His70 NE2 nd 2.8 nd
Asp3 OD2 – Arg97 NH2 nd 2.8 3.3
Tyr6 OH – Asp77 OD2 nd 2.8 nd

Asp3 OD1 – Arg97 NH2 nd nd 2.7
Asp3 OD2 – Arg97 NH1 nd nd 2.9

Gln1 O – Ala153 N nd nd 3.2
Gln1 O – Gln154 N nd nd 3.0

Gln1 NE2 – His151 O nd nd 2.9

GLDFSDLYY −​59.59 −​27.25 −​0.36 Asp6 OD2 - Gln155 NE2 3.83 2.9 nd

Steric clash before energy minimization between the following residue pair: 
Tyr9 – Tyr116

Asp3 N - Gln155 OE1 4.76 3.5 nd
Gly1 N - Gln155 O 4.81 nd nd

Gly1 N - Thr163 OG1 3.43 3.1 nd
Tyr8 OH - Thr73 OG1 2.5 nd nd

Gly1 N – Ala 158 O nd 2.9 nd
Tyr8 OH – Arg 97 NH1 nd 2.8 nd

Tyr8 O – Lys 146 NZ nd 2.8 nd
Leu2 N – Thr 163 OG1 nd Nd 3.0
Asp3 O – Tyr 159 OH nd Nd 3.0
Leu7 O – His 114 NE2 nd Nd 3.0

FSDLYYLTM −​51.10 −​19.83 −​1.43 Leu7 O - Tyr116 OH 2.34 nd nd
Thr8 O - Arg97 NH2 1.96 nd nd
Thr8 O - Arg97 NH1 3.28 nd nd
Tyr6 O - Thr73 OG1 3.23 nd nd

Met9 O1 – Tyr116 OH 3.65 nd nd
Tyr6 OH – Ala150 O nd nd 2.7

Met9 OXT – Lys 146 NZ nd nd 3.0
Met9 O – Lys 146 NZ nd nd 2.8

TMNNKHWLV −​57.12 −​31.10 1.63 Thr1 OG1 - Ala150 O 2.73 nd nd

Steric clash before energy minimization between the following residue pair: 
Val9 – Trp147 

Met2 N - Gln155 OE1 2.43 nd nd
His6 ND1 - Thr73 OG1 2.92 nd nd

Trp7 O - Tyr99 OH 3.89 nd nd
Val9 OXT - Tyr99 OH 3.43 nd nd
Trp7 O – Trp147 NE1 3.5 nd nd
Leu8 O –Tyr116 OH nd 2.7 nd
Val9 N – Asp77 OD1 nd nd 2.9

Val9 OXT – Lys146 NZ nd nd 2.9
Val9 O – Trp147 NE1 nd nd 3.1

Table 11.   Zika E peptides–HLA-A*02:01 interaction. aFireDock energy for the best ranked complex binitial 
distance between the H-bond donor and the acceptor; measured with the FindHBond tool in Chimera (H-Bond 
constraints were relaxed by 1 Å and 20.0 degrees) cdistance between the H-bond donor and the acceptor after 
the energy minimization (min) and after the molecular dynamics simulation (MD); measured in PyMOL 
dnd =​ no detected H-bond.
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peptides of ZIKV-NS5 protein. The docked structure of peptides IAMTDTTPY, MTDTTPYGQ, ALALAIIKY, 
ALAIIKYTY, FTNLVVQLI, ETACLAKSY, YAQMWQLLY and MTTEDMLVV showed promising global energy 
(−33.97 to −​58.25 kcal/mol) and attractive vdW energy (−​20.37 to −​27.29 kcal/mol) as shown in Table 13.

Both nitrogens (NH1 and NH2) of Arg97 from the MHC-HLA-C0801 formed hydrogen bonds with the back-
bone oxygen atom of Gln7 of FTNLVVQLI. Likewise, Gln155 from MHC-HLA-C0801 formed several hydrogen 
bonds; hydrogen bond interactions were formed between oxygen (OE1) of Gln155 and OG1 of Thr4 and Thr7 of 
IAMTDTTPY, and as well as with sulphur (SG) of Cys4 (ETACLAKSY). The detailed depiction has been given in 
the Table 13 and illustrated in Fig. 4.

Molecular dynamics simulations.  The stability of the docked peptide-MHC I protein complexes was fur-
ther investigated by performing molecular dynamics (MD) simulations of the complexes in an explicit water box 
at 300 K for a period of 5 nanoseconds. The potential energy of the simulation systems remained stable during the 

Figure 2.  Molecular interaction analysis of predicted ZIKV E protein peptides docked to MHC-I HLA-
A*02:01. (A) MAEVRSYCY; (B) QSDTQYVCK; (C) GLDFSDLYY; (D) FSDLYYLTM; (E) TMNNKHWLV.
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MD simulations (data not shown). Some of the docked complexes had steric clashes between the amino acids of 
the binding partners (see Tables 11, 12 and 13). However, during the energy minimization of the complexes, these 
clashes were removed and, on the other hand, new favorable interactions (e.g. hydrogen bonds) were formed 
(Tables 11, 12 and 13). A few peptides kept their initial conformation during the simulation, whereas others 
lost it partially (Supporting Information, Fig. S6-8; Table S1). Moreover, many peptides moved from their orig-
inal docking position and formed new favorable interactions during the simulation (Tables 11, 12 and 13). The 

Figure 3.  Molecular interaction analysis of predicted ZIKV NS3 peptides docked to MHC I HLA-B*27:05. 
(A) HSEVQLLAV; (B) DIGAVALDY.

Peptide
Global energy 

(kcal/mol)a
Attractive 

vdW energy
H-Bond 
energy

H-Bond interaction

Peptide-MHC atom pair dinit
b (Å) dMD

c (Å)

HSEVQLLAV −​55.19 −​20.19 −​1.66 Ala8 O - Val76 N 3.71 ndd

Gln5 NE2 - Tyr116 OH 3.4 nd

Gln5 OE1 - Arg97 NH1 2.27 nd

Gln5 OE1 - Arg97 NH2 2.66 nd

Glu3 N - Gln155 OE1 3.88 nd

His1 N - Gln155 OE1 1.98 nd

His1 N - Gln155 NE2 nd 3.0

Val9 O – Arg97 NH2 nd 2.8

Val9 OXT – Arg97 NH2 nd 3.3

Val9 OXT – Arg97 NE nd 2.9

Val9 OXT – His74 NE2 nd 2.8

Leu6 O – Arg 97 NH1 2.5 2.8

DIGAVALDY −​52.91 −​24.59 −​1.94 Asp8 O - Thr73 OG1 3.74 nd

Asp8 OD1 - Arg97 NH2 3.64 nd

Asp8 OD1 - Arg97 NH1 3.52 nd

Asp1 N - Thr163 OG1 2.64 nd

Asp1 OD2 - Thr163 OG1 2.95 nd

Asp1 OD1 - Thr163 OG1 2.64 nd

Asp8 O – Lys146 NZ nd 2.9

Asp8 OD2 – Lys146 NZ nd 2.8

Tyr9 O – Lys146 NZ nd 2.9

Tyr9 OH – Asp77 OD2 nd 2.8

Table 12.   Zika NS3 peptides–HLA-B*27:05 interaction. aFireDock energy for the best ranked complex. 
binitial distance between the H-bond donor and the acceptor; measured with the FindHBond tool in Chimera 
(H-bond constraints were relaxed by 1 Å and 20.0 degrees). cdistance between the H-bond donor and the 
acceptor after the molecular dynamics simulation (dMD); measured in PyMOL. dnd =​ no detected H-bond.
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binding groove (‘F pocket’)39 also changed its size variably depending on the peptide that was inside the groove 
(Supporting Information, Table S1, Fig. S6–8).

Discussion
The urgent need for preventive measures against a global threat of a ZIKV epidemic has awakened the researchers 
to investigate the pathogen. Especially cost-effective and fast methods such as immunoinformatics tools have 
been quickly harnessed by researchers in different countries to, for example, predict possible antigenic epitopes 
from ZIKV proteins (especially the E protein) for peptide vaccine development (see for example these very recent 
studies in refs 40–47). In general, such in silico approaches help reduce the number of in vitro experimental assays 
and provide an essential tool in vaccine design27–29. In the current study, we have predicted potential epitopes 
not only for the E protein but also for the NS3 and NS5 proteins. Some of the recent studies have also employed 
different docking tools to investigate the binding of the predicted peptides to various MHC-I proteins. For exam-
ple, Alam et. al.45 docked two predicted epitopes to HLA-A*53:01 with Autodock and reported good predicted 
binding affinities for the peptides. In none of these studies on ZIKV epitopes has MD been used to investigate 
the stability of the peptide-MHC-I complexes. On the other hand, there are several studies that have generally 
investigated the dynamics of peptide binding in the MHC-I binding groove by means of MD simulations (e.g. 
refs 39, 48 and 49). For example Fleischmann et al. studied the mechanism of how tapasin, a chaperone, takes 
part in controlling the quality of the binding peptides (high or low affinity binders)50. Their study suggests that 
a high-affinity peptide succeeds to close the binding groove tightly, while a low-affinity peptide (or the absence 
of a peptide) widens the groove. In our study, two of the predicted epitope peptides were closing the groove as 
they reduced the F pocket size (Supporting Information, Table S1): MAEVRSYCY (from ZIKV E protein) and 
IAMTDTTPY (from ZIKV NS5 protein). The rest of the peptides widened the groove to variable extent.

In case of linear epitopes, the leucine residues at positions 80 and 81 from the predicted ZIKV-NS3 antigenic 
site were also predicted as comprising a CTL epitope, thus significantly enhancing the possibility of this peptide 
to become a potential peptide vaccine candidate. Moreover, surface accessibility, surface flexibility as well as 
hydrophilicity of epitopes for E protein, NS3 and NS5 have been reported in the current study. The stability of 
the peptide-MHC I complexes has also been examined in the current study by MD simulations. Overall, the 
complexes get stabilized during the MD simulation after the favorable interactions have been formed and the 
possible steric clashes resulting from the rigid-body docking have been removed. Most of the electrostatic and 
hydrogen binding interactions are formed between the N- and C-terminal ends of the peptides, which is in agree-
ment with the well-known pattern of epitope binding to MHC-I proteins. However, the PEP-FOLD3 predicted 
conformations of the peptides can be possible in solution but when the peptides bind to the binding groove, the 
experimental structures show a rather elongated conformation, C-terminus residing mainly in the more flexible 
F pocket and N-terminus in the less flexible pocket at the other end of the groove and some anchor residues in 
between interacting with the groove. In this case, flexible docking methods might work better when trying to 
dock the epitope peptides to the MHC-I protein binding groove in the described way.

Structural and genomic data, alongside the drastic development of vast genome sequence databases, aids in 
the design and discovery of novel vaccine candidates when coupled together with computational tools. Infection 
of ZIKV is a serious problem concerning morbidity and mortality worldwide. Unfortunately, the unavailability 

Figure 4.  Molecular interaction analysis of predicted ZIKV NS5 peptides docked to MHC-I HLA-C*08:01. 
(A) IAMTDTTPY; (B) MTDTTPYGQ; (C) ALALAIIKY; (D) ALAIIKYTY; (E) FTNLVVQLI; (F) ETACLAKSY; 
(G) YAQMWQLLY; (H) MTTEDMLVV.
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Peptide
Global energy 

(kcal/mol)a
Attractive 

vdW energy
H-Bond 
energy

H-Bond interactions
Peptide-MHC atom pair dinit

b (Å) dMD
c (Å)

IAMTDTTPY −​39.51 −​23.88 −​1.94 Asp5 O - Thr73 OG1 2.65 ndd

Thr6 O - Tyr116 OH 2.98 nd
Thr4 OG1 - Gln155 OE1 2.81 nd

Thr6 O - His114 NE2 3.13 nd
Thr7 OG1 - Gln155 OE1 3.67 nd
Tyr9 OH – Thr163 OG1 nd 3.3

MTDTTPYGQ −​33.97 −​22.68 −​3.66 Thr4 O - Thr73 OG1 2.46 nd
Thr4 OG1 - Tyr116 OH 2.35 nd
Asp3 OD2 - Tyr116 OH 2.41 nd
Thr2 OG1 - His70 NE2 3.96 nd
Thr2 OG1 - Tyr99 OH 3.34 nd
 Asp3 O – Trp147 NE1 nd 2.7

 Asp3 OD2 – Tyr 116 OH nd 2.9
 Gly8 O – Lys146 NZ nd 3.0
Gln9 O. Lys146 NZ nd 2.9

Gln9 NE2 – Tyr116 OH nd 3.1

ALALAIIKY −​39.24 −​20.37 −​2.16 Tyr9 O2 - Arg65 NH2 2.42 nd
Lys8 O - Arg65 NH2 3.20 nd
Ala1 N - Ala150 O 2.33 nd

 Ile6 O – His70 NE2 nd 3.4

ALAIIKYTY −​46.78 −​27.29 −​1.41 Tyr7 OH - Asp77 O 4.10 nd
Tyr9 O1 - Thr73 OG1 2.42 nd
Thr8 O - Tyr116 OH 2.37 nd
Thr8 O - His114 NE2 3.12 3.0
Thr8 O – Arg97 NH2 nd 2.8
Tyr7 O – His114 NE2 nd 3.5

Tyr9 OXT – Arg97 NH1 nd 3.2
Tyr9 OXT – His70 NE2 nd 2.9

FTNLVVQLI −​49.97 −​26.67 −​0.88 Gln7 NE2 - Ala69 O 4.58 nd
Gln7 O - Arg97 NH1 2.86 nd
Gln7 O - Arg97 NH2 3.40 nd
Gln155 NE2 - Phe1 O 2.86 nd
Phe1 N – Gln155 OE1 nd 2.8
Leu8 O – His114 NE2 nd 2.9
Leu8 O – Arg97 NH2 nd 3.0

Ile9 OXT – Arg97 NH2 nd 2.9
Ile9 OXT – Arg97 NH1 nd 2.8
Ile9 OXT – His70 NE2 nd 2.9

ETACLAKSY −​35.57 −​23.55 −​2.16 Lys7 NZ - Ala150 O 3.62 nd
Lys7 NZ - His151 O 3.89 nd
Cys4 SG - Val152 O 3.50 nd

Cys4 SG - Gln155 OE1 3.07 nd
Glu1 N - Tyr99 OH 3.80 nd

Glu1 OE1 - His70 NE2 3.59 nd
Ala6 O – Arg97 NH1 nd 2.9
Lys7 O – Tyr116 OH nd 2.7
Ser8 O – His114 NE2 nd 2.8
Ser8 O – Arg97 NH2 nd 2.8

Ser8 OG – Gln155 OE1 nd 2.7
Tyr9 O – His70 NE2 nd 3.3

Tyr9 OXT – His70 NE2 nd 3.0
Tyr9 OXT – Tyr99 OH nd 2.8
Tyr9 OXT – Lys66 NZ nd 2.9

Continued
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of vaccines against the ZIKV has affected many precious lives in various regions of the world. Researchers have 
beenstruggling to gather data associated to ZIKV to understand its biology, transmission and pathophysiology in 
order to eradicate the disease successfully. We inferred that the predicted epitopes possess therapeutic potential, 
with promising scope in the near future. Our immunoinformatics analysis will aid in the development of potential 
peptide vaccines using the predicted peptides.

Materials and Methods
ZIKV protein sequences.  The primary amino acid sequences of ZIKV E, NS3, and NS5 proteins were 
retrieved from the ZIKV polyprotein sequence (GenBank ID: AHZ13508.1) that is deposited in the National 
Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/protein/). The individual 
sequence lengths for the viral protein segments were 403 (E), 151 (NS3) and 641 (NS5).

Prediction of Linear and Conformational B-Cell epitopes.  Antigen B-cell epitope interacts with 
B-lymphocyte which causes the B-lymphocytes to differentiate into antibody-secreting plasma and memory 
cells51. B cell epitope has two important characteristics including hydrophilic nature and accessibility for a flex-
ible region of an immunogen52. According to the Parker hydrophilicity prediction33, Emini prediction of sur-
face accessibility31, Kolaskar and Tongaonkar antigenicity scale30, Karplus and Schulz Flexibility Prediction32 the 
analysis was performed computationally at IEDB (http://www.iedb.org/) analysis resource. ElliPro38 from IEDB 
analysis resource was employed for prediction of the discontinuous (conformational) epitopes for B-cell (http://
tools.immuneepitope.org/toolsElliPro/). Three different algorithms are used in this resource including Protrusion 
Index (PI) of residues53, neighboring residues clustering depending upon PI and protein shape approximation54.

Prediction of Potential Cytotoxic T-lymphocyte (CTL) epitopes.  Using the NetCTL.1.2 server36 
(http://www.cbs.dtu.dk/services/Net CTL), CTL epitopes were predicted. The activation of CTLs takes place on 
the surface of antigen-presenting MHC molecules. The prediction of the MHC class I binding, TAP transport effi-
ciency and the proteasomal C-terminal cleavage was integrated with the help of NetCTL 1.2 server. As an input, 
the FASTA sequence of the organism was provided. Human leukocyte antigen (HLA) alleles and peptide lengths 
were both selected and submitted. As an output, T-cell epitopes were predicted. In order to predict proteasomal 
C-terminal cleavage and MHC class I binding, the artificial neural network was used while a weight matrix was 
used to predict the TAP transport efficiency.

Homology modeling and structure validation.  Homology modeling was performed for E protein, 
NS3 and NS5 proteins of ZIKV37. The Protein Data Bank (PDB) repository was employed to find suitable tem-
plates to generate the three-dimensional (3D) coordinate structures for all three protein sequences that were 
taken from UniProt (www.uniprot.org). PSI-BLAST55 was used to search for the homologous proteins from the 
PDB. ALIGN2D module was used to generate the initial alignment between the target and the template. Using a 
restrained-based approach in MODELLER v. 9.12, the 3D structures of all three proteins (E-protein, NS3, and NS5)  

Peptide
Global energy 

(kcal/mol)a
Attractive 

vdW energy
H-Bond 
energy

H-Bond interactions
Peptide-MHC atom pair dinit

b (Å) dMD
c (Å)

YAQMWQLLY −​42.24 −​25.09 −​2.52 Tyr9 OH - Tyr99 OH 2.19 nd
Leu8 O - Arg65 NH2 4.34 nd

Tyr1 OH - His114 NE2 2.40 nd
Ala2 N – Gln155 OE1 nd 3.2

Trp5 NE1 – Thr163 OG1 nd 3.3
Leu8 O – His70 NE2 nd 2.8

Tyr9 OH – His114 NE2 nd 3.0

MTTEDMLVV −​58.25 −​25.43 −​3.02 Met1 O - Val76 N 4.21 nd
Thr3 OG1 - The80 OG1 2.44 nd

Thr3 O - Lys146 NZ 3.49 nd
Leu7 O - Arg97 NH2 3.83 nd

Thr3 O – Thr143 OG1 nd 2.7
Thr3 OG1 – Asp77 OD1 nd 2.7

Thr3 N – Asp77 OD1 nd 2.8
Glu4 O – Lys146 NZ nd 2.8

Asp5 OD1 – Lys146 NZ nd 2.8
Met6 O – Trp147 NE1 nd 2.9

 Val9 O – Arg97 NE nd 2.9

Table 13.   Zika NS5 peptides – HLA-C*08:01 interaction. aFireDock energy for the best ranked complex. 
binitial distance between the H-bond donor and the acceptor; measured with the FindHBond tool in Chimera 
(H-bond constraints were relaxed by 0.4 Å and 20.0 degrees). cdistance between the H-bond donor and the 
acceptor after the molecular dynamics simulation (dMD); measured in PyMOL. dnd =​ no detected H-bond.

http://www.ncbi.nlm.nih.gov/protein/
http://www.iedb.org/
http://tools.immuneepitope.org/toolsElliPro/
http://tools.immuneepitope.org/toolsElliPro/
http://www.cbs.dtu.dk/services/NetCTL
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were generated56. Moreover, spatial limitations were calculated with stereochemistry by CHARMM57. The ste-
reochemical quality and correctness of the modelled structures was verified with WhatIF58, PROCHECK59 and 
Verify 3D60.

Peptide-MHC protein complex and molecular docking studies.  The predicted CTL epitope peptides 
of ZIKV E, NS3 and NS5 proteins that contained antigenic amino acid residues were selected for the docking 
analysis. 3D structures of these peptides were modeled with the PEP-FOLD3 server61, using 200 simulation runs 
to sample the conformations. After PEP-FOLD3 had clustered the different conformational models, they were 
sorted using the sOPEP energy62 value. Subsequently, the best ranked peptide models were docked to the selected 
class I MHC molecules including HLA-A (PDB ID: 2GIT), HLA-B (PDB ID: 2BST) and HLA-C (PDB ID: 4NT6), 
using the PatchDock rigid-body docking server63,64. PatchDock calculates potential complexes of two given mol-
ecules. All complexes that exhibit undesirable penetrations of the atoms of the receptor to the ligand are discarded 
and the remaining complexes are categorized according to the geometric shape complementarity score63,64. The 
docking results were then refined and scored with the FireDock server65,66. FireDock assists in resolving the 
flexibility and scoring problems produced by fast rigid-body docking programs67. The hydrogen bonding inter-
actions of the docked structures were studied with the molecular visualization programs UCSF Chimera 1.1168 
and PyMOL69 (Schrödinger, Inc).

Molecular dynamics simulations.  The stability of the docked complexes was further investigated by 
molecular dynamics (MD) simulations using the AMBER 12 simulation package70. After a stepwise minimization 
and equilibration protocol the solvated system (with TIP3P71 water) was submitted to a production simulation 
of 5 ns at 300 K and at 1 bar pressure (see Supporting Information for the detailed protocol). The ptraj module of 
AMBER was used for the trajectory analysis.
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