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Abstract

Performance-based building requirements have become more prevalent because it gives freedom in 

building design while still maintaining or exceeding the energy performance required by 

prescriptive-based requirements. In order to determine if building designs reach target energy 

efficiency improvements, it is necessary to estimate the energy performance of a building using 

predictive models and different weather conditions. Physics-based whole building energy 

simulation modeling is the most common approach. However, these physics-based models include 

underlying assumptions and require significant amounts of information in order to specify the 

input parameter values. An alternative approach to test the performance of a building is to develop 

a statistically derived predictive regression model using post-occupancy data that can accurately 

predict energy consumption and production based on a few common weather-based factors, thus 

requiring less information than simulation models. A regression model based on measured data 

should be able to predict energy performance of a building for a given day as long as the weather 

conditions are similar to those during the data collection time frame. This article uses data from 

the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test 

Facility (NZERTF) to develop and validate a regression model to predict the energy performance 

of the NZERTF using two weather variables aggregated to the daily level, applies the model to 

estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-

Humid climate zone, and compares these estimates to the results from already existing EnergyPlus 

whole building energy simulations. This regression model exhibits agreement with EnergyPlus 

predictive trends in energy production and net consumption, but differs greatly in energy 

consumption. The model can be used as a framework for alternative and more complex models 

based on the experimental data collected from the NZERTF.
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1. Introduction

In 2014, roughly 41 % of total U.S. energy consumption came from commercial and 

residential buildings [1]. The growing concerns about energy consumption in buildings – in 

particular, residential buildings – have driven an interest in low- and net-zero energy 

buildings and legislation to increase building energy efficiency. States’ building energy 

codes continue to increase the energy efficiency requirements across the US, with greater 

emphasis on performance-based over prescriptive-based requirements. Performance-based 

building requirements give more freedom to builders while still maintaining energy 

performance that meets or exceeds the resulting energy performance from prescriptive-based 

requirements.

In order to determine if building designs reach the target level of energy-efficiency, it is 

necessary to estimate the energy performance of a building using predictive models and 

regional weather conditions. Physics-based whole building energy simulation models (e.g., 

DOE-2, EnergyPlus, or TRNSYS) using one or more years’ worth of weather data are the 

most common approach to estimate this energy performance.1 However, these models 

include underlying assumptions and require significant amounts of information in order to 

specify the input parameter values, including equipment performance specifications across a 

variety of conditions. The performance specifications supplied by manufacturers are based 

on standard test procedures (specific temperatures, loads, etc.) that rarely represent the 

conditions under which the equipment operates once installed. The combination of varying 

weather conditions and integrated design considerations may be difficult to model using 

simulation models. Even when detailed information is available to a simulation modeler to 

define these inputs using post-occupancy equipment performance and occupant activity, the 

modeling software may not be able to accurately predict energy performance as a result of 

capabilities, or lack thereof, built into the software. Issues due to capability limits in these 

simulation models are more prominent when modeling low- and net-zero energy building 

designs, which often incorporate emerging technologies, new processes and techniques, and 

renewable-based energy production systems.

An alternative approach to test the performance of a building is to develop a predictive 

regression model using post-occupancy data that can accurately predict energy consumption 

and production based on a few common weather-based factors. A specific building design 

should perform similarly for two days that have the same weather conditions and similar 

occupant activity. Assuming that occupant activity is relatively stable, a regression model 

based on measured data should be able to predict energy performance of this building design 

for a given day as long as the weather conditions are similar to those during the data 

collection timeframe (i.e., locations within the same climate zone). The statistics-based 

model estimates can be compared to validated energy models of the same building to 

determine similarities in the results. If the regression estimates match the simulation model 

results, then the regression model could be used in lieu of the simulation software to 

1Certain trade names and company products are mentioned in the text in order to adequately specify the technical procedures and 
equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the products are necessarily the best available for the purpose.
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estimate performance for different weather conditions, either due to seasonal variations at 

the building’s location or for different locations across the same climate zone while 

potentially requiring less information.

Completing such a model and comparing its performance to that of a simulation both require 

detailed specifications for a building’s design combined with post-occupancy energy 

performance data and simulation models developed to predict that building’s design. The 

National Institute of Standards and Technology (NIST) constructed a Net-Zero Energy 

Residential Test Facility (NZERTF) in order to demonstrate that a net-zero (NZ) energy 

residential design can “look and feel” like a typical home in the Gaithersburg area while 

creating a test facility for building technology research. This facility includes extensive 

collection of data on the building’s energy use and on-site renewable energy production. The 

NZERTF design includes a 10.2 kW solar photovoltaic array mounted on the roof, a solar 

water heating system, energy efficient wall and roof designs, energy efficient appliances, as 

well as a heat recovery ventilation system [2]. Data collection and simulation of occupants is 

automated and includes a weekly schedule of routines based on a family of four [3]. Table 1 

provides the full specifications for the NZERTF design.

The initial year of demonstration for the NZERTF (referred to moving forward as “Round 

1”) has been completed and successfully met its net-zero goal of producing as much or more 

energy as it consumed over the entire year (July 1, 2013 through June 30, 2014). The data 

collected during Round 1 was used to adjust and validate both an EnergyPlus (E+) and 

TRNSYS whole building energy simulation developed for the NZERTF [4, 5]. The plethora 

of information on the NZERTF makes it an ideal case for generating a predictive regression 

model that can then be compared to an existing simulation model. A brief overview of E+ 

can be found in Crawly et al. [6].

This article uses the NZERTF database for Round 1 to develop and validate a parsimonious 

regression model that can accurately predict the energy performance of the NZERTF using 

only the most important daily weather conditions, applies the model to estimate the energy 

performance of the NZERTF as though it were located in different locations throughout the 

Mixed-Humid climate zone2, and compares these estimates to the results from comparable E

+ whole building energy simulations. The regression model will serve as a framework for 

alternative and more complex models based on the experimental data collected from the 

NZERTF. As more data are collected from the operation of the NZERTF with varying 

building systems (e.g., heating and cooling system configurations) and operation approaches 

(e.g., set points and occupancy) or from similar test facilities, the model can be generalized 

and expanded to account for these additional parameters.

2. Literature Review

The validated E+ model has been used in sensitivity analysis related to a number of 

parameters, including weather conditions. Kneifel, et al. [8] noted that changing the location 

2The Mixed-humid zone is defined according to the U.S. Department of Energy’s Building America Program Classification. These 
climate zones are meant to guide builders in identifying best practices for construction to improve energy performance, and various 
other aspects of residential buildings [7].
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of the NZERTF over a relatively small geographic space resulted in large differences in 

energy predictions. Larger heating and cooling loads due to a more northern or southern 

latitudinal positioning quickly drove up consumption, while areas with similar weather 

bands had different net productions due to variations in solar radiation [8]. The impact of 

weather on simulation results is further illustrated through an analysis of the use of Typical 

Meteorological Year 3 (TMY3) data [9]. A typical meteorological year is determined using a 

statistical approach to create the most representative weather year from a collection of actual 

weather data. For TMY3, the most recent TMY data, 34 years of weather were used. Their 

research, focused on TMY3 data and actual meteorological year (AMY) data from 

Gaithersburg Maryland, found that the use of TMY3 data can lead to misleading results in 

estimating building energy performance when comparing long-run average estimates of the 

34 years of AMY data with TMY3 data. The consumption determined through the use of 

TMY3 data in simulations underestimated consumption 76 % when compared to the use of 

AMY data. On the solar PV production side, the model consistently overestimated energy 

production. The combined effect can possibly lead to overly optimistic net consumption 

predictions [9].

The use of statistical models in predicting building energy use is common. Several methods 

were developed as part of the first and second “Energy Predictor Shootout” through 

ASHRAE [10]. In both cases the goal was to make hour by hour energy use predictions for 

large buildings using historical data. A common theme among those who placed highest in 

the contests was the use of artificial neural networks (ANN). Artificial neural networks are a 

form of machine learning meant to mimic how the human brain perceives patterns and 

makes predictions from them. They can be extremely complex in nature, involving large 

numbers of nodes and multiple layers. A sufficiently defined ANN can approximate any 

continuous function provided it is defined on a closed and bounded set. Both MacKay [11] 

and Dodier and Henze [12] implemented ANNs in winning the second and first Energy 

Predictor Shootouts respectively. In general, most attempts at energy modeling using ANN 

have been at the hourly level [11–13]. Kalogirou and Bojic [14] applied an ANN to a solar 

passive building, achieving a coefficient of determination of 0.9991 when completely 

unknown data were fed into the network. The use of ANN in modeling solar photovoltaic 

(PV) applications is also common [14–20].

Yang, et al. [16] notes that standard regression techniques are beneficial for predicting 

energy uses for longer periods of time, e.g., days or months, but fail when applied to hourly 

measurements. For example [21] applied a multivariate regression model to building energy 

consumption at the daily level. Problems with multicollinearity and autocorrelation 

complicate regression at the hourly level where more explanatory variables warrant 

consideration. Time series forecasts, such as autoregressive (AR) models or autoregressive 

integrated moving average (ARIMA) models are commonly employed to handle 

autocorrelation and, in the case of ARIMA, seasonality [16].

Others have used regression models in the realms of energy consumption as well as solar PV 

generation and energy demand modeling [16, 21–31]. The most recent research in residential 

applications is the work of Fumo and Biswas [32], which reviewed the use of regression 

analysis for building energy consumption in current literature. While regression analysis on 
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datasets is by no means a new concept, Fumo and Biswas [32] provides a comprehensive 

overview of the general theory and practical application of it in residential energy 

consumption. Their work does not consider the production side of residential energy use, 

however, assuming no on-site generation. Of particular interest is the assertion that future 

residential energy modeling could be done on an individual building basis as a result of the 

proliferation of smart meters [32].

Most energy consumption models, statistical or otherwise, focus on weather variables. 

Amiri, et al. [33] however utilized a regression approach to predict energy consumption 

indicators for commercial buildings based on construction materials, design features, and 

occupant schedule. The use of “dummy” variables to facilitate the use of non-numeric inputs 

into the regression model indicates that regression is flexible enough to handle level based 

inputs. This finding is further illustrated through the level of accuracy achieved by their 

model [33]. Various other papers have shown that regression-based approaches provide an 

accurate modeling technique for building energy related applications [29, 34, 35].

An example of how a simplified model can prove to be extremely powerful is the “Simple” 

model developed by Blasnik [36]. Blasnik’s model reduces the number of inputs for its 

energy consumption model to 32 and relies on less operator knowledge than simulation 

models like E+ that require an extensive number of inputs and an in depth knowledge of 

home construction. In general, the simple model outperformed the Home Energy Saver 

model, both full and mid versions, and the REM/rate model in predicting energy for an 

existing home. Blasnik cites the use of too many inputs, focus on the wrong building 

aspects, and poor assumptions as some of the deficiencies in the more complex models. 

When the more complex models were applied to newer homes they exhibited an 

improvement in predictive accuracy, mainly due to higher R-values and lower rates of air 

leakage [36].

3. Methodology

The model developed for the NZERTF was chosen to be the simplest possible model that 

had some accuracy in predicting its net energy consumption. A model of the daily net 

consumption was the primary goal, ideally with one variable modelling the energy produced 

and one variable modeling the energy consumption.

It must be stated that the developed model was intended to be predictive, not explanatory, in 

nature. While some explanatory results were identified the model is not meant to describe 

the underlying physics of the NZERTF, nor could it be expected to, given the explicit effort 

to reduce the model’s complexity based solely on computational convenience. Development 

and verification of such a predictive model produces two primary benefits: 1) It establishes 

that a regression model could serve as a viable alternative to a physics-based model provided 

the necessary weather and performance data are collected and 2) It establishes a baseline for 

comparing the NZERTF performance under different conditions, such as year-to-year 

weather variability, different operational profiles, or alternative heating and cooling 

equipment.
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Daily averages or sums, whichever was more appropriate for the variable in question, were 

used for modeling purposes. Daily values negated most of the autocorrelation that exists at 

the hourly level, removing the need for auto-regressive modeling techniques. As noted in the 

literature review, artificial neural networks (ANN) are commonplace in building energy 

prediction, however the goal herein is to use the simplest justifiable model. If an ANN 

model can be avoided while still achieving accuracy there is no reason to add the associated 

complexity.

3.1. Data Collection from the NZERTF

Operation of the NZERTF is controlled and monitored by a team of researchers at NIST 

through a data acquisition and control system. Based on the narrative of occupant activity, 

devices are remotely energized each day of the week at specific times to emulate occupant 

heat and moisture loads as well as appliance, water, lighting, and plug load use. The 

instrumentation installed in and around the NZERTF measures weather conditions and the 

building’s energy and thermal comfort performance. Data are collected at intervals of 3 

seconds or 60 seconds depending on the specific measurement. The authors manipulated 

data on hourly weather conditions (solar insolation, outdoor dry bulb (ODB) temperature, 

and relative humidity), electricity consumption (building-wide as well as system-specific 

values), and electricity production into daily average values (or total values when 

appropriate) for use in this analysis.

Only one year of data was available for the analysis. The NZERTF operates and collects 

measurements in real time, meaning a full year of data requires a full year of measurements 

under identical operation. In order to make the most efficient use of the facility, operating 

conditions were changed from year one to year two, making year two’s data representative 

of a fundamentally different process. In future analysis, systems are going to be tested in 

smaller time frames to obtain more system specific data. The nature of the operation of the 

facility meant that the year one data was the only set that existed for the specified operating 

conditions. Thus, using only one year of data was a requirement imposed by the NZERTF 

operation. This did present issues in the analysis. First, having full data from more years 

would provide a better validation set than the partitioning that was done to create the 

validation set described later in the analysis. Second, it was unlikely that the single year used 

provided a full development of the extreme weather conditions for the area.

3.2. Initial Data Analysis

Prior to model development, the NZERTF Round 1 data were analyzed to identify any 

apparent trends that could determine explanatory variables and correlations that need to be 

addressed. Part of this procedure involved identifying any data points within the set that 

needed to be censored. The censoring of data points was based on three conditions; (1) 

missing hourly data, (2) instrumentation or equipment errors, or (3) snow cover on the solar 

PV array. The first two points are self-explanatory however the snow cover requires 

clarification. The solar insolation measurements related to the solar PV system are collected 

by a reference cell located on the roof next to the PV array. After snowfall, the reference cell 

has a tendency to clear before the solar PV array, causing measurements of solar irradiance 

to be higher than the amount of sunlight actually reaching the PV array. By removing days 
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with snow cover the model is implicitly conditioned on snow cover as a variable. In total 313 

days out of the 365-day test period were available for modeling after censoring, which will 

be referred to moving forward as the “dataset.” The NZERTF Round 1 data contain a large 

number of variables related to power and energy use, weather conditions, solar PV output, 

and thermal energy loads for the NZERTF. Pruning the data required first identifying the 

most important variables in modeling energy performance of the structure. Based on 

knowledge of the building’s operation, it was determined that the weather variables would 

have the greatest impact on the overall energy use, and would be the most commonly 

available data for other years and locations. Specifically, the temperature and plane of array 

(POA) solar irradiance were selected as they drive the HVAC system and solar PV 

production, respectively. Another identified factor was the “Day of Week.” Each day of the 

week has a unique schedule that is followed by the simulated occupants and, therefore, 

impacts energy consumption.

Table 2 lists all potential explanatory variables considered for initial modeling purposes: 

outdoor dry bulb temperature (ODB), relative humidity (RH), POA solar insolation (INS) 

calculated from POA solar irradiance, and day of the week (DoW). All NZERTF database 

variables are reported at the hourly level.

However, detailed information on daily occupant activity variation is rarely readily available 

in practice, and is thus excluded from the model in this paper. Proxy data for this factor may 

become available as smart meters proliferate and databases of energy usage for specific 

houses can be built up. Future work will determine whether occupant behavior variation 

during the week has a meaningful impact on the predictive power of the model.

The formula for net energy consumption in Watt-hours (Wh) is given in Eq. 1.

(1)

Total energy consumption is not explicitly measured in the NZERTF, though it can be 

calculated using Eq. 2 and its specified inputs. As before all variables are converted Wh.

(2)

A visual inspection of the variables served as an initial analysis. All plotting was done at the 

daily level for the dataset. Figure 1 contains plots from the visual analysis including 
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Production versus INS, Consumption versus ODB, and Net Consumption versus both INS 

and ODB. Due to the large number of plots in the analysis those exhibiting weak or no 

trends are omitted.

The plots in Figure 1 provided insight on which variables are worth considering in 

developing the model. Insolation has a strong linear correlation with production and a 

noticeable linear trend with net consumption. Outdoor dry bulb temperature exhibits a non-

linear trend with consumption. ODB’s relationship with net consumption is less clear, 

however, there appears to be a central band within the data that follows a nonlinear trend. 

Relative humidity (not pictured) had the weakest relationship with net consumption. There is 

positive dependence between RH and net consumption but the form is difficult to discern.

Figure 2 plots insolation versus ODB as a check for correlation. There is a very weak trend 

in the plot and the linear correlation is only 0.163. The clear non-linear trend in the 

Consumption versus ODB plot implied a polynomial fit would be more appropriate, 

requiring higher orders of the ODB variable be used. Based on its weak correlation, RH was 

excluded from the analysis. The omission of relative humidity from initial consideration 

does not imply it has no impact on net consumption. Higher RH will lead to additional 

operation of the dehumidifier in the NZERTF, which will contribute to total energy 

consumption. The applicability is limited though, as the dehumidifier only operates when the 

RH level on the 1st floor of the NZERTF exceeds the maximum allowed relative humidity 

level of 50 % at the same time the heat pump is not operating in cooling mode. A cursory 

analysis of how inclusion of relative humidity affects the regression model was performed, 

and it was found to have little impact in the parsimonious context of the current model. A 

more in depth investigation of the effects of relative humidity and whether or not the 

addition of relative humidity to the model is statistically significant (s-significant) or 

warrants any increased complexity is left to future research.

Thermal mass can impact both the magnitude and timing of heating and cooling energy 

consumption. The thermal mass of a structure leads to autocorrelation between certain 

environmental variables and building energy consumption. The autocorrelations related to 

thermal mass tend to be most prevalent over a time frame of hours rather than days. As such, 

autocorrelation at the daily level should be less prominent.

Therefore, the parsimonious model herein will exclude autocorrelation effects – however, 

future models will examine if lagged variables improve the model.

3.3. Model Development and Diagnosis

Before fitting a model of any type, the dataset is partitioned into a training set and test set. 

Overfitting was not an immediate concern, but the lack of an available test data set posed a 

challenge. There is only a single year’s worth of data under the given operating conditions 

used in the dataset so fitting to all Round 1 data would leave no means to determine 

predictive power. The training set was chosen to be the first two weeks of each month, 

leaving the test set as all remaining days. By using data for the first two weeks of each 

month for the training set, conditions from every month, and therefore every season, were 

represented in the model. Any censored data in the training set was not replaced with 
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another data point from the month. In total the training set consisted of 140 data points out 

of the 313 available.

Using the plots in Figure 1, the relationships of insolation and ODB temperature with net 

consumption could be estimated. Insolation has a strong linear relationship with production 

that should dictate its relationship with net consumption. Likewise, a polynomial 

relationship can be inferred from ODB temperature’s relationship with consumption.

Models were regressed to the training set using multivariate linear regression and the least-

squared error principle and the standard assumption of a normally distributed error term with 

a mean of zero. Although powerful, regression does have limitations. Most notable is the 

regression model can only be used with confidence in the range of the data to which it is fit. 

It is possible to apply the model beyond the training set, however the confidence and 

prediction intervals inflate rapidly beyond that point. Worse, while the model fit to the data 

may be accurate in the data range there is the possibility it changes outside of the range, be it 

a change in model form, or a limiting value being reached. Thus once beyond the data range 

to which the model is fit, there is no statistical basis for asserting that the regression is valid 

or that the predictions from it are significant [37]. For brevity not all of the results from 

statistical tests performed on the net consumption model are reported. Any instance where a 

test indicated a possible violation of the assumptions of multivariate linear regression are 

noted herein.

Regression models were initially fit to the production and consumption data. Fitting to the 

production and consumption components separately helped guide the form of the regression 

model for net consumption and identified areas where the model may be lacking in 

explanatory power. The resulting models, their root mean-squared error (RMSE) and their 

corresponding correlation coefficient (R2) values are reported in Table 3. The equations in 

Table 3 represent the final form of the model chosen. This form was arrived at by adding 

variables incrementally to determine whether or not a variable, and any additional explained 

variation a variable produced, were s-significant. Multiple combinations ODB powers were 

analyzed using sum of squares techniques before deciding on the final model.

The production model has an extremely strong linear correlation, while the consumption 

model has considerably more unexplained variation. Considering the larger scatter in the 

consumption data it was expected to have higher uncertainty. An analysis of variance 

(ANOVA) was performed on both regressions and found them to be s-significant (p<0.001). 

All regression coefficients were found to be s-significant as well (p<0.001).

It is possible to infer a physical reasoning for the forms of the models. For instance, the solar 

PV system of the NZERTF operates at a roughly constant conversion rate of insolation to 

electricity even under different conditions. This constant conversion rate can be viewed as 

the slope of the line, meaning one additional Wh/m2 in the average insolation for a day 

produces and additional 520.68 Watts of electrical power. The consumption model is 

primarily driven by the HVAC system. As the temperature deviates from the balance point, 

the HVAC equipment will operate more often and at a higher capacity, which also correlates 

with lower performance efficiency. However, the complex physics associated with a system 
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of integrated systems, such as a house, cannot be easily articulated in a condensed 

explanation. A full investigation of the physical factors driving the form of the regressed 

equations, while interesting, was beyond the scope of the analysis. Instead the focus was on 

whether the simplified empirically derived model had predictive power comparable to 

commercially available software. It is therefore acknowledged that it the model is not 

intended to be, nor likely to be, a true model of the physical relationships governing the 

NZERTF. Instead it is a statistically defined predictive relationship between the net 

consumption data from the NZERTF to the weather data from the NZERTF.

Care needed to be taken in use of the production model. The solar PV system does have a 

maximum output it can produce based on a multitude of factors including the inverter, solar 

module type, system size, and how the system is wired. Although that maximum is not 

reached for the NZERTF, or any of the applications of the model later in this paper, it is vital 

that the production model be applied, and corrected when necessary, with knowledge of its 

maximum output. There is also a theoretical maximum consumption based on how much 

power the NZERTF can draw before the circuit breaker trips. The controlled operation of the 

NZERTF and energy efficiency measures it uses ensured that limit was never reached for the 

dataset.

A rigorous analysis on the production and consumption models was foregone, as their 

development was meant to guide the variables to include in the net consumption model, and 

identify where major sources of uncertainty exist.

The basic form of the net consumption model is given in Eq. 3. Performing a least squares 

regression yielded the fitted model in Eq. 4. The R2 value for the regression is 0.895 

(adjusted R2 = 0.893) and the root mean square error is 7284.1 Wh.

(3)

(4)

It must be noted that the standard limitations of regression apply to Eq. 4, most notably that 

the model is only valid for the specific process it was fit to, and only in the range of the data 

that was used to calibrate it. As a result, Eq. 4 can only be considered valid for a structure 

operating identically to the NZERTF in the range of ODB and INS found in its associated 

weather data.

ANOVA results, see Table 4 and Table 5, indicates the regression and all coefficients were s-

significant at a 5 % level of significance. Examining the confidence bounds in Table 5 

reveals that the coefficients for the separate production and consumption models are all 

within the confidence interval of the coefficients of Eq. 4. This suggests that the difference 

between Eq. 4 and the models in Table 3 is not s-significant. Thus simply adding the 

individual production and consumption models could produce a model that would be 

statistically indistinguishable from the net consumption model. An F-test indicates the 
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hypothesis that the coefficients of Eq. 4 are not equal, simultaneously, to the coefficients of 

the models in Table 3 is statistically insignificant (p = 0.146). Such a finding illustrates the 

independence of the production and consumption sides of the model. This independence is 

beneficial in that, when determining the range of data over which the regression model is 

valid, the ODB and INS ranges can be established independent of each other, instead of 

being based on their combination.

Residuals plots are given in Figure 3. These plots are generated by first determining the 

errors between the individual model-predicted net consumption versus the actual net 

consumption for the training set, referred to as the residuals. Residuals are plotted against 

the predictor variables used to generate them one at a time. A proper least-squares model 

should show no trend in the residuals and a constant variance over the range of the predictor 

variables.

All assumptions required for least-squares regression are met, however the current training 

set corresponds to only one possible partition of the dataset. Changing the training set has 

the potential to alter the regression results, as well as the results of any hypothesis tests. 

These concerns are addressed later in the analysis.

3.4. Model Validation

Testing of the net consumption model was completed by predicting the test data set using the 

fitted model and comparing the results to the actual net consumption. Figure 4 plots the 

reported daily net consumption against the model predicted net consumption for the test set. 

The black line represents perfect agreement between the model-predicted net consumption 

and the actual net consumption. In examining the plot, the key observations are: (1) the data 

tends to follow the line of perfect agreement; (2) the scatter around the line of perfect 

agreement tends to be within a well-defined range; (3) there are clusters of data indicating 

the model may be consistently under-predicting net consumption in some ranges; and (4) 

there may be a tendency to over-predict net consumption at larger values, though there are 

less data in that region to substantiate the claim. It was decided to continue the validation of 

the model, acknowledging observations 3 and 4 suggest a potential issue with the model. As 

the model was meant to be parsimonious in nature, some loss of predictive power was to be 

expected.

Another check of the model was to determine how accurately it predicts a net-zero day. 

Probit or logistic regression is generally used for binary outcomes. However, if the net 

consumption model is accurate it should be able to predict the sign of daily net consumption 

correctly for the test set on a consistent basis. Out of the 173 days used in the test set the 

model accurately predicts whether or not the day will be net-zero (negative net consumption) 

159 times. This result corresponds to a 92 % accuracy in predicting the test set. The 

accuracy on the training data is 125 correct net-zero predictions out of 140 days (89 %). 

Figure 5 plots the net-zero boundary along with the actual data points from the NZERTF test 

set, which shows that a greater level of solar insolation is required for more extreme ODB 

conditions (hot or cold). The boundary was created by selecting a value of ODB and 

determining the minimum insolation required to achieve net-zero according to the model.
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Figure 5 indicates that the model does a fairly good job at defining the net-zero envelope for 

the house. The non-net-zero days above the envelope in the higher ODB range may be due 

to relative humidity effects not accounted for in the model. In the lower ODB range it 

appears that the envelope is too “steep” to account for colder temperatures. Issues with 

limited data at the extremes of the temperature ranges makes predicting behavior in said 

regions difficult. The heating and cooling cycles also do not operate at the same rated 

efficiencies. Therefore, a segmented regression model may be better suited to account for the 

apparent deviation in lower temperature ranges.

A measure of uncertainty in the model is achieved through calculation of the prediction and 

confidence intervals on the regression. The confidence interval for a regression line is the 

likely range of the mean response given specific predictor variables. The prediction interval 

on the other hand is the likely range of a new observation given specific predictor variables. 

Prediction intervals include uncertainty from estimating the population mean and uncertainty 

due to scatter in the data, whereas confidence intervals are only concerned with the former. 

As such prediction intervals are always wider than confidence intervals for the same set of 

predictor variables.

Due to the three dimensional nature of the model, confidence intervals become hard to 

visualize for all scenarios. As net-zero performance is the primary goal, the confidence 

interval on the net consumption regression when the net consumption is zero is more 

meaningful. Figure 6 plots the confidence and prediction intervals for daily net-zero 

conditions, where the daily average insolation is set to whatever value is required to achieve 

net-zero for the ODB on the x-axis, in the same way the envelope in Figure 5 was 

determined.

The prediction interval is wide due to the large amount of uncertainty on the consumption 

side of the model. The confidence interval however is relatively tight, indicating a large 

difference in the uncertainty of the mean response compared to that of a forecasted value.

It is important to note the model up to this point is based only on 140 points out of the data 

set. Changing the training set could potentially produce different results, especially 

considering that the initial training set was chosen arbitrarily. To get an understanding of 

how changing the training set affects model parameters, a bootstrap method was 

implemented. The bootstrap used here was designed to help alleviate the issue of the 

arbitrary definition of the training set. To do so 5000 random training sets were generated 

from the dataset by pulling 40 % of the usable days from each month. A regression model 

was fit to each random training set with the form in Eq. 3. The 95 % parameter confidence 

intervals were obtained as shown in Table 6. Note that confidence bounds are sensitive to the 

size of the training set as well as the individual data points it contains.

The parameters for the initial model all fall within the bootstrapped confidence intervals, 

though the INS coefficient is at the very edge of the upper bound. Equation 5 provides the 

model fit to the entire dataset using multivariate least-squares regression. Equation 5 has 

little utility by itself, since it is impossible to validate it against a test set. It is useful in 
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understanding how the 40 % validation set bootstrapped regressions compare with a model 

that uses all available data in determining the regression.

(5)

It should be noted that the Shapiro-Wilks test for most of the bootstrapped samples and the 

full fit to the dataset violate the assumption of normality of residuals. Linear regression is 

somewhat robust against such violations; however, it still calls into question the validity of 

any ANOVA tests on regressed models.

Since the original training set did not violate the normality assumption its results are still 

valid. The bootstrapped confidence intervals in Table 6 are based on percentile rank, and 

therefore are valid regardless of the underlying distribution. The bootstrapped regression 

parameters do not differ from those of a robust least-squares regression, indicating the 

violation of non-normality is likely not a major issue.

The coefficients of Eq. 5 are all within the 95 % confidence bounds of the bootstrap 

intervals, indicating that partitioning the data set did not have a significant impact on the 

nature of the predicted trend. Therefore, the partitioned data models can be used to predict 

daily net consumption with confidence, enabling the use of bootstrapping with the 5000 

regression models that generated Table 6. After considering all of the evidence acquired 

through the validation process it was decided to continue with the model while remaining 

aware of its potential faults.

An investigation of the model’s predictive capabilities outside the training data set to which 

it was fitted and the validation set it was tested against was also vital. In order to have any 

use as a comparison tool, the model needs to exhibit some forecasting utility to be compared 

with more complex models. Otherwise it becomes difficult to examine the tradeoffs between 

model complexity and predictive accuracy.

Ideally it would have been possible to prove the form of Eq. 4 using a physics-based 

approach. Unfortunately, the complex interactions of systems, interfaces, and occupancy 

behavior meant simplifying the physical equations down to a single equation with the same 

limitations on variables was unrealistic. Utilizing physics-based models from available 

software to prove the model form was also infeasible, as they are either given as a “black-

box” where the underlying equations and assumptions are unknown, or do not simplify 

down to a single simple equation. Instead, in order to show compatibility with physics-based 

predictions, the regression model was compared to the results of a well calibrated physics-

based model. As previously noted there is only one year of data under the operation 

conditions that generated the data used in the regression, so comparing prediction from the 

model to a second year of output from the NZERTF was also impossible.

4. Model Based Predictions

Using the fitted model to predict net consumption for varying weather conditions and 

comparing them to simulation results for those conditions helps identify the level of 
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predictive power in the model. At issue is the model is fitted to data specific to the NZERTF 

and its location in Gaithersburg, Maryland. In order to achieve a basic estimate, the model 

was used to predict net consumption using TMY3 data from Gaithersburg, MD and other 

locations with a similar climate and comparing those results to simulated values from E+. 

EnergyPlus is chosen over other energy models in order to leverage previous work on the 

NZERTF.

The analysis consisted of: (1) comparing the net consumption regression model, defined by 

the 5000 bootstrapped regressions previously developed for Table 6, applied to the NZERTF 

using actual weather data for the year that the Round 1 consumption data were collected; 

and (2) using TMY3 data for 42 locations in the Mixed-Humid climate zone to obtain the E+ 

and regression model estimates of net consumption, total consumption, and total production 

for each location and develop Kriging maps for comparison. Kriging is a method of 

interpolation where values are interpolated via a Gaussian process directed by prior 

covariance values. The purpose of each analysis is to apply the regression model to some 

reference to understand the predictive power of the parsimonious model.

4.1. Assumptions

Table 7 lists all assumptions for the model based predictions.

4.2. Model Comparison for Round 1

The ability of the regression model to predict the actual performance of the NZERTF can be 

compared to the simulation models (E+ and TRNSYS) developed for the NZERTF by 

analyzing the estimated and measured production and consumption using the weather data 

for Round 1. For this comparison, the “un-tuned” TRNSYS model is based solely on 

equipment rated specifications and data derived performance measurements while the 

“tuned” model reverse engineers some system specifications to lead to the measured 

consumption [39].

The E+ model was calibrated using the collected data from the NZERTF where available. 

This is different from the reverse engineering in the TRANSYS model, in that the E+ 

calibration was not done to achieve a specific net-consumption result. Instead it used the 

measured data of each subsystem to determine the actual operating conditions of the 

equipment and implemented those values as inputs into the E+ model without 

foreknowledge of what the resulting net-consumption. Thus the “tuned” TRANSYS model 

explicitly altered performance inputs without concern for the actual performance or rating to 

achieve a desired result, while the E+ and “un-tuned” TRANSYS models used data-derived 

performance inputs to determine the result, meaning their results could be compared to the 

actual NZERTF results as a verification of their physical models. A full discussion on how 

the E+ model was built and validated can be found in Kneifel [4] and Kneifel et al. [40].

In the case of a hypothetical building, a simulation modeler will not have the measured data 

available for such adjustments to equipment performance. In such cases the only option 

would be to use the rated capacities of the equipment. While that was a possible comparison 

to include for the regression model, it would have been an equal one. The regression model 

is implicitly based on the actual performance of the equipment and systems, as they define 
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the energy output. For a meaningful comparison between the regression model and the 

physics-based model it is required they be evaluated on equal terms. As such, the E+ model 

with performance inputs adjusted based on measured performance data serves as the primary 

comparison.

The simulation models use the AMY weather file for Round 1 (July 2013 through June 

2014) from the KGAI weather station, the closest weather station to the NZERTF (within 4 

miles), because simulations require data for many weather variables to complete the 

estimation [41]. The regression model uses both the KGAI weather data and weather data 

collected at the NZERTF (referred to as “Site weather data” in Table 8). The KGAI weather 

data were used to supplement any missing weather data in the site weather data. The close 

proximity of the KGAI weather station means its weather data should be roughly similar to 

that measured at the NZERTF.

For missing actual consumption values of the NZERTF in the NZERTF data base, a five 

nearest-neighbor search was implemented to populate missing days. The impact on 

production resulting from snow cover is also accounted for in the model. To achieve the best 

accuracy, the log on snow cover kept for the NZERTF was examined. The irradiance used in 

calculations for each day was determined by the percentage of hours the PV system was 

clear of snow, with linear interpolation over the hours capable of generating electricity used 

to determine the percentage output in the event the system was gaining or losing snow over 

time. Light snow or “dustings” of snow had little to no impact on the output, thus the PV 

system was assumed to have full output on such days. If snow started in the evening or the 

panels were cleared of snow by morning it was assumed that the time the solar panels were 

covered was prior to times when they were capable of generating electricity and therefore 

produced full output. The value used was dependent on what information was available in 

the log. Any snow cover days where no percentage value was given were treated as having 

the solar array covered for the full day.

Table 8 summarizes the various Round 1 results. The results for the regression model in the 

table are the result of a bootstrap procedure. Using the 5000 regression models that 

determined the values in Table 6, 5000 predictions of annual net consumption were 

determined. The mean of all of these predictions was taken as the predicted value for each 

variable of interest. Using all 5000 regressions reduced the reliance of the prediction on a 

single, arbitrarily chosen training set which may not be the most representative model. 

Doing so also allowed for the calculation of the annual net consumption confidence intervals 

without making any assumptions on the underlying distribution of residuals.

Based on Round 1 AMY conditions from the KGAI weather station, including system 

failures and snow cover, the E+ and TRNSYS simulation models under-predict total annual 

consumption and over-predict production, leading to greater net production (additional 910 

kWh and 323 kWh, respectively) than was measured during Round 1. The regression model 

leads to estimated consumption and production that is closer (underestimate in net 

consumption of 31 kWh) to the measured annual performance than the simulation models. 

These results suggest that the regression model is more accurate at predicting the energy 

performance of the NZERTF for Gaithersburg, MD when using the KGAI AMY data.
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The results in Table 8 are not surprising nor are they a significant indicator of model 

accuracy or superiority in a global sense. When using least-squares regression, the model 

biases the mean of the residuals in the training set towards zero, thus the repeated 

application of the model on the training set should produce a result with a residual value 

close to zero, with any extreme variation coming only from the test set. While only 40 % of 

the data were used in the training set, if it is fairly representative of the entire data set then 

the same bias should exist in the test set as well. The KGAI data is not used to fit the model, 

however it is also not independent of the data used to fit the model due to their geographic 

proximity and their variable collection occurred over the same time span. This dependence 

means that, while the KGAI data is better than the AMY data taken at the NZERTF in terms 

of comparing for accuracy, the conclusions regarding accuracy that can be drawn from it are 

limited.

The true takeaway from Table 8 is that the regression model behaves as it should regarding 

the first two assumptions of Table 7, namely the model appears to be capturing the mean 

response well, and mean response appears to dominate over the prediction variability for the 

year. Ideally a second year of data or more statistical output from E+ would have been 

available to facilitate a more meaningful comparison; lacking them, such an effort was 

infeasible. Still, given that the E+ model was physically verified using the actual NZERTF 

in-situ performance data, any similarities between the regression model and the E+ model 

give reason to believe the regression model is representing the physical realities of the 

structure well [40]. More evidence would have been beneficial but the noted limitations on 

the NZERTF output data and the E+ output made that impossible.

While Table 8 does not prove that the regression model is any more accurate than the other 

models, it should be remembered that the goal was to show that the model had predicative 

capability similar to that of a physics-based model and was sufficient to serve as a 

comparison baseline for future NZERTF data. If so, then it would serve as a viable 

alternative to a physics-based approach while using significantly less input information. 

While some divergence between the two models exists, Table 8 lends credence to the idea 

that the regression model may be a viable alternative to a physics-based model when data are 

available. It must be acknowledged however that the analysis herein shows at most proof of 

concept, falling short of absolute proof.

4.3. Comparison for Mixed-Humid Climate Zone

This section will analyze the predicted performance of the NZERTF using the regression 

model across the Mixed-Humid Climate Zone and compare those results to those using the E

+ simulation model. As noted in Table 7, Assumption 8 is made to keep the ODB and INS 

ranges of locations used in the comparison within a relatively similar range. So long as the 

temperature and insolation values are within the range of the validation set there will be 

more confidence, however the extremes of the climate zone could potentially see conditions 

that exceed the validation data, increasing their uncertainty. Results for the climate zone 

comparison therefore only focus on mean response over a full year, which has less 

associated uncertainty, per Assumptions 1 and 2. Still it is acknowledged that the climate 

zone comparison is less certain than the Gaithersburg only comparison, however there is 
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little other alternative to get a broad view for how the regression model results compare to 

the E+ results. Considering most of the locations within that geographical range have similar 

ODB and INS ranges to the Gaithersburg analysis most of the interior locations produce 

results with similar uncertainty to those in Gaithersburg.

There are several results that would be expected when expanding the use of the regression 

model to predict the performance of the NZERTF in different locations. First, given the 

results for Gaithersburg, MD, it would be expected that the estimated performance of the 

NZERTF by the regression model will consistently be higher for total consumption and 

lower for total production than the simulation model results. Second, the results will vary 

across the climate zone because, even though the locations are in the same “zone,” the 

weather conditions will vary significantly from south to north (e.g., Georgia to Ohio) and 

west to east (e.g., Oklahoma to New Jersey). Third, given that the regression model is based 

on performance in Gaithersburg, MD, the accuracy of the model to predict performance in 

other locations would be expected to decrease as the location is geographically and 

climactically different from Gaithersburg, MD.

The regression model values that were used in the kriging process were the average of the 

predicted yearly results from the 5000 bootstrapped regressions. Any results from them will 

have associated confidence bounds on the sum. EnergyPlus does not produce a confidence 

bound on its results though, so a comparison of model uncertainties was not possible.

The kriging analysis for the consumption, generation, and net consumption results was done 

in two phases. The first phase involved kriging to the results of the regression model and E+ 

model separately and comparing the two maps. When comparing the two maps the closeness 

of their agreement was not considered, instead what was of interest was whether or not any 

patterns, referred to as “trends” from here on, existed over geographic space. While trends 

do not indicate the numerical accuracy of prediction or whether or not the models agree in 

magnitude, they do display whether or not the models agree in how predicted values change 

over geographic space. In light of this limitation, the kriging bands were determined based 

on percentile, resulting in intervals with unequal widths and differing bounds between the 

two maps. Doing so allowed for a comparison of how the largest and smallest values were 

distributed without losing resolution in the maps due to forcing identical band widths and 

limits.

Phase two of the analysis is where the agreement of the models was examined. In this phase, 

and all cases involving the difference between the E+ results and the regression model, the 

value from the former is subtracted from the value of the latter. By analyzing the maps of the 

differences the closeness of the estimation can be examined as well as how those differences 

vary across geographic space.

Figures 7 and 8 show that the regression model and E+ model lead to nearly identical trends. 

Predicted energy production ranges from 14 023 kWh to 17 644 kWh for the regression 

model and 14 587 kWh to 18 339 kWh for the E+ model with the lowest production 

occurring in the northern portion of the climate zone, particularly Indiana, Ohio, and 

northern Kentucky and the most northeastern states. The greatest production occurs in the 
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western portion of the climate zone (Texas, Oklahoma, and Kansas) followed by the 

southern ring in the Deep South.

Figure 9 plots the difference between the two predictions, with an under-prediction by the 

regression model resulting in a negative difference and an over-prediction by the regression 

model resulting in a positive difference. The regression model consistently predicts lower 

production values than the E+ model, which is in line with the expected result. Differences 

are greatest in the northern portions of the climate region, becoming smallest in the southern 

states. The consistency of the difference exhibited in Figure 9, and the similarity of the 

general pattern in Figures 7 and 8 indicate that the disagreement between models is due to a 

systemic difference in the calculation, and not the general form of the model used for 

prediction of energy production from the solar PV system. In this case the regression model 

does not produce the best agreement around the Gaithersburg, MD region. This result is 

likely caused by the TMY3 data in the Gaithersburg region being different than the AMY 

data to which the model was fit.

Figure 10 and Figure 11 show that the regression model predicts that energy consumption 

ranges from 11 638 kWh to 14 160 kWh for the regression model and 11 457 kWh to 13 011 

kWh for the E+ model. The regression model predicts that consumption tends to increase the 

further north and west the NZERTF is located. The lowest consumption is in the 

Southeastern states. The trends in the E+ model predictions differ significantly. The lowest 

consumption is predicted for the southern Appalachians, western North Carolina and 

Virginia and adjacent portions of the surrounding states. Consumption generally increases 

the further west the NZERTF is located until it peaks in Arkansas and Missouri, and then 

decreases for locations further west. Here the differences in the models are evident. The 

driving force is likely to be the E+ model considering more variables and utilizing more 

complex physics-based models. Given the trend in Figure 10; wind velocity, relative 

humidity, or precipitation effects could possibly be the cause of the deviations.

The difference between the predicted consumption based on the regression model and E+ 

model, see Figure 12, is lowest throughout the white band through the southern states. 

Relative to this range, the most southern locations result in the regression model predicting 

lower consumption than the E+ model (up to 856 kWh in the Deep South). Locations in the 

north and west result in predictions of consumption that are greater than the E+ model (up to 

2090 kWh). As expected the regression model consistently over-predicts consumption when 

compared to the E+ model except for two bands in the Deep South.

Figure 13 and Figure 14 display the predicted net consumptions for both models. The net 

consumption predictions for both the regression model and E+ model are negative for all 

locations, which means the NZERTF would produce excess electricity and reach net-zero 

throughout the Mixed-Humid Climate Zone. Similar to total production, the regression 

model consistently under-predicts the magnitude of net consumption across locations in the 

climate zone when compared to the E+ results. The regression model net consumption 

ranges from −740 kWh to −4816 kWh while the E+ model ranges from −2699 kWh to 

−5831 kWh. Additionally, the trends across the climate zone differ between the two 

modeling approaches. For the regression model, net consumption is smallest in the 
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southwest and southeast portions of the climate zone while the largest net consumption 

occurs throughout the northern portions in the central and Midwestern U.S. There appears to 

be a geographical impact along the Appalachian Mountains. For the E+ model, the smaller 

net production also occurs in the western portion of the climate zone, but the impact of the 

Appalachian Mountains is not as apparent. The largest net consumption occurs in northern 

locations, particularly in the Midwestern and Northeastern States.

While the trends do not match as well as production, a few key features of the net 

consumption trend are displayed by both models. The bulge of higher net consumption in 

the Midwest, as well as a band of higher net consumption along the Mississippi river are 

found in both models. A bulge of higher net consumption in the Eastern Great Plains is also 

picked up, though is more pronounced in the regression model. The Mid-Atlantic States 

appear to have a similar trend between models as well. The greatest difference occurs in the 

Southern States. Here an inconsistent distribution of net consumption is identifiable in the 

regression model, while the E+ model shows a consistent increase in net consumption 

radiating out from the Carolinas.

Figure 15 presents the difference between the two models. It is evident that the difference in 

the net consumption follows the same general band pattern as the difference in consumption 

plot in Figure 12. This result is not surprising given that production follows the same general 

trend for both models, leaving any differences in trend to be driven by the consumption side. 

Differences are most pronounced in the north, with little to no difference in predicted net 

consumption evident in the Deep South.

In general, the Kriging maps show that the regression model does extremely well at 

predicting production trends when compared with E+, reasonably well at predicting trends in 

net consumption, and produces large disagreement in prediction of consumption. 

Differences are most likely driven by variables considered in the E+ model being omitted in 

the regression model, as well as differences in the structures of the models themselves. It is 

impossible to say which method is objectively correct in terms of value or trend however, 

since no field data exists for the NZERTF design in any other locations.

4.4. Results Summary

The regression model performs well considering its parsimonious nature. Using the data 

from the KGAI AMY weather file, the regression model predicts consumption and 

production within 3.0 % and 0.2 % respectively, and net consumption within 243 kWh of net 

consumption. In comparison, the E+ simulation model deviates from the measured 

consumption and production by greater than 4.0 % and 2.7 % respectively, and over 900 

kWh in net consumption.

Considering the regression model is directly fit to the NZERTF data, the accuracy of the net 

consumption prediction in Table 8 is unsurprising. What is of more interest are the kriging 

map results. Although consistently under-predicting as compared to the E+ model, the 

production kriging maps are near identical in terms of trend. This suggests that the 

production model is a good representation of the actual relationship between production and 

plane of array insolation for the conditions under which the NZERTF data were collected. 

Kneifel and Webb Page 19

Appl Energy. Author manuscript; available in PMC 2017 September 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



The consumption side is where future modeling efforts need to improve. There is a pattern in 

the difference between the two results, indicating that the difference is driven by one or more 

missing factors. If that is the case, the inclusion of more explanatory variables in the model 

may improve the model’s predictive performance. Overall the net consumption model 

developed here offers a good baseline for evaluating future statistics based models of the 

NZERTF data.

5. Conclusion and Future Work

In conclusion, the regression model herein, based solely on daily total consumption and 

production and daily average solar insolation and ODB temperature values, can predict the 

energy performance of the NZERTF with accuracy relative to the E+ model. The regression 

model is more accurate at estimating actual yearly performance in Gaithersburg, MD than 

the E+ and TRNSYS models while requiring less system performance information, although 

basic post-occupancy data are necessary to develop the regression model. The regression 

model is within 243 kWh of measured net consumption while the simulation models are off 

by 1095 kWh (TRNSYS) and 910 kWh (E+) using the KGAI AMY data. This increased 

accuracy is due in large part to the regression model being calibrated with in-situ energy 

outputs from the NZERTF, while the physics-based models were calibrated using in-situ 

performance of individual subsystems of the NZERTF. A regression model that considers 

individual NZERTF subsystems, though more complicated, may improve agreement of the 

models and would be the next step in using regression modeling on the NZERTF data.

Similar to the E+ model, the regression model predicts that the NZERTF design would reach 

or exceed net-zero energy performance throughout the Mixed-Humid Climate Zone, which 

includes areas of the country from southern New Jersey to western Kansas to central 

Georgia. Similar trends in energy production performance are seen between the regression 

model and the E+ model across the climate zone, with the greatest production in the west 

followed by the southeast. However, the regression model consistently predicts lower 

production of approximately 500 kWh to 700 kWh. Trends in energy consumption 

predictions across the climate zone vary significantly between the regression model and E+ 

model. The regression model predicts the greatest consumption in the northwestern portion 

and the smallest in the southeastern portion of the climate zone. The E+ model predicts the 

greatest consumption in Missouri, Arkansas, and Mississippi; with consumption decreasing 

with distance from those states. Two factors could be driving these results. First, the 

differences in the E+ model results for the NZERTF in Gaithersburg, MD may carry through 

to other locations. Second, the regression model will become less accurate as the weather 

conditions (e.g., cloud cover, heating degree days, and cooling degree days) under which the 

prediction occurs become significantly different than those in the underlying data used to 

develop the model. The combination of these production and consumption prediction 

differences leads to net consumption predictions to be lower for nearly the entire mixed-

humid climate zone, with the variation growing from the Southeast and the most western 

locations in the climate zone and up into the Appalachian Mountains in West Virginia.

The results for Gaithersburg, MD indicate that even when given detailed performance data, 

physics based simulation models still may have issues accurately predicting energy usage. 
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Since physics models are often based on assumptions and simplifications for calculation 

purposes the simulations themselves introduce model uncertainty. Data-based models, like 

the one presented here, may offer more accuracy for a specific building because the model 

derives relationships based on actual output that are not affected by simplifications and 

assumptions at lower levels. However, post-occupancy data are often not available, and when 

they are available, models derived from it are limited in scope to the specific building and 

variable range from which the data was collected.

What the regression model illustrates most of all is the importance of collecting post-

occupancy data. Without collecting and analyzing data after occupancy, the validity of the 

assumptions and energy usage predictions from simulations are left unchecked. A regression 

model fit to actual energy use data after “move in” is a viable way to confirm that the 

building exhibits the energy characteristics it was predicted to display, and can be 

implemented in predicting how the performance would change under similar but different 

annual weather conditions, such as historical weather data or projected weather conditions 

based on current weather trends.

The current model predicts performance using daily average weather data. Future work 

should determine if more aggregated weather conditions (i.e., weekly, monthly, and annual) 

can be used to accurately predict annual performance, which would further decrease the 

level of detailed information required to predict performance. Alternative training data 

(random) and statistical approaches (e.g., jackknife, neural network) should be considered in 

order to try to improve the accuracy of the predictions.

The use of statistical analysis and modeling also serve as a framework to analyze the impact 

of different energy efficiency features and operating conditions while accounting for 

variations in weather. NIST plans to continue operating the NZERTF while running trials of 

different energy systems (e.g., HVAC and DHW system configurations) while keeping other 

systems and building operations (e.g., set point and occupancy) constant. The resulting 

database will have an identical form to the one used to generate the model herein. Having a 

baseline relationship means the energy impacts of each new system can be compared to a 

like value. Differences can then be quantitatively examined for significance even if the 

weather conditions of the baseline and trial are not necessarily identical. Without knowing 

the baseline statistics or model, differences become harder to justify as meaningful. The 

second phase of the demonstration phase for the NZERTF (“Round 2”) included changes to 

the configuration and operation of the HVAC system (changes in thermostat and humidity 

controls), a similar model should be developed to compare the performance of Round 1 and 

Round 2 data, which will assist in identifying under which weather conditions the 

operational changes have the most significant energy performance impacts. The same 

regression models should be used to predict performance across historical annual data 

(AMY) for Gaithersburg, MD and compare to the results from the E+ energy simulations 

using the same AMY data. A similar model can be developed to estimate the weather 

conditions under which the NZERTF will reach net-zero for a given day.

The model also sets up possibilities of generalization as well as increased complexity. The 

parsimonious model herein is meant to serve as the baseline for comparison to additional 
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models derived from the NZERTF data. By comparing the results of the model outlined in 

this paper to more complicated models, it will be possible to determine what benefit any 

alternative models may have over the simplified model, and if those benefits warrant any 

additional complexity required by the alternative models. The current model does not 

consider occupancy and additional weather factors that would be expected to impact energy 

performance, such as occupant activity variations across days of the week, differences in 

HVAC efficiency between heating and cooling, and relative humidity during the cooling 

season. A future study should develop a more complex regression model that controls for 

factors currently excluded to increase the model accuracy and determine if the improved 

accuracy is worth the additional complexity and data requirements. If occupancy-based 

energy activities can be effectively isolated, then the model can be separated into occupancy-

based energy and building systems-based energy usage. Such a decoupling would allow the 

non-occupied house model to serve as a template, allowing predictions to be made on how 

changes in occupancy behavior impact overall energy usage. A deeper statistical analysis on 

the NZERTF database is required for such a relationship to be established but, given the 

depth of information in the database, is not unrealistic.

List of Abbreviations

AMY Actual Meteorological Year

ANN Artificial Neural Network

ANOVA Analysis of Variance

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average

CONS Electricity Consumption

DOE-2 Department of Energy building energy analysis program

DoW Day of Week

E+ EnergyPlus

EPT Electricity Export

HVAC Heating, Ventilation, and Air Conditioning

IMP Electricity Import

INS Plane of Array Solar Insolation

KGAI Call Letters of Weather Station Nearest to the Net-Zero 

Energy Residential Test Facility

NC Net Consumption

NIST National Institute of Standards and Technology
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NZ Net-Zero

NZERTF Net-Zero Energy Residential Test Facility

ODB Outdoor Dry Bulb Temperature

POA Plane of Array

PROD Electricity Production

PV Photovoltaic

R2 Correlation Coefficient

RH Relative Humidity

RMSE Root Mean-Squared Error

s-significant Statistically Significant

TMY3 Typical Meteorological Year 3
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Figure 1. 
Scatter plots of key NZERTF database explanatory variables with predictor variables
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Figure 2. 
Scatterplot of insolation versus outdoor dry bulb temperature

Kneifel and Webb Page 27

Appl Energy. Author manuscript; available in PMC 2017 September 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 3. 
Residual plots for net consumption model
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Figure 4. 
Plot of predicted net consumption versus actual net consumption
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Figure 5. 
Plot of net-zero (NZ) boundary as predicted by the model
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Figure 6. 
Confidence and prediction intervals on net-zero conditions
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Figure 7. 
EnergyPlus predicted energy production over the mixed-humid climate zone
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Figure 8. 
Regression model predicted energy production over the mixed-humid climate region
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Figure 9. 
Difference between E+ and regression model energy production over the mixed-humid 

climate region

Kneifel and Webb Page 34

Appl Energy. Author manuscript; available in PMC 2017 September 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 10. 
EnergyPlus predicted energy consumption over the mixed-humid climate region
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Figure 11. 
Regression model predicted energy consumption over the mixed-humid climate region
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Figure 12. 
Difference between E+ and regression model energy consumption over the mixed-humid 

climate region
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Figure 13. 
EnergyPlus predicted net energy consumption over the mixed-humid climate region
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Figure 14. 
Regression model predicted net energy consumption over the mixed-humid climate region
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Figure 15. 
Difference between E+ and regression model net energy consumption over the mixed-humid 

climate region
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Table 1

Specifications of NZERTF

Building Category Specifications Details

Windows U-Factor 1.14 W/(m2K) (0.20 (Btu/h)/(ft2F))

SHGC 0.25

VT 0.40

Framing and Insulation Framing 5.1 cm × 10.2 cm − 40.6 cm OC (2 in × 6 in − 24 in OC)

Exterior Wall RSI−3.5 + 4.2 (R-20+24*)†

Basement Wall RSI−3.9 (R-22*)†

Basement Floor RSI−1.76 (R-10)†

Roof RSI−7.9 + 5.3 (R-45+30*)†

Infiltration Air Change Rate 0.61 ACH50

Effective 1st Floor = 98.8 cm2 (15.3 in2)

Leakage Area 2nd Floor = 90.2 cm2 (14.0 in2)

Lighting % of Efficient Lighting 100 % efficient built-in fixtures

HVAC Heating/Cooling Air-to-air heat pump (SEER 15.8/HSPF 9.05)

Outdoor Air** Separate HRV system (0.04 m3/s)

Domestic Hot Water Water Heater 189 L (50 gallon) heat pump water heater (COP 2.33)

Solar Thermal 2 panel, 303 L (80 gallon) solar thermal storage tank

Solar PV System System size 10.2 kW

Thermostat Set Points Temperature 21.11°C (70°F) for heating

Range 23.89°C (75°F) for cooling

*
Interior + Exterior R-Value

**
Minimum outdoor air requirements are based on ASHRAE 62.2-2010

†
Units: m2K/W (ft2F/(Btu/h)
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Table 2

Potential explanatory variables aggregated to daily values

Variable Daily value representation Abbreviation Units

Outdoor Dry Bulb Temperature Average ODB °C

Relative Humidity Average RH %

(POA) Insolation* Sum INS Wh/m2***

Day of Week** N/A DoW unitless

*
POA insolation is calculated using the POA irradiance from the NZERTF database

**
Day of week treated as an index variable, not included in initial model

***
Units: Watt-hours per meter squared
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Table 3

Summary of models for net consumption components

Variable Model R2 (adjusted R2) RMSE (Wh)

PROD PROD = 520.68 * INS 0.997 (0.997) 2462.8

CONS CONS = 46666 − 3250.8 * ODB + 116.97 * ODB2 0.753 (0.749) 6726.7
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Table 6

Bootstrapped 95 % confidence bounds for model parameters, based on percentile rank, from pulling 5000 

random training sets of 40 % of the usable data points in the dataset

Variable 95 % Lower 95 % Upper

INS −608.17 −546.59

ODB −3506.1 −2840.9

ODB2 107.23 131.89

Constant 44 863 50 572
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Table 7

Summary of assumptions for using the model to predict net consumption for a year

Assumption Notes

1. The fitted model sufficiently predicts mean 
response.

The potential biases noted in Figure 4 and loss of normality in the residuals could weaken 
this assumption. If there are a large number of days in regions where the potential 
prediction biases exists the results could be skewed.

2. A calendar year contains a sufficient number of 
days for mean response to overcome prediction 
variability.

Aggregating a daily model over a year’s worth of predictions inherently increases 
uncertainty in the summed value. Confidence intervals on the sum can easily inflate to 
absurd widths. If assumption 1 and 2 hold, the resulting sum should be somewhat 
representative of the mean yearly total.

3. The E+ results are sufficiently accurate to serve 
as a basis for comparison.

EnergyPlus is a simulation model with its own implicit uncertainty and assumptions. Its 
results cannot be considered a perfect predictor, however its overall acceptance in 
practice and vetted physics-based models provide some confidence in its accuracy.

4. TMY3 data is used for all locations. Issues with TMY3 data are noted in the literature review. However, they are currently the 
best source of estimated weather data.

5. The Perez model was used in converting TMY3 
irradiance data to plane of array insolation data.

Albedo was not used in determining insolation, as some weather files did not contain 
albedo measurements.

6. The NZERTF house operates identically 
regardless of location.

Occupant behavior, appliance usage, and thermostat set points are unchanged.

7. The NZERTF construction is identical 
regardless of location

Building orientation, envelope, materials, and plane of array for the solar PV system are 
unchanged.

8. All locations are within the Mixed-Humid 
climate zone, the region the NZERTF is located in 
and designed for.

This assumption reduces the chance of applying the regression model to conditions 
outside those it was fit to. It is still possible certain the chosen locations may produce 
ODB or INS values outside the range of the validation set, increasing uncertainty in their 
reported net consumptions.

9. Reported values are the result of a bootstrap 
procedure. The 5000 regressions performed to 
produce Table 6 were used to predict the yearly net 
consumption, producing 5000 yearly net 
consumption values.

This assumption simplified the calculation of confidence bounds on the yearly total of net 
consumption. As noted the partitioned data sets showed strong agreement with the trend 
in the full data, lending credence to the reduced data set having roughly equivalent 
predictive power.

10. Snow cover in the TMY3 files is properly 
accounted for in determining the irradiance values 
used in calculations.

Irradiance was calculated through NREL’s System Advisory Model with the option of 
including effects due to snow cover selected [38]. Doing so should provide appropriate 
irradiances for the calculation of solar PV generation.
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